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Testosterone is overwhelmingly important in regulating erectile physiology. However, the
associated molecular mechanisms are poorly understood. The purpose of this study was to
explore the effects and mechanism of testosterone in erectile dysfunction (ED) in castrated
rats. Forty male Sprague-Dawley rats were randomized to 4 groups (control, sham-
operated, castration and castration-with-testosterone-replacement). Reactive oxygen
species (ROS) production was measured by dihydroethidium (DHE) staining. Erectile
function was assessed by the recording of intracavernous pressure (ICP) and mean arterial
blood pressure (MAP). Protein expression levels were examined by Western blotting. We
found that castration reduced erectile function and that testosterone restored it. Nitric
oxide synthase (NOS) activity was decrease in the castrated rats, and testosterone
administration attenuated this decrease (each p < 0.05). The testosterone,
dihydrotestosterone, cyclic guanosine monophosphate (cGMP) and cyclic adenosine
monophosphate (cAMP) concentrations were lower in the castrated rats, and testosterone
restored these levels (each p < 0.05). Furthermore, the cyclooxygenase-2 (COX-2) and
prostaglandin synthase (PTGIS) expression levels and phospho-endothelial nitric oxide
synthase (p-eNOS, Ser1177)/endothelial nitric oxide synthase (eNOS) ratio were reduced in
the castrated rats compared with the controls (each p <0.05). In addition, the p40phox and
p67phox expression levels were increased in the castrated rats, and testosterone reversed
these changes (each p < 0.05). Overall, our results demonstrate that testosterone
ameliorates ED after castration by reducing ROS production and increasing the activity of
the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways.
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25 INTRODUCTION

26 Testosterone is overwhelmingly important in regulating erectile physiology through various 

27 signaling pathways (Bond et al. 2010; Chua et al. 2009; Zhang et al. 2011b). Erectile dysfunction 

28 (ED) is a common symptom in hypogonadal men that can lead to decreased self-confidence, 

29 depression and other symptoms that seriously influence the quality of life (Yohannes et al. 2010) . 

30 A recent study has revealed that testosterone yields many benefits in the treatment of 

31 hypogonadism and ED (Yassin et al. 2014). However, the mechanism of how testosterone 

32 improves ED is not completely understood. 

33 Endothelial cells produce and release nitric oxide (NO), which induces the activation of 

34 soluble guanylyl cyclase and the accumulation of cyclic guanosine monophosphate (cGMP), 

35 resulting in the relaxation of smooth muscle and penile erection (Andersson & Wagner 1995; 

36 Burnett & Musicki 2005; Lue 2000). Nicotinamide adenine dinucleotide phosphate (NADPH) 

37 oxidase, a complex composed of p22phox, p40phox, p47phox, gp91phox, p67phox and a GTPase Rac1 

38 or Rac2, is a crucial enzyme that catalyzes the production of reactive oxygen species (ROS). 

39 Recent studies have reported that ROS play a major role in hypercholesterolemia-induced ED 

40 and diabetes-related ED pathogenesis (Jin et al. 2008; Li et al. 2012; Musicki et al. 2010; Yang et 

41 al. 2013). During the process of hypercholesterolemia-induced and diabetes-related ED, 

42 increased oxidative stress leads to an imbalance between the limited antioxidant defenses and 

43 accumulated ROS, which induces endothelial dysfunction and decreases NO availability. Finally, 

44 increased oxidative stress from the NO/cGMP signaling pathway causes pathological ED 

45 (Musicki et al. 2010; Yang et al. 2013). Although effects of testosterone on the NO/cGMP 
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46 signaling pathway have been documented over the last several years, to the best of our 

47 knowledge, no comparative studies have been performed on the role of testosterone in 

48 ameliorating ROS in castration-induced ED. Hence, we hypothesized that the above-mentioned 

49 changes are present in castrated rats and that testosterone improves erectile function by inhibiting 

50 ROS production.

51 Reduction of the cyclic adenosine monophosphate (cAMP) concentration also occurs in 

52 ED. Cyclooxygenase (COX) is an important enzyme involved in prostaglandin synthesis; COX-1 

53 and COX-2 are two COX isoforms. COX-1 is constitutively expressed in cells, and COX-2 is 

54 expressed under certain anomalous conditions (Wang et al. 2014). Both of these isoforms 

55 transform arachidonic acid into prostaglandin H2 (PGH2), which is further converted into 

56 prostaglandin I2 by prostaglandin synthase (PTGIS). Then, adenylyl cyclase is sensitized to 

57 produce cAMP. This activation causes smooth muscle relaxation and penile erection (Lin et al. 

58 2013). PGH2 can also be converted into other prostaglandins with potent proinflammatory effects. 

59 Any factors affecting this pathway and leading to cAMP reduction may cause ED. Israel Pérez-

60 Torres et al have found that castration influences arachidonic acid metabolism and reduces COX-

61 2 expression in the kidneys of metabolic syndrome rats (Fernandez-Sanchez et al. 2011). 

62 Similarly, Lin et al have suggested that COX-2-10aa-PGIS gene therapy elevates erectile 

63 function following cavernous nerve injury to rats (Lin et al. 2013). However, the role of the 

64 COX-2/PTGIS/cAMP signaling pathway remains to be elucidated in castrated rats with ED.

65 The purpose of this study was to determine the effect of testosterone on the erection 

66 process in castrated rats. We analyzed the function of testosterone and investigated the molecular 
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67 mechanisms of castration-induced ED.
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69 MATERIALS AND METHODS

70 Castration Model and Treatment

71 In the experiment, 40 adult male, 8-week-old Sprague–Dawley rats weighing 200~250 g were 

72 obtained from Tongji Medical College, Huazhong University of Science and Technology. The 

73 rats were randomized into the following 4 groups: control, sham-operated, surgical castration, 

74 and castration-with-testosterone-replacement (n=10 for each group). The castration procedure 

75 was as follows. Briefly, the rats were anesthetized with pentobarbital sodium intraperitoneally 

76 (40 mg kg-1). A ventral midline incision was created above the scrotum, and the abdominal wall 

77 was cut open. The spermatic cord was then separated, and the vas deferens and associated 

78 vasculature were identified and separately ligated. Next, the testicles were removed bilaterally. 

79 The rats in the testosterone treatment groups received 100 mg kg-1 month-1 testosterone (Zhejiang 

80 Xianju Pharmaceutical Co., Ltd., Taizhou, Zhejiang, China, subcutaneous injection) for 1 month 

81 immediately after castration (Zhang et al. 2011a). All procedures involving animals were 

82 performed in accordance with the guidelines of the Chinese Council on Animal Care and with 

83 approval from the Committees on Animal Experiments at Tongji Hospital (Tongji Medical 

84 College, Huazhong University of Science and Technology, Wuhan, Hubei, China; ID: TJ-

85 A20131213).

86 In Vivo Assessment of Erectile Function

87 Erectile function was assessed in all rats after 1 month of testosterone treatment. The 

88 assessments were conducted as previously described (Li et al. 2012). First, the cavernous nerves 

89 were exposed and mounted onto stainless steel bipolar wire electrodes, which were connected to 
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90 an electrical stimulator. The electrical stimulation parameters were as follows: 5 volts at 15 Hz, 

91 with a square-wave duration of 1.2 ms for 1 min. Then, a PE-50 cannula (Becton Dickinson & 

92 Co., Sparks, MD, USA) was inserted into the left carotid artery to monitor the systemic mean 

93 arterial blood pressure (MAP). Finally, a 25-gauge needle was inserted at the crura, connected to 

94 PE-50 tubing, and filled with 250 U mL-1 of a heparin solution. Both blood pressure and 

95 intracavernous pressure (ICP) were measured continuously using a data acquisition system (AD 

96 Instruments Powerlab/4SP, Bella Vista, NSW, Australia). The Max ICP/MAP was recorded for 

97 each rat. The animals were sacrificed via injection of 20 mL of air, and the corporeal tissue was 

98 immediately collected from each rat. One-third of the sample was fixed in 4% triformol and 

99 embedded in paraffin for further use. The remaining tissue was immediately frozen and stored at 

100 -80°C until analysis.

101 Measurements of Plasma Testosterone and Dihydrotestosterone (DHT)

102 Immediately after electrostimulation, blood was collected using a PE-50 tube, which was 

103 inserted into the left carotid artery, to determine the testosterone and DHT levels. Whole blood 

104 was centrifuged at 1580 g for 15 min at 4°C. The testosterone level was determined at the 

105 clinical laboratory of Tongji Hospital. The DHT level was determined using an ELISA kit 

106 (Westang Bio-tech Co., Ltd., Shanghai, China ). The remaining plasma was collected and stored 

107 at -80°C.

108 SDS-PAGE and Immunoblotting 

109 The frozen penile tissues were prepared in ice-cold RIPA buffer containing a protease inhibitor 

110 cocktail and sodium fluoride (NaF), followed by centrifugation at 12000 g for 15 min at 4°C. 
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111 Protein concentrations were assayed using a BCA assay kit (Beyotime Institute of Biotechnology, 

112 Haimen, Jiangsu, China). In total, 50 μg of protein was loaded onto a 10% sodium dodecyl 

113 sulfate-polyacrylamide precast gel and then transferred to a polyvinylidene fluoride membrane. 

114 The membranes were blocked for 1 h in a solution of 0.1% Tris-buffered saline and Tween-20 

115 (TBST) with 5% (w/v) bovine serum albumin at room temperature. The membranes were 

116 subsequently incubated with antibodies against p40phox (1:500, Bioworld, Nanjing, Jiangsu, 

117 China), p67phox (1:1000, Affinity, Zhenjiang, Jiangsu, China), endothelial nitric oxide synthase 

118 (eNOS, 1:1000, Abcam, Cambridge, MA, USA), phospho-eNOS at Ser1177 (p-eNOS, 1:1000, 

119 Cell Signal Technology, Beverly, MA, USA), COX-2 (1:500, Abcam, Hong Kong, China), 

120 PTGIS (1:1000, Abcam, Hong Kong, China) or β-actin (1:500, Multisciences, Hangzhou, 

121 Zhejiang, China) overnight at 4°C. After the membranes were washed three times in TBST for 1 

122 h, they were incubated with a secondary antibody in TBST at room temperature for 1.5 h. Then, 

123 they were washed again three times in TBST and analyzed with an enhanced chemiluminescence 

124 detection system (Pierce, Thermo Fisher Scientific, Rockford, IL, USA).

125 Detection of ROS

126 The rat corpora cavernosa were quickly frozen, cut to a thickness of 8 µm at an optimized cutting 

127 temperature, and placed on glass slides. A fresh dihydroethidium (DHE) solution (1 µmol L-1, 

128 Beyotime Institute of Biotechnology, Haimen, Jiangsu, China) was topically applied to each 

129 tissue slice, and the slices were incubated for 30 min at 37°C in the dark. Fluorescence images 

130 were captured with an Olympus BX51 fluorescence microscope (Olympus Corporation, Tokyo, 

131 Japan). Fluorescence intensities were determined using Image-Pro Plus software (Media 
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132 Cybernetics Inc., Bethesda, MD, USA).

133 Determination of Nitric Oxide Synthase (NOS) Activity

134 NOS activity in the penile tissues was measured using an ELISA kit (Nanjing Jiancheng 

135 Bioengineering Institute, Nanjing, Jiangsu, China) according to the manufacturer’s instructions. 

136 The assays were performed in duplicate, and the protein concentrations were detected to 

137 normalize the data. 

138 cGMP and cAMP Concentrations 

139 The cGMP and cAMP concentrations in the penile tissues were measured using an ELISA kit 

140 (Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China) according to the 

141 manufacturer’s instructions. The assays were performed in duplicate, and the protein 

142 concentrations were detected to normalize the data.

143 Statistical Analysis

144 Parametric data are expressed as the mean ± SD. All statistical analyses were performed with 

145 SPSS 15.0 software (SPSS, Inc., Chicago, IL, USA) using one-way ANOVA followed by 

146 Bonferroni’s multiple comparison post-test. Intergroup differences were considered significant at 

147 a p < 0.05.

PeerJ reviewing PDF | (2015:12:8306:1:0:NEW 23 Mar 2016)

Manuscript to be reviewed



149 RESULTS

150 Effect of Testosterone Treatment on Plasma Testosterone and DHT Concentrations 

151 The castrated rats exhibited marked decreases in body weight, plasma testosterone and DHT 

152 levels compared with the control rats. Testosterone replacement restored the testosterone and 

153 DHT concentrations, but they were still lower than those of the control rats (although this 

154 difference was not significant). There were no differences in the plasma testosterone and DHT 

155 concentrations between the control and sham-operated rats (Table 1).

156 Effects of Testosterone Treatment on Erectile Function 

157 Fig. 1 presents a summary of the Max ICP/MAP ratios for the four groups. The Max ICP/MAP 

158 ratio was lower in the castrated group than in the other three groups subjected to 5 V stimulation. 

159 Testosterone therapy resulted in a substantial increase in the Max ICP/MAP ratio compared with 

160 that of the castration group with electrostimulation (p < 0.05). However, this ratio was still lower 

161 than those of the control and sham-operated rats. There was no difference in the MAP among the 

162 four groups.

163 Effects of Testosterone Treatment on ROS Production in Penile Cavernous Tissue 

164 ROS production was detected in the four groups. As shown in Fig. 2A and 2B, castration 

165 resulted in a dramatic increase in ROS production (detected by DHE fluorescence), which was 

166 attenuated by testosterone. Furthermore, to assess whether castration-induced ROS in the corpus 

167 cavernosum is associated with NADPH oxidase, the protein expression levels of the NADPH 

168 oxidase subunits p40phox and p67phox were analyzed. Western blot analysis indicated that these 

169 levels were greatly increased in the castrated rats compared with the control and sham-operated 
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170 rats and that they were markedly reduced by testosterone treatment (p < 0.05, Fig. 2C, 2D, 2E).

171 Effects of Testosterone Treatment on the NOS/cGMP Signaling Pathways in Penile 

172 Cavernous Tissue 

173 The expression levels of eNOS and p-eNOS (Ser1177) in the corpus cavernosum were measured 

174 by Western blotting. The p-eNOS (Ser1177)/eNOS ratio was substantially lower in castrated rats 

175 than that in the normal control rats. Treatment with testosterone significantly increased the p-

176 eNOS (Ser1177)/eNOS ratio in the castrated rats (p < 0.05, Fig. 3A, 3B). In addition, to confirm 

177 the bioavailability of NO, ELISAs were performed to assess the cavernous NOS activity and 

178 cGMP concentration. As shown in Fig. 3C and 3D, the cavernous NOS activity and cGMP 

179 concentration were markedly lower in the castrated rats compared with the control and sham-

180 operated rats (each p < 0.05), indicating that the cGMP-protein-kinase-G axis mediated this 

181 inhibitory effect of NO. Testosterone treatment significantly attenuated the castration-induced 

182 reduction in cavernous cGMP and NOS activity (p < 0.05).

183 Effects of Testosterone Treatment on the COX-2/cAMP Signaling Pathway in Penile 

184 Cavernous Tissue 

185 The cavernous COX-2 and PTGIS protein expression levels were determined in the four groups. 

186 These levels were significantly lower in the castration group than in the control and sham-

187 operated groups (each p < 0.05), and they were increased after 1 month of testosterone treatment 

188 (each p < 0.05, Fig. 4A, 4C, 4D). Further, the cAMP concentration was significantly lower in the 

189 penile tissue of the castrated rats compared with those of the control and sham-operated rats (p < 

190 0.05, Fig. 4B). The testosterone treatment strongly inhibited the castration-induced reduction in 
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191 cavernous cAMP (p < 0.05, Fig. 4B). 
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193 DISCUSSION

194 Testosterone replacement therapy has been widely studied and has been clinically used for 

195 treatment of ED. However, the underlying molecular mechanisms of exogenous testosterone 

196 administration are not fully understood and are worthy of a detailed study. 

197 ROS play important roles in various diseases, including cancer, obesity, and ED 

198 (Fernandez-Sanchez et al. 2011; Raj et al. 2011; Silva et al. 2014), via reactive elements 

199 produced by the reduction of O2 with a single electron (superoxide), two electrons (hydrogen 

200 peroxide) or three electrons (hydroxyl radical) (Sabharwal & Schumacker 2014). A recent study 

201 has reported that the penile ROS levels are significantly increased and that eNOS/cGMP 

202 activities are reduced in diabetes-related ED (Yang et al. 2013). However, no correlative studies 

203 have been performed using a castrated rat model. Excessive ROS production or the failure of 

204 oxidant cleaning systems can obstruct cellular function through the oxidation of proteins, lipids 

205 and DNA (Murphy et al. 2011). In our study, we found that the levels of ROS were obviously 

206 increased and that those of the NADPH oxidase subunits p40phox and p67phox were also increased 

207 in the castrated rat model. The up-regulation of p40phox and p67phox resulted in increased ROS 

208 levels in the corpus cavernosum. Therefore, the increased production of ROS, which are 

209 activated by enzymes involved in their shape (especially NADPH oxidase), might be a key 

210 mechanism underlying castration-induced ED. 

211 Several studies have revealed that testosterone is crucial for exerting antioxidant effects by 

212 decreasing ROS. Hwang et al have demonstrated that testosterone supplementation reduces 

213 oxidative damage in Leydig cells (Hwang et al. 2011). However, the effect of testosterone on 
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214 ROS levels in the corpora cavernosa of castrated rats is still unclear and needs to be clarified. We 

215 found that testosterone treatment reduced ROS level and p40phox and p67phox expression and 

216 improved erectile function. The decrease in NADPH oxidase led to a reduction in ROS. Thus, 

217 preventing the generation of ROS by interfering with the enzymes that produce them, especially 

218 NADPH oxidase, may be a more valid measure for combating oxidative stress than eliminating 

219 ROS after their formation.

220 The NOS/cGMP pathway, which is the primary erectile pathway, has been shown to be 

221 associated with androgen. A recent study has revealed that low testosterone levels in men are 

222 associated with impaired endothelial function and NO bioavailability (Corrigan et al. 2015; Novo 

223 et al. 2015). Effects of testosterone on the expression of NOS isoforms have been shown in 

224 penile tissue (Lugg et al. 1995; Seo et al. 1999; Traish et al. 2007). Replacement of 5α-DHT and 

225 testosterone has been shown to restore erectile function and NOS expression in the corpus 

226 cavernosum of castrated animals (Schirar et al. 1997; Traish et al. 2007). However, the manner 

227 by which testosterone enhances the activity of the NOS/cGMP pathway is not fully understood. 

228 In this study, we discovered that p-eNOS (Ser1177)/eNOS ratio and the testosterone and cGMP 

229 concentrations were reduced in the castrated rats and that treatment with testosterone restored 

230 these levels. Numerous studies have concluded that increased ROS generation is one of the 

231 major causes of decreased NO bioavailability (De Young et al. 2004; Jin et al. 2009; ZS 1996). 

232 Hence, according to our findings regarding ROS and NADPH oxidase, we believe that treatment 

233 with testosterone ameliorates ED by reducing the expression of the NADPH oxidase subunits 

234 p40phox and p67phox. These reductions subsequently trigger a decrease in ROS, improvement in 
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235 endothelial cell function and an increase in NO. Subsequently, these changes lead to an increase 

236 in the cGMP concentration and smooth muscle relaxation in the corpus cavernosum.

237 In males, testosterone is essential for fertility, puberty, sexual motivation, and sexual 

238 performance (JJ 2010). Testosterone production is predominantly regulated through the 

239 interaction of luteinizing hormone/human chorionic gonadotropin with specific receptors (Catt & 

240 Dufau 1973; ML 1998), resulting in an increased intracellular cAMP level. Recent studies have 

241 indicated that cAMP plays an important role in erectile physiology through the COX-2 pathway 

242 (Lin et al. 2013; Moreland et al. 2001). COX-2 and PTGIS, which regulate the production of 

243 inflammatory mediators, are key enzymes involved in cAMP activation. Prostaglandin E, the 

244 formation of which is catalyzed by COX-2 and PTGIS, binds to pathognostic receptors on 

245 smooth muscle and is thought to enable the relaxation of smooth muscle by activating cAMP-

246 dependent pathways. A lack of testosterone decreases the expression of COX-2 and PTGIS, 

247 which in turn results in a reduced cAMP level in the corpus cavernosum. Then, the blocking of 

248 cAMP-dependent protein kinase (PKA) activation causes dysfunction in the relaxation of smooth 

249 muscle and ED. In our study, we found that COX-2 and PTGIS expression levels were reduced 

250 in the castrated rats compared with the control rats. Further, the cAMP concentration was lower 

251 in the castrated rats than in the age-matched control rats. Treatment with testosterone markedly 

252 increased COX-2 and PTGIS expression, as well as cAMP concentration. These results imply 

253 that the COX-2/PTGIS/cAMP signaling pathway may participate in another mechanism 

254 responsible for castration-induced ED. 

255 The relationship between testosterone and erectile function has not been completely 
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256 elucidated. In our study, we revealed that testosterone improved erectile function through 

257 inhibition of ROS generation in the castrated rats. These findings could initiate a new line of 

258 research in penis physiology and may provide a further scientific basis for the use of testosterone 

259 in the management of ED in men with testosterone insufficiency. We hope that these results can 

260 be utilized to produce novel therapeutic mechanisms for the treatment of hypogonadal ED.

261 Recent clinical trials suggested a significant improvement in sexual function and ED in 

262 hypogonadal men with testosterone treatment (Giltay et al. 2010; Hackett et al. 2013; Khera 

263 2009; Zitzmann et al. 2013), however, the relationship between testosterone and erectile function 

264 has not been completely elucidated. In our study, we revealed that testosterone improved erectile 

265 function through inhibition of ROS generation in the castrated rats. These findings could initiate 

266 a new line of research in penis physiology and may provide a further scientific basis for the use 

267 of testosterone in the management of ED in men with testosterone insufficiency. We hope that 

268 these results can be utilized to produce novel therapeutic mechanisms for the treatment of 

269 hypogonadal ED.

270 This study has a few limitations. The possible involvement of the COX-2/PTGIS/cAMP 

271 signaling pathway in castration-induced ED needs to be further verified. In addition, the effects 

272 of testosterone were evaluated over the short-term in our study; and its long-term effects must be 

273 assessed in future studies. Finally, the lack of knowledge regarding the long-term effects of 

274 testosterone has limited its clinical application.
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276 CONCLUSIONS

277 In conclusion, testosterone reduced ROS production and increased eNOS expression in the 

278 castrated rats. Further, it activated the COX-2/PTGIS/cAMP signaling pathway and increased 

279 cAMP production. In addition, it improved erectile function in the castrated rats under the 

280 combined actions of the above-mentioned factors. Therefore, this study presents novel findings 

281 that provide insights into the molecular mechanisms of castration-induced ED. Further studies 

282 are needed to elucidate the precise mechanisms involved.

283

284
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Table 1(on next page)

Table 1 Body weight and plasma T, DHT levels in the four groups

* p < 0.05 vs the castration group; # p < 0.05 vs castration-with-testosterone-replacement

group. Data were expressed as the mean ± SD. Co=control; So=sham-operated;

Ca=castration; Ct=castration-with-testosterone-replacement; T, testosterone; DHT,

dihydrotestosterone; N = number of analyzed samples.
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1

2 Table 1 Body weight and plasma T, DHT levels in the four groups

3 * p < 0.05 vs the castration group; # p < 0.05 vs castration-with-testosterone-replacement group. 

4 Data were expressed as the mean ± SD. Co=control; So=sham-operated; Ca=castration; 

5 Ct=castration-with-testosterone-replacement; T, testosterone; DHT, dihydrotestosterone; N = 

6 number of analyzed samples.

7

Group N Body weight, g Plasma T        Plasma DHT

Initial                        Final (ng/mL)          (pg/mL)

Co 10 224.7±4.7 407±37*# 4.18±0.27*      142.8±15.8*

So 10 225.1±2.5 409±26*# 4.06±0.19*      141.0±18.7*

Ca 10 224.5±3.4 340±39 0.51±0.09        48.3±6.0

Ct 10 225.4±2.0 343±44 3.93±0.12*      136.0±12.9*
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1
Testosterone treatment increased the Max ICP/MAP during electrical stimulation of the
cavernous nerve (5 V, 15 Hz, 1 min)

Figure 1 Testosterone treatment increased the Max ICP/MAP during electrical

stimulation of the cavernous nerve (5 V, 15 Hz, 1 min). (A, B) Representative ICP and

MAP tracings in the four groups. Bar graph depicting Max ICP/MAP ratio. The data are

expressed as the mean ± SD (n = 6~8 rats/group). Co = control; So = sham-operated; Ca =

castration; Ct = castration-with-testosterone-replacement. * p < 0.05 vs the castration

group; # p < 0.05 vs the castration-with-testosterone-replacement group.
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2
Testosterone-induced changes in ROS and protein expression.

Figure 2 Testosterone-induced changes in ROS and protein expression. (A, B) Typical

images of DHE in situ staining in corpora cavernosa from rats in the four groups (red

fluorescence; scale bars = 100 µm; time of exposure, 600 ms). Red fluorescence intensity

was measured using Image-Pro Plus software. (C, D, E) Representative Western blot showing

p40phox and p67phox expression normalized to β-actin. The data are expressed as the mean ±

SD (n = 6~9 rats/group). Co = control; So = sham-operated; Ca = castration; Ct =

castration-with-testosterone-replacement. * p < 0.05 vs the castration group. ROS, reactive

oxygen species; DHE, dihydroethidium.
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3
Testosterone-induced increase in the NOS/cGMP signaling pathway in penile tissue

Figure 3 Testosterone-induced increase in the NOS/cGMP signaling pathway in

penile tissue. (A, B) Representative Western blotting showing p-eNOS (Ser1177) and eNOS

expression normalized to β-actin, as well as the p-eNOS/eNOS ratio. (C) The cGMP

concentration was detected in penile tissue. (D) NOS activity in the four groups. The data are

expressed as the mean ± SD (n = 6~9 rats/group). Co = control; So = sham-operated; Ca =

castration; Ct = castration-with-testosterone-replacement. * p < 0.05vs the castration group.
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4
Testosterone-induced increase in the COX-2/cAMP signaling pathway in penile tissue

Figure 4 Testosterone-induced increase in the COX-2/cAMP signaling pathway in

penile tissue. (A, C, D) Typical Western blot showing COX-2 and PTGIS protein expression

normalized to β-actin. (B) The cAMP concentration was detected in the penile tissue. The data

are expressed as the mean ± SD (n = 6~9 rats/group). Co = control; So = sham-operated;

Ca = castration; Ct = castration-with-testosterone-replacement. * p < 0.05 vs the castration

group;# p < 0.05 vs the castration-with-testosterone-replacement group.
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