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ABSTRACT
Since Darwin’s time, waterbirds have been considered an important vector for the
dispersal of continental aquatic invertebrates. Bird movements have facilitated the
worldwide invasion of the American brine shrimp Artemia franciscana, transporting
cysts (diapausing eggs), and favouring rapid range expansions from introduction
sites. Here we address the impact of bird migratory flyways on the population genetic
structure and phylogeography of A. franciscana in its native range in the Americas.
We examined sequence variation for two mitochondrial gene fragments (COI and
16S for a subset of the data) in a large set of population samples representing the
entire native range of A. franciscana. Furthermore, we performed Mantel tests and
redundancy analyses (RDA) to test the role of flyways, geography and human intro-
ductions on the phylogeography and population genetic structure at a continental
scale. A. franciscana mitochondrial DNA was very diverse, with two main clades,
largely corresponding to Pacific and Atlantic populations, mirroring American bird
flyways. There was a high degree of regional endemism, with populations subdivided
into at least 12 divergent, geographically restricted and largely allopatric mitochon-
drial lineages, and high levels of population structure (8ST of 0.92), indicating low
ongoing gene flow. We found evidence of human-mediated introductions in nine
out of 39 populations analysed. Once these populations were removed, Mantel tests
revealed a strong association between genetic variation and geographic distance
(i.e., isolation-by-distance pattern). RDA showed that shared bird flyways explained
around 20% of the variance in genetic distance between populations and this was
highly significant, once geographic distance was controlled for. The variance ex-
plained increased to 30% when the factor human introduction was included in the
model. Our findings suggest that bird-mediated transport of brine shrimp propag-
ules does not result in substantial ongoing gene flow; instead, it had a significant
historical role on the current species phylogeography, facilitating the colonisation
of new aquatic environments as they become available along their main migratory
flyways.
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INTRODUCTION
Since Darwin (1859), the role of birds as dispersal vectors for the diapausing propagules

of continental aquatic organisms has been recognized (Carlquist, 1983; Bilton, Freeland

& Okamura, 2001; Green & Figuerola, 2005). A range of studies have emphasized the

importance of dispersal at short and long range by waterbirds for both passively dispersed

aquatic invertebrates – through their diapausing eggs or other dispersing stages – and

plants – through their seeds – (Figuerola & Green, 2002; Green & Figuerola, 2005; Green et

al., 2008; Brochet et al., 2010a; Brochet et al., 2010b; van Leeuwen et al., 2012a; van Leeuwen

et al., 2012b). Such long-distance, bird-mediated dispersal between aquatic habitats

should result in high population gene flow and reduced population or phylogeographic

structure. In stark contrast to this prediction, ongoing gene flow between populations

has consistently been found to be low (Boileau, Hebert & Schwartz, 1992; De Meester et

al., 2002) and phylogeographic structures quite marked, with high levels of endemism

(Gómez, Carvalho & Lunt, 2000; Gómez et al., 2007a; De Gelas & De Meester, 2005; Muñoz

et al., 2008). This paradox has been explained through a combination of high population

growth rates, rapid local adaptation and a buffering effect of large egg banks accumulated

in sediments, resulting in a monopolisation of resources by the few initial founders,

reducing the impact of further immigrants on population structure – what was termed

the “monopolisation hypothesis” (De Meester et al., 2002). Consistent with this hypothesis,

several studies failed to uncover any relationship between the geographic distribution of

genetic lineages and bird migration patterns (Gómez et al., 2007a; Mills, Lunt & Gómez,

2007; Muñoz et al., 2008). In contrast, the perceived similarity between bird migratory

pathways and the distribution of passively dispersed invertebrate genetic lineages suggests

that waterfowl are important dispersal vectors (Taylor, Finston & Hebert, 1998; Freeland,

Romualdi & Okamura, 2000; Hebert, Witt & Adamowicz, 2003). In fact, Figuerola, Green

& Michot (2005) tested explicitly the relationship between bird movements and aquatic

invertebrate population genetic structure, revealing a significant association between

historical ringing data – used as a proxy of bird-mediated dispersal between populations

– and population genetic distances for two cladocerans and a bryozoan in North America,

concluding that birds significantly contributed to effective dispersal.

Given that continental aquatic invertebrates are unlikely to be in migration-drift

equilibrium (Boileau, Hebert & Schwartz, 1992; Gómez et al., 2007a), recent studies have

interpreted population isolation-by-distance (IBD) patterns as a signature of historical

patterns due to sequential colonisation events, as newly available habitats are more likely to

be colonised by nearby populations, with little further impact of gene flow (Gómez et al.,

2007a; Mills, Lunt & Gómez, 2007; Muñoz et al., 2008). Therefore, associations between bird

movements and genetic distance in aquatic invertebrates based on mitochondrial markers
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could result from bird-mediated historical colonisation of newly available habitats, instead

of ongoing gene flow (Figuerola, Green & Michot, 2005). Shedding light on the role of bird

movements on the geographic distribution of genetic lineages would help us to understand

the structuring of genetic diversity and phylogeography in passively dispersed aquatic

invertebrates.

Artemia franciscana (Kellogg, 1906)(Crustacea: Anostraca), the most widely distributed

brine shrimp in America, occurs in hypersaline habitats from Canada to Chile and many

Atlantic islands (Hontoria & Amat, 1992). It is found in a wide diversity of isolated water

bodies, including coastal rock pools and lagoons, inland playas and high mountain salt

lakes, permanent prairie salt lakes and commercial salt works (Van Stappen, 2002),

spanning an extreme range of water chemistry compositions and salinity from high

carbonate, or high sulphate athalasic waters to seawater salterns (Bowen, Buoncristiani &

Carl, 1988). It is a sexual species, and females produce two types of eggs: subitaneous eggs

in benign environmental conditions suitable for population growth, and diapausing eggs

(i.e., cysts) during adverse conditions. Artemia cysts are amongst the most resistant animal

life forms, surviving extreme environmental stresses including UV radiation, desiccation,

thermal extremes and anoxia (Clegg, 2005). Cysts accumulate at the shoreline and in egg

banks in lake sediments (Moscatello & Belmonte, 2009), and are readily dispersed by birds,

which are the main vectors between catchments. Wind dispersal occurs but over much

shorter distances (<1 km, Vanschoenwinkel et al., 2009). Many migratory bird species,

especially shorebirds, use Artemia habitats and adult brine shrimp – often carrying viable

cysts – can make up a substantial component of their diet (Anderson, 1970; Sánchez, Green

& Castellanos, 2005; Varo et al., 2011; Vest & Conover, 2011). Birds can disperse cysts

between habitats either externally – attached to their feathers or feet – or internally in

their digestive tract (Brochet et al., 2010b; Green et al., 2005; Green et al., 2013; Sánchez et al.,

2007; Sánchez et al., 2012). Research showing the internal transport of viable A. franciscana

cysts in the field by the American Avocet, Recurvirostra americana (AJG, unpublished

data), confirms shorebirds as an effective agent of dispersal in North America (see also

Green et al., 2005). Recently, Viana et al. (2013) estimated the maximum dispersal for

Artemia cysts via wildfowl as between 230 and 1209 km based on gut passage times of cysts

ingested by captive ducks and the distances moved by wild ducks.

Populations of A. franciscana have substantial levels of genetic (Abreu-Grobois &

Beardmore, 1982; Gajardo et al., 1995; Maniatsi et al., 2009) and morphological variation

(Hontoria & Amat, 1992), and are locally adapted to the ionic composition of their

habitats (Bowen, Buoncristiani & Carl, 1988). Indeed, effective reproductive isolation

between some populations is due to different ranges of tolerance to ionic compositions

(Bowen, Buoncristiani & Carl, 1988), and so this taxon is regarded by some authors as a

“superspecies” (Bowen, Buoncristiani & Carl, 1988). Nevertheless, despite half a century

of research for aquaculture and ecotoxicology, comprehensive large-scale phylogeographic

surveys of A. franciscana are lacking.

Cysts from A. franciscana – harvested mainly from populations in the San Francisco

Bay saltworks and the Great Salt Lake in the USA – have been used globally as a food
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source in aquaculture and in the pet fish trade for decades (Abatzopoulos, 2002; Amat

et al., 2005; Amat et al., 2007). Effluents from fish farms are likely to contain cysts

that can potentially colonise nearby natural wetlands. In addition, the introduction of

A. franciscana has been and still is promoted worldwide to increase salt production or to

generate local sources of cysts until as recently as 1993 (Tackaert & Sorgeloos, 1993; Sui et

al., 2012). As a result of such accidental and intentional inoculations, A. franciscana has

become an invasive species in saline and hypersaline wetlands worldwide (Muñoz & Pacios,

2010; J Muñoz, A Gómez, J Figuerola, F Amat, C Rico, AJ Green, 2013 unpublished). For

instance, this invasion has led to rapid local extinction of native Artemia species in the

Mediterranean region (Amat et al., 2005). Commercial strains of A. franciscana were also

introduced in various American sites in the 1970s (Camara, 2001; Amat et al., 2004). In

Brazil, further spreading of the species, probably via bird movements, was noticed within

a few years of its introduction in areas where it was previously absent (Camara, 2001).

However, the impact of these introductions on the genetic diversity and structure of native

American populations has yet to be investigated.

Artemia franciscana represents a very interesting model to test the effect of bird move-

ments on the geographic distribution of genetic lineages and patterns of genetic variation

in aquatic invertebrates since (1) its distribution encompasses three continental-scale bird

migratory flyways spanning both North and South America (i.e., the Pacific, Central and

Atlantic flyways), but is highly fragmented due to its habitat requirements (hypersaline

lakes), (2) its habitats are frequented by migratory shorebirds; Artemia is an important prey

of these and other waterbirds and its cysts can be readily quantified in waterbird excreta

(Green et al., 2005; Sánchez et al., 2007), and (3) the intentional or accidental inoculations

outside the native range may be affecting its natural population genetic structure.

Here, we carry out the first comprehensive phylogeographic study of A. franciscana

throughout its known native range (i.e., from Central Canada to southern Chile and

Argentina, including the Caribbean islands) using sequence variation for two mito-

chondrial genes (COI and 16S). Our results indicate a high level of genetic structure and

endemism at a continental scale, identify the impact of human introductions and suggest

a direct link between bird migratory routes (i.e., flyways) and the historical colonization

of A. franciscana throughout the Americas, revealing a key role for birds in initial founder

events.

METHODS
Samples, laboratory procedures, and sequences
We obtained samples from 39 A. franciscana populations across its American geographical

distribution, from Canada to Chile and Argentina, including Caribbean islands and a

population from Cape Verde (Table 1 and Fig. 1). Most samples were cysts obtained

from the ‘cyst-bank’ of the Instituto de Acuicultura de Torre de la Sal (CSIC, Castellón,

Spain), collected between 1984 and 2000. Four Canadian samples were collected in the

field in 2009, two of them (MANW and CHAP) as adults, which were preserved in absolute

ethanol until needed. An additional cyst sample from Mono Lake (USA), collected in the
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Figure 1 Map of Artemia franciscana sampled sites and American bird migratory flyways. The sam-
pled populations are shown, with indication of the main American migratory flyways following Birdlife
International (see text for details). Green shading: Pacific flyway, red shading: Central flyway, blue
shading, Atlantic flyway.

1970s was kindly provided by the Artemia Reference Centre (ARC 270). A few cyst samples

that yielded poor quality DNA extractions were subject to hatching and the resulting

nauplii used for DNA extractions (i.e., MexCB and GUA samples).

DNA extractions were carried out on individual cysts (previously rinsed in distilled

water), whole nauplii or partial adults using a HotSHOT protocol (Montero-Pau, Gómez

& Muñoz, 2008). We used Artemia-specific primers 1/2COI Fol-F and 1/2COI Fol-R

(Muñoz et al., 2008) to amplify and sequence a 709 bp fragment of the mitochondrial

Cytochrome c Oxidase Subunit I gene (COI). We also amplified and sequenced a 535 bp

fragment of the 16S ribosomal RNA gene for a subset of individuals carrying different

COI haplotypes to facilitate comparison with other published sequences using primers

16Sar-5′/16Sbr-3′ (Palumbi, 1996). PCRs were performed in 20 µL total volume containing
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Table 1 Artemia franciscana populations sampled. Population code, year of sampling, COI haplotype code, number of individuals per haplotype
per population (NHAP) and number of individuals sequenced per population (NTOTAL), are given for each sampling site. Hs, Standard gene diversity;
π , Nucleotide diversity; N.A., Insufficient data to calculate Hs (the minimum sample size per population performed by RAREFAC was 11). The
main commercialised USA populations (i.e., SFB and GSL) and haplotypes from these populations shared with other populations are shown in red.
Populations considered as introduced are indicated in bold. Only populations collected as part of this study are included.

Code Population (year) COI haplotypes NHAP NTOTAL Hs π Refs. for introduction

MexCe Celestún, Yucatán, México
(1984)

Af01 15 15 0.000 0.0000 -

Mex99 Real de las Salinas,
Campeche,
México (1999)

Af01 14 14 0.000 0.0000 -

MexY Yavaros, Sonora,
México (1993)

Af02; Af03 1; 11 12 0.167 0.0003 -

MexH Salinas de Hidalgo,
San Luis Potosı́,
México (1989)

Af04; Af05; Af06;
Af07; Af08; Af09

1; 1; 1; 2; 3; 3 11 0.873 0.0091 -

MexT Texcoco, Estado de
México, México (1989)

Af07; Af08; Af09;
Af10; Af11

1; 2; 7; 1; 2 13 0.705 0.0099 Introduced from SFB
in 1975 (Castro, 1993)
cited in Castro et al.
(2006)

MexCB Salinas Casa Blanca,
Cuatro Ciénagas de
Carranza, Coahuila,
México (1995)

Af12; Af13; Af14;
Af15; Af16; Af17

2; 6; 1; 3; 3; 1 16 0.817 0.0023 -

MexLC La Colorada lagoon,
Oaxaca, México (1993)

Af18; Af19; Af20;
Af21

3; 1; 8; 2 14 0.648 0.0041 -

MexSQ San Quintı́n, Baja
California, México (??)

Af10; Af22; Af23; 12; 1; 1 14 0.275 0.0005 -

MexFSJ Faro San José, Baja
California,
México (1991)

Af01; Af10; Af24 1; 2; 1 4 N.A. 0.0226 -

GUA Frank Paı́s,
Guantánamo,
Cuba (1994)

Af10; Af20; Af25 6; 1; 9 16 0.575 0.0019 Introduced in the 70’s
in 7 saltworks, (Gelabert
& Solis, 1994) cited in
Tizol-Correa (2009).

GSL Great Salt Lake,
Utah, USA (??)

Af10; Af18; Af20;
Af21; Af26; Af27

1; 2; 21; 2; 2; 1 29 0.475 0.0028 -

SFB San Francisco Bay,
California, USA (??)

Af10; Af18; Af20;
Af25

26; 6; 4; 1 37 0.480 0.0033 -

USSF Salina Fraternidad,
Puerto Rico, CaboRojo,
USA (2000)

Af28; Af29 12; 4 16 0.400 0.0007 -

USSB Laguna de las Salinas
Bastoncillo, Lajas,
Puerto Rico, USA (2000)

Af28; Af30; Af31;
Af32; Af33; Af34

6; 4; 1; 1; 1; 1 14 0.769 0.0017 -

MANW Little Manitou Lake,
Saskatchewan,
Canada (2009)

Af35; Af36 8; 1 9 N.A. 0.0004 -

(continued on next page)
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Table 1 (continued)
Code Population (year) COI haplotypes NHAP NTOTAL Hs π Refs. for introduction

CMUS Muskiki Lake,
Saskatchewan,
Canada (2009)

Af35; Af37; Af38 12; 1; 1 14 0.275 0.0005 -

CHAP Chaplin Lake,
Saskatchewan,
Canada (2009)

Af39; Af40; Af41;
Af42; Af43

11; 1; 1; 2; 1 16 0.533 0.0027 -

CMEA Meacham Lake,
Saskatchewan,
Canada (2009)

Af35; Af44; Af45;
Af46; Af47

26; 1; 1; 1; 1 30 0.253 0.0005 -

BRM Mossoro, Grossos,
Brazil (1994)

Af10 11 11 0.000 0.0000 Introduced in 1977
from SFB (Camara,
2001)

CGZ Salinas de Galerazamba,
Colombia (1985)

Af48; Af49; Af50 1; 8; 7 16 0.592 0.0017 -

CM Salinas de Manaure,
Colombia (1999)

Af51; Af52 15; 1 16 0.125 0.0002 -

CSC Salina Cero,
Colombia (1999)

Af49; Af50; Af53;
Af54; Af55

8; 4; 1; 1; 1 15 0.676 0.0015 -

CT Tayrona,
Colombia (1999)

Af56; Af57; Af58 9; 4; 2 15 0.590 0.0023 -

PPS Playa Salinas, Ancash, Perú
(1995)

Af59; Af60; Af61;
Af62; Af63

6; 2; 1; 3; 1 13 0.756 0.0023 -

PLC Los Chimus,
Perú (1992)

Af59; Af64 14; 1 15 0.133 0.0002 -

PV Virrilla, Piura,
Perú (1996)

Af65 16 16 0.000 0.0000 -

PVe Humedales de Ventanilla,
Callao, Perú (1996)

Af59; Af61; Af66;
Af67

8; 1; 6; 1 16 0.642 0.0020 -

PLM La Milagrosa, Chilca,
Perú (1993)

Af68; Af69 14; 2 16 0.233 0.0004 -

VEC Salinas de Cumaraguas,
Venezuela (1994)

Af51; Af70; Af71 10; 4; 1 15 0.514 0.0009 -

JAYA Yallahs Pond,
Jamaica (1998)

Af18; Af19 15; 1 16 0.125 0.0002 Known since 1992,
morphology extremely
similar to SFB (Castro et
al., 2000)

CHSL Salar de Llamará,
Chile (1994-lab)

Af72; Af73; Af74;
Af75

5; 1; 1; 2 9 N.A. 0.0014

CHLC Laguna Cejas,
Salar de Atacama,
Chile (1995-lab)

Af18 16 16 0.000 0.0000 Maniatsi et al. (2009)
found different
haplotypes, which were
native.

CHLV Los Vilos, Poza Palo
Colorado, Chile (1997)

Af76; Af77 6; 10 16 0.500 0.0008

CHPI Pichilemu Cahuil
saltworks,
Chile (??-lab)

Af18; Af78 8; 8 16 0.533 0.0103 Reportedly introduced
by artisanal workers
(Gajardo et al., 1998) no
details as to when.

(continued on next page)
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Table 1 (continued)
Code Population (year) COI haplotypes NHAP NTOTAL Hs π Refs. for introduction

CHP Poza Pampilla IV Region,
Chile (1997)

Af79; Af80 14; 1 15 0.133 0.0048 -

AMC Mar Chiquita, Córdoba,
Argentina (1997)

Af81 16 16 0.000 0.0000 -

ASG Salinas Grandes,
Córdoba,
Argentina (2000)

Af72; Af73; Af74;
Af82; Af83; Af84;
Af85

7; 1; 1; 1; 1; 1; 1 13 0.731 0.0018 -

AMON Mono Lake
(1970s, ARC270)

Af87; Af88; Af89;
Af90; Af91; Af92

1; 1; 1; 7; 1; 1 12 0.682 0.0016 -

PLU Pedra de Lume, Sal Island,
Cape Verde (??)

Af86; Af93 15; 1 16 0.125 0.0002 -

1× reaction buffer, 2.0 mM MgCl2, 0.2 mM dNTPs, 0.6 units Taq DNA polymerase

(Bioline, London, UK) and 0.5 µM of each primer. PCR conditions were as follows:

94◦C for 3 min, followed by 35 cycles of 45 s at 94◦C, 60 s at 45◦C (60–64◦C for 16S

locus), and 60 s at 72◦C, followed by 5 min at 72◦C. PCR products were purified for

sequencing using ExoSAP-IT® (Exonuclease I and Shrimp Alkaline Phosphatase in buffer;

USB Corp., Ohio, USA), cleaned with Sephadex®-G50 (GE Healthcare Corp.), and labelled

using the BigDye Terminator Sequencing Ready Reaction v3.1 kit (Applied Biosystems).

The resulting fragments were separated on an ABI 3130xl genetic analyzer. Sequences

were checked, edited, and aligned using Sequencher® v4.5 (Gene Codes Corporation,

Ann Arbor, MI, USA). All sequences were deposited in GenBank [accession numbers

KF662951–KF663043 and KF725843–KF725869]. Available published sequences of the

same gene fragments, to which we could assign a geographic origin, were also included

in our phylogenetic analyses [GenBank: DQ401259–DQ401278, GU248382–GU248387,

FJ007820–FJ007834, AF202735–AF202753].

Genetic analyses
Neighbour Joining (NJ) and Maximum Likelihood (ML) phylogenetic trees were inferred

for both COI and 16S gene fragments. NJ trees were constructed using evolutionary

distances computed using the Maximum Composite Likelihood method and 1000

bootstrap replicate tests in MEGA5 (Tamura, Peterson & Peterson, 2011). The best-scoring

ML trees for COI were estimated using RAxML-VI-HPC v. 7.2.8 (Stamatakis, 2006) on

the CIPRES portal at the San Diego Supercomputer Center (http://www.phylo.org),

optimising free model parameters and executing 1000 rapid bootstraps. Average genetic

distances between the main COI lineages – corrected by the K2P+ G substitution model

– were carried out using MEGA5. Additionally, to identify lineages in our COI dataset,

we used the Automatic Barcode Gap Discovery (ABGD) approach (Puillandre et al., 2012)

using the webtool (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html).

Intra-population gene diversity Hs (standardized haplotype diversity) for COI was

computed using the program RAREFAC (Petit, 1998) to account for population differences
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in sampling size. Nucleotide diversity and pairwise8ST values for COI from all 39 sampled

populations were estimated using ARLEQUIN v. 3.1. (Excoffier, Laval & Schneider, 2005).

Testing isolation-by-distance patterns and effect of bird flyways.
The significance of correlations between pairwise genetic and geographic distances

(isolation-by-distance or IBD patterns) was tested using Mantel tests on IBDWS v.3.21

(Jensen, Bohonak & Kelley, 2005). Prior to analyses in this section, populations inferred

to be introduced intentionally by humans (see Table 1) were removed. For all sampled

locations, precise decimal longitude and latitude coordinates were obtained using Google

Earth (http://earth.google.com). A geographic distance matrix was then computed using

Geographic Distance Matrix Generator v.1.2.3 (Ersts, American Museum of Natural

History, Center for Biodiversity and Conservation, http://biodiversityinformatics.amnh.

org/open source/gdmg). We used a population geographic distance matrix (Table S1) and

a population genetic distance matrix for COI data (8ST values using Kimura 2-Parameter

as the evolutionary model, Table S2). The 99% confidence intervals for the slope and

intercept were estimated using Reduced Major Axis (RMA) regression with 30,000

bootstrap randomizations using log km geographical distance.

We used canonical Redundancy Analysis (RDA) in CANOCO (ter Braak & Šmilauer,

2002) to estimate the relative contribution of geographic distances, migratory flyways

and human introductions on genetic distance between populations. RDA, a multiple

linear regression method widely used in community ecology, has recently been applied to

infer the role of spatial versus environmental variables in structuring population genetics

data (e.g., Orsini et al., 2013). As the dependent matrix we used the sample loadings of

a Principal Components Analysis calculated on8ST values using Kimura 2-Parameter as

the evolutionary model for COI data. Environmental variables were whether the flyway

overlapped with the Artemia population (0 or 1 depending on the presence of birds from

the Atlantic, Central or Pacific flyways in the area) and introduction history (0 or 1). We

modelled spatial variables using latitude and longitude (x and y).

We used the overlap of sampled populations with the three main migratory flyways

in America based on two sources (1) Boere & Stroud (2006) for shorebirds and (2)

Birdlife International (extracted from http://www.birdlife.org/datazone/userfiles/file/

sowb/flyways/). These data were used as a proxy for bird movements between locations.

This approach is likely to be a rough approximation to the probability of bird migration

between locations, given that more precise estimates cannot be obtained due to the absence

of sufficient shorebird ringing data for the whole of the Americas. Even if extensive ringing

data was available, this would only estimate current bird movements, whereas climate

changes since the Pleistocene are likely to have strongly affected bird movements (Alerstam,

1993).

RDA analyses were carried out using each set of migratory flyway data (i.e., Boere &

Stroud (2006), and Birdlife International information) and the variance partitioning

calculated according to Borcard, Legendre & Drapeau (1992) when the model was

significant. All environmental variables contributed to the full model, so we constructed
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two additional RDAs considering only flyway or introduction history as environmental

variables (data files used in RDA are deposited in Dryad DOI http://dx.doi.org/10.5061/

dryad.7kb11).

RESULTS
Phylogenetic relationships and geographic distribution of lin-
eages
Once PCR primers were removed and sequences trimmed to the same length, the 604 bp

COI alignment contained 603 individuals newly sequenced in this study (see Table 1),

which collapsed into 93 haplotypes. No ambiguities, insertions, deletions or stop codons

were present in the alignment. There were 121 variable sites, 86 of them parsimony

informative, and 104 synonymous and 15 non-synonymous substitutions.

Using the default parameters, ABGD did not find any partitions in our dataset, so we

reduced X, (i.e., the minimum barcode gap width) as suggested by the program, to 1.0

and used Kimura 80, identifying 12 groups with a prior intraspecific distance of= 0.0028

(we use the term ‘lineages’ thereafter, see below for their geographic distribution). When

the prior intraspecific distance increases to 0.0046 (not high by any standards) then the

number of partitions reduces again to 1.

Both phylogenetic approaches ML and NJ were highly consistent, with two highly

supported main branches displaying a geographic distribution along the continent, one

mainly Atlantic (lineages 9–12) and the other split between two sub-branches along

the Pacific Rim (lineages 1–7) and in Central Canada (lineage 8). Overall, there were at

least 12 mtDNA lineages, most of them well supported (Fig. 2). With the exception of

lineage 1, each of the lineages showed a restricted geographic distribution indicating a

high level of regional endemism (Fig. 3 for the geographic distribution of the lineages).

Lineage 2 was found in a single coastal site in NE Mexico, lineage 3 in the five locations in

Peru, lineage 4 in two high altitude populations from Central Mexico, lineages 5 and 7 in

Central Chile, lineage 6 in a single sulphate-rich location in NE Mexico, lineage 8 in four

locations in Saskatchewan, Canada, lineage 9 in Puerto Rico, lineage 10 in Cape Verde,

lineage 11 in several locations around the Caribbean, Baja California and SW Mexico, and

lineage 12 in Argentina and Chile. In stark contrast to the rest, lineage 1 was genetically

diverse and geographically widespread, found across a large geographical area across

both sides of the continent, including Brazil, Chile, Cuba, Jamaica, Mexico, USA and

Colombia. Out of the 27 haplotypes in lineage 1, seven haplotypes were detected in SFB

and GSL, the two commercialised populations in the USA that have been sources for the

invasion in the Mediterranean (J Muñoz, A Gómez, J Figuerola, F Amat, C Rico, AJ Green,

2013 unpublished) (see section Introduced populations below). In addition, lineage 1

contained six closely related haplotypes only found in Mono Lake – which harbours a

population often considered as a separate species, A. monica – and haplotypes found in

three Colombian populations (CSC, CT and CGZ), five Mexican populations, and the

Jamaican population. Two other lineages were distributed across the continental E-W

divide, creating contact zones between lineages. In lineage 12, most of the haplotypes were
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Table 2 Genetic divergence between Artemia franciscana mtDNA lineages using COI data. Genetic Distance K2P + G estimated with MEGA
between lineages. Genetic distances higher than (or equal to) 4% (0.04) are marked in bold.

Lineage (distribution) 1 2 3 4 5 6 7 8 9 10 11

1 (USA+ introduced) -

2 (NE Mexico) 0.024
(0.006)

-

3 (Perú) 0.020
(0.005)

0.029
(0.007)

-

4 (C Mexico) 0.018
(0.005)

0.031
(0.007)

0.027
(0.006)

-

5 (C Chile) 0.023
(0.005)

0.033
(0.008)

0.031
(0.007)

0.023
(0.006)

-

6 (NE Mexico) 0.026
(0.006)

0.038
(0.008)

0.038
(0.008)

0.028
(0.007)

0.028
(0.007)

-

7 (C Chile) 0.032
(0.007)

0.043
(0.009)

0.032
(0.007)

0.032
(0.008)

0.032
(0.007)

0.039
(0.009)

-

8 (Canada) 0.020
(0.005)

0.034
(0.008)

0.029
(0.007)

0.019
(0.005)

0.025
(0.007)

0.029
(0.007)

0.031
(0.008)

-

9 (Puerto Rico) 0.048
(0.010)

0.060
(0.012)

0.058
(0.011)

0.048
(0.010)

0.049
(0.010)

0.055
(0.011)

0.052
(0.011)

0.040
(0.009)

-

10 (Cape Verde) 0.044
(0.009)

0.059
(0.012)

0.051
(0.010)

0.044
(0.010)

0.047
(0.010)

0.050
(0.010)

0.045
(0.010)

0.032
(0.008)

0.023
(0.006)

-

11 (Yucatán, Colombia. . . ) 0.035
(0.008)

0.044
(0.010)

0.043
(0.009)

0.033
(0.008)

0.041
(0.009)

0.045
(0.010)

0.043
(0.010)

0.023
(0.006)

0.038
(0.008)

0.034
(0.008)

-

12 (Argentina, Chile) 0.037
(0.008)

0.048
(0.010)

0.046
(0.009)

0.037
(0.008)

0.043
(0.009)

0.047
(0.010)

0.044
(0.010)

0.025
(0.006)

0.044
(0.009)

0.036
(0.008)

0.020
(0.005)

found in Argentinean populations, but four of these haplotypes (three of them shared

across populations) were found in a Chilean Altiplano population (Salar de Llamara).

Lineage 11, mainly Caribbean, has a few haplotypes in two Mexican populations from the

Pacific side (Las Coloradas and Faro San José, where they coexist with lineage 1). Finally,

although both lineages 1 and 11 are found in Colombia, they were not found together

in any of the populations sampled. The genetic divergence between the 12 main lineages

ranged from 1.8% (between lineages 1 and 4) to 6.0% (between lineages 2 and 9) (Table 2).

The 16S alignment contained 408 bp from 122 individuals, which collapsed into

59 haplotypes. There were two singleton indels, 63 variable sites and 43 parsimony

informative sites. In contrast to the COI analysis, the NJ and ML reconstructions were

poorly resolved, especially the basal branches, but most of the lineages recovered by the

COI analyses were also recovered for the 16S data, with variable levels of support (see

Fig. 4). COI lineages 3, 5, 7 and 9 were highly supported for both ML and NJ analyses

in the 16S analysis, whereas lineages 1 and 2 on the one hand and lineages 4 and 6 on

the other, collapsed into poorly supported branches. The 16S analyses allowed us to

assign several previously sequenced populations, which we were unable to sample, to

COI lineages, particularly in NW America and the Caribbean. In addition, the 16S analysis

revealed the presence of two new lineages in the Caribbean, one in the Virgin Islands,
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Figure 2 Phylogenetic relationships of native Artemia franciscana COI haplotypes. The tree topology
is the one obtained in the NJ analysis, with bootstrap values shown for NJ (below branches) and ML
(above branches). Haplotypes found in the commercialised populations SFB and GSL are marked in red.
Haplotype numbers and populations where these were found are noted at the tips. Each lineage label
indicates which countries it is found in and its overlap with the Pacific, Atlantic or Central migratory
flyways (P, A or C respectively).

Muñoz et al. (2013), PeerJ, DOI 10.7717/peerj.200 12/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.200


Figure 3 Geographic distribution of Artemia franciscana mtDNA lineages. The distribution of each
COI lineage is shown as areas with the same colour coding as in Fig. 2. Disjunct areas are linked by
lines. Introduced populations are denoted by a grey bucket. Only populations sampled for this study are
included. Empty circles denote unsampled A. franciscana populations.

related to lineage 9 (Puerto Rico) and another in Inague Island (Bahamas) related to

lineage 12 (Argentina, Chile). Note that these maintain the relationship with Atlantic

lineages. Regarding North-Western American populations – extensively sampled by Prof

Sarane Bowen’s group – in New Mexico, Nevada and British Columbia, they hold private

haplotypes which appear in a poorly supported branch with Mono Lake and Mexican

haplotypes. Other populations (Clinton, Basque Lake, Baja California and Carrizo Soda

lake) also appear in the composite lineage 1 and 2, underscoring the diversity of USA

A. franciscana populations. Interestingly, 16S haplotypes from Jesse Lake (Nebraska)
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Figure 4 Phylogenetic relationships for native Artemia franciscana 16S haplotypes. The topology
obtained in the NJ analysis is shown, with bootstrap values for NJ (below branches) and ML (above
branches). Haplotypes found in the commercialised populations SFB and GSL are marked in red. Bold
sequences are those produced in this study and italics those from GenBank. The number of individuals
sequenced in each location (unless one) is in parenthesis.
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belong to the Central Canadian lineage (lineage 8) together with Little Manitou, Muskiki,

Meacham and Chaplin haplotypes.

Intra- and inter-population genetic diversity in COI
The number of individuals sequenced per population ranged between 4 and 37, depending

on available material (average 15.97; see Table 1 for estimates of π and H, and details of the

haplotypes present in each population). The number of haplotypes per population ranged

from one to seven. The highest standardized gene diversity (Hs) was found in the Mexican

population MexH, whereas five populations (MexCe and Mex99 from Mexico, BRM from

Brazil, PV from Peru, AMC, from Argentina, and CHLC from Chile) were fixed for a

single haplotype. Most haplotypes were found within single countries, except for several

haplotypes shared between some countries and the two commercial USA populations SFB

and GSL (see Table 1).

Populations were strongly structured genetically (global 8ST = 0.92; 0.94 when

putative introduced populations were removed), with 8ST being highly significant

between all populations except for three lakes from Central Canada, plus one pair from

Chile/Argentina (see Table S2).

Identification of introduced populations
We found genetic evidence for putative non-native populations originating from the

commercialised SFB or GSL in nine sites from Mexico, Cuba, Jamaica, Brazil and Chile.

In these populations, at least one sampled individual shared a haplotype with SFB

and/or GSL populations (see Table 1). Those populations showed three patterns: (1) all

individuals sampled shared haplotypes with SFB and/or GSL (BRM, GUA, and CHLC);

(2) populations had haplotypes shared with the commercialised populations and a further

haplotype (Af19 for MEXLC and JAYA) which differs from Af18 (a common haplotype

in SFB and GSL) by a single substitution; and (3) populations sharing some haplotypes

with SFB and/or GSL, but which also had unrelated additional/private haplotypes (MexT,

MexSQ, MexFSJ, and CHPI). For four of the nine putative introduced populations, the

occurrence of intentional introductions had been previously reported either in the same or

nearby sites (see references in Table 1). Note that introduced A. franciscana populations are

likely to further expand into nearby suitable habitats due to passive dispersal by birds.

Isolation-by-distance pattern and the role of American migratory
flyways
Mantel tests on pairwise genetic and geographic distances for populations ranging from

Chile-Argentina to Canada, excluding those inferred to be introduced, revealed a strong

IBD pattern (Fig. 5) with a highly significant correlation between pairwise geographic

and genetic distances, indicating that geographic distance between populations explains a

large proportion of the genetic variability in the sampled area (R2-value= 0.323, p-value

< 0.001).

RDA showed that both flyway and introduction history were significantly associated

to population genetic distance (p < 0.02 for all the correlations with genetic distance,
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Figure 5 Isolation by distance in native Artemia franciscana populations. Genetic distance (8ST , using
Kimura 2-Parameter as evolutionary model, see Table S2) vs. geographical distance (Log geographical
distance in km), showing the RMA regression line.

Table 3 Redundancy analyses (RDA) assessing the contribution of spatial (geographical coordinates
of populations) and environmental factors to the genetic distance between Artemia franciscana popu-
lations. Explained variance (%) for three RDAs with different environmental variables is given in separate
columns. The first RDA included flyway and human introduction as environmental variables, while the
others considered only flyway or introduction. Results are given for flyway assignments made according
to Boere & Stroud (2006) and Birdlife International (http://www.birdlife.org/datazone/userfiles/file/
sowb/flyways/) (see Table S2 for matrix details).

Source of variation Flyway + introduction Flyway Introduction

Space 8.2/8.7 8.3/10.2 10.8

Environment 31.2/30.6 21.2/18.7 15.6

Environment/Space interaction 2.4/1.8 2.3/0.4 0.0

whether or not geographical distance was controlled for). The effect of using different

flyway data was quite small. Flyway explained 18.7–21.2% of variance in population

genetic distance, depending on the flyway dataset used (Table 3). Genetic distance was also

affected by historical anthropogenic introductions (15.6% of variance explained) and both

factors together (i.e., flyway and anthropogenic introduction) explained 30.6–31.2% of

variance in genetic distance. In comparison, geographic distance only explained 8.2–8.7%

of variance.

DISCUSSION
Our analyses revealed that A. franciscana has a strong regional genetic structure in its

native distribution range throughout the Americas, with twelve largely allopatric endemic

lineages. Such high level of population structure, supported by a very high overall 8ST

value, high number of private haplotypes and significant IBD patterns, indicate that the

populations studied are not connected by high ongoing gene flow, pointing instead to

the effects of genetic drift and persistent founder effects during historical colonisation
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processes and development of local adaptation (i.e., the Monopolisation hypothesis;

De Meester et al., 2002). The few population pairs with non-significant population

differentiation (three lakes from Central Canada, plus one pair from Chile/Argentina) are

likely to reflect recent colonisation, rather than ongoing gene flow. Our data also reveals the

impact of A. franciscana introductions on the phylogeography of the species, as the lineage

including the commercialised SFB and GSL populations has now achieved the widest

distribution across the continent, in some cases coexisting – and presumably hybridizing –

with pre-existing native populations. In addition, our results suggest that migratory birds

have an important role in the colonisation of new habitats and are associated with range

expansions both in the history of Artemia colonisation across the Americas, and also at a

local scale, where birds facilitate the expansion of introduced lineages.

The role of bird migratory flyways
Our study provides new evidence supporting the key historical role of waterbirds as the

main factor shaping the population genetic structure of continental aquatic invertebrates

at an intra-continental scale. The patterning of the main phylogenetic lineages, with an

Atlantic, Central and Pacific distribution – instead of a North American (Nearctic) vs.

South American (Neotropical) division reflecting the recognized zoogeographic regions

and the long isolation of the continents (Lomolino et al., 2010; Holt et al., 2013) – strongly

suggests that historical bird migratory flyways, which occur alongside both the major

coasts of this continent, determined the historical spread of A. franciscana genetic lineages.

Bird movements also might have allowed the subsequent persistence of this structure by

facilitating colonisation along each migratory flyway, which shaped the main East-West

division in mitochondrial lineages. RDA showed that the effect of migratory flyways was

highly significant, and accounted for 20% of the genetic variation between populations

once geographic distance was taken into account, suggesting that the distribution of

genetic lineages in A. franciscana is likely to reflect the impact of historical bird flyways

on native phylogeographic patterns. In addition, the strong detected IBD pattern suggests

that the chances of bird-mediated colonisation are highly distance dependent (see Viana

et al., 2013), although instances of long-distance dispersal and colonisation, for example

from Argentina to Chile, or to Colombia from northern Caribbean populations, are also

apparent from our data. A corollary of our results is that bird movements must have

shown some stability, forming parallel N-S flyways during the time frame of A. franciscana

population diversification (i.e., throughout the Pleistocene) extending into new breeding

areas becoming available in the north and new wintering sites in the southern extreme

of the continent (Buehler, Baker & Piersma, 2006). These results are no surprise given the

high transport rates of Artemia cysts by waterbirds (Green et al., 2005; Sánchez et al., 2007)

and the lack of other dispersal vectors. Migratory waterbirds have existed since the Early

Cretaceous (Lockley et al., 2012). Although now-extinct migratory mammals were once

major vectors of plant dispersal in the Americas (Janzen, 1984), the hypersaline habitats

used by Artemia are not conducive to dispersal by large mammals.
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Our results for A. franciscana agree with other studies in North America pointing

to an effect of bird movements on the genetic structure of passively dispersed aquatic

invertebrates (Figuerola, Green & Michot, 2005), but extends these findings to the whole of

the Americas, and emphasizes the major role of bird movements in facilitating colonisation

into new suitable habitats – in agreement with the patterns found in A. franciscana in

the invaded Mediterranean range (J Muñoz, A Gómez, J Figuerola, F Amat, C Rico, AJ

Green, 2013 unpublished), and those for A. salina in its native range (Muñoz et al., 2008).

Although at a continental scale our results suggest that bird movements do not promote

contemporary gene flow between Artemia populations, such gene flow may still have a role

at a local scale or when new areas suitable for colonization become available.

Phylogeographic patterns
The high level of endemism and population structure in native A. franciscana populations,

with low ongoing gene flow and occasional long-distance migration resembles the

patterns found in Artemia salina (Muñoz et al., 2008), a sexual native Mediterranean brine

shrimp species, and in a range of other aquatic passively dispersed taxa including sexual

reproduction in their life cycles (Gómez, Carvalho & Lunt, 2000; Edmands, 2001; De Gelas

& De Meester, 2005; Mills, Lunt & Gómez, 2007; Ketmaier et al., 2008; Korn et al., 2010).

Our results also expand and confirm the deep phylogenetic breaks found by Maniatsi et al.

(2009) in a mtDNA and nDNA study of a more limited number of populations revealing

only three lineages. As populations of these passively dispersed organisms can be founded

by a small number of propagules, followed by rapid population growth and establishment

of large diapausing egg banks, this favours the presence of persistent/long term founder

effects, thus reducing the effect of gene flow, possibly reinforced by the development of

local adaptation, according to the Monopolisation hypothesis (De Meester et al., 2002).

Cysts are undoubtedly still regularly dispersed between suitable habitats by waterbirds, but

they are unlikely to become established owing to the Monopolisation effects.

Given the range of genetic divergence between lineages (from 2 to 6%) the time

frame of their fragmentation can be approximated roughly using a COI molecular clock

for other shrimp taxa (1.4% sequence divergence per million year; Knowlton & Weigt,

1998), which translates into 1.4–4.3 million years of divergence (reaching the Pliocene),

between A. franciscana lineages. Even a faster rate of 2% per million years will result on

pre-Pleistocene divergence times between the main lineages. Therefore, a contribution

of Pliocene/Pleistocene climatic oscillations to population fragmentations after range

expansions across the continent can be inferred from our data, possibly allowing survival

of lineages in separate geographical areas including Caribbean islands and areas in North

and South America. Mexico has the highest lineage richness, with five out of the 12 COI

lineages being native to this country – including lineages from both Pacific and Atlantic

clades. These findings suggest that this region is likely to have supported separate refugia

during climatically adverse periods. The occurrence of a highly divergent Central Canadian

prairie lineage was unexpected, as an ice sheet covered this area during the last glacial

maximum (Ehlers & Gibbard, 2004). However, the 16S data from GenBank suggest that this
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lineage also occurs in more southern areas in central USA (Nebraska), where it may have

survived south of the ice sheets, and then undergone postglacial colonisation of Central

Canada.

Following climate-driven turnover of hypersaline habitats, migratory shorebirds

would be involved in expanding the lineages into newly appearing suitable habitats

and the chances of successful spread would be strongly distance dependent. However,

long-distance colonisation events must have also occurred. For example, assuming that the

ancestor of lineages 9 and 10 inhabited the Caribbean area, the colonisation of Argentina

by the ancestor of lineage 12 must have entailed successful transfer of some cysts between

these distant areas (see Fig. 2). The genetic composition of lineage 12, where most of

the haplotypes were found in Argentinean populations (see also Fig. 3) but four of them

(three shared across populations) were found in a Chilean Altiplano population (Salar de

Llamara), suggests recent colonisation from Argentina to Chile. Finally, the colonisation of

Cape Verde Islands, with private haplotypes distantly related to Caribbean lineages, must

have involved long-distance transport, possibly from birds accidentally landing there after

storms sent them off course, although we cannot rule out the possibility of an unreported

human-mediated introduction involving cysts from a Caribbean population not included

in our study. Shorebirds are likely vectors for such long-distance dispersal events, and have

often been implicated in the dispersal of plants between North and South America, or to

oceanic islands (Cruden, 1966; Proctor, 1968).

The 16S analysis also shows higher richness of lineage 12 in Argentina with two

Chilean populations (Convento and Salar de Llamara), for which evidence of nuclear

DNA (nDNA) introgression among lineages exists (Maniatsi et al., 2009). Furthermore, as

migratory flyways overlap on some areas, this could have occasionally resulted in transfers

from the Atlantic to the Pacific coasts, as has been suggested for other passively dispersed

aquatic species (Miura et al., 2011).

Natural spread of lineages from refugial areas is likely to result in contact zones between

lineages, which we expect to be sharp, as we found between lineages 1 and 11 in Colombia,

where despite two lineages being present in the area, there are no sites where both co-occur.

Taxonomic considerations
The COI gene is one of the most widely used tools for species delineation (Hebert et

al., 2004; Costa et al., 2007; Gómez et al., 2007b). Sequence divergence of 3% have been

proposed as a threshold for species delimitation in crustaceans (Costa et al., 2007, but

see Lefébure et al., 2006), but other approaches are also used, such as GMYC (Pons et al.,

2006) or automatic barcode delimitation, which we used here (Puillandre et al., 2012).

Our analysis revealed 12 lineages in A. franciscana, some of them, like lineages 9 (Puerto

Rico) plus 10 (Cape Verde) compared to all the others, or lineages 11 (Circum Caribbean)

plus 12 (Argentina-Chile) compared to all the others, have genetic divergences of over 5%.

Surprisingly, reproductive isolation – due to ecological specialisation and local adaptation

– has only been reported between Mono Lake and San Francisco Bay populations (Bowen,

Buoncristiani & Carl, 1988) due to the inability of individuals of each of these populations
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to survive in each others’ ecological conditions, but our data show they are very closely

related. Indeed cross-fertility has been observed in the laboratory between the San

Francisco Bay population and 15 other populations from the whole range of the species,

including some populations included in our study that belong to very divergent mtDNA

lineages such as Inague Saltern (Bahamas), Little Manitou (Canada, lineage 8), and Puerto

Rico (lineage 9) (Clark & Bowen, 1976). Therefore, we concur with Bowen, Buoncristiani &

Carl (1988) in regarding A. franciscana as a very diverse “superspecies”, where reproductive

isolation mediated by habitat adaptation might occur, but populations in intermediate

habitats could act as venues for genetic exchange between ecological isolates.

Impact of introductions on native population structure and man-
agement implications
Given the strong phylogeographic structure of A. franciscana, and the high level of private

haplotypes found, we used haplotype sharing between the commercialised populations

(SFB and GSL) and distant populations as a criterion of recent human mediated

introduction. Using this criterion, we identified nine populations where genetic evidence

pointed to putative human introductions into Mexico, Cuba, Jamaica, Brazil and Chile.

For four of these populations, the occurrence of intentional introductions in the same or

nearby sites during the 1970s could be documented. Therefore, our genetic data confirms

that the established A. franciscana populations in these locations are, at least partially, of

introduced origin, and validates our criterion. As for the impact of introductions on native

populations, four Mexican populations contained additional private haplotypes not closely

related to the introduced ones, which suggests the presence of a pre-existing population

before the introduction and the likely introgression of both populations with persistence

of native haplotypes, although nuclear loci would be necessary to confirm this. In two

populations, we found a discrepancy between our genetic results and previously published

ones. The first case is the MEXLC population, which we regard as introduced (lineage 1),

whereas in Tizol-Correa et al. (2009) the haplotype found is shared with populations

from our lineage 11. The second case is CHLC (Laguna Cejas, Chile), which we regard as

introduced whereas Maniatsi et al. (2009) found that their mtDNA was most closely related

to native populations from Central Chile (which belong to our lineage 7). While these

authors concluded that the discrepancies between their nDNA and mtDNA data from

the latter population pointed to incomplete lineage sorting, an alternative explanation is

that they are due to the population being admixed with native and introduced ancestry,

as introduced A. franciscana is known to hybridize even with the genetically divergent

A. persimilis (Kappas et al., 2009). This failure to detect introduced mtDNA lineages in

this population might arise from reduced sample sizes, or indicate real temporal changes

in these populations reflecting recent introductions, as samples are likely to have been

obtained in different years (unfortunately, no collection dates for these population is

reported in Maniatsi et al., 2009). Despite human introductions, haplotypes presumably

from pre-existent populations have survived and coexist with introduced ones, although

a possible loss of genetic diversity due to introductions cannot be ruled out, and should
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be investigated in the future, perhaps using sediment cores (a method widely used in the

crustacean model organism Daphnia) from populations where commercialised strains

were introduced.

The high genetic richness found in our COI analyses, and the presence of private

haplotypes belonging to lineage 1 in distant populations away from SFB and GSL,

including three Colombian and five Mexican populations likely to be native, indicates

that the natural distribution of lineage 1 extended further than the two commercialized

populations before any human introductions took place. This was also in evidence from

our 16S analyses, which included more extended geographic coverage of NW America,

and revealed further sites within lineage 1 in the W USA and British Columbia harbouring

private haplotypes not found in SFB or GSL. This is also consistent with the presence of

private and closely related haplotypes at Mono Lake. The peculiarity and fragmentation

of the habitats used by the species, the potential of salinity and varying ionic composition

to act as a strong selective agent, the capacity to produce massive quantities of resting eggs

that can be readily dispersed by birds, combined with the apparent limitation in modern

gene flow, makes this group an ideal system for further studies testing the role of local

adaptation and mass effects on reducing gene flow between populations.

Given the impact of the invasive A. franciscana across the world, and the high genetic

and ecological richness of its native populations, further population translocations

should be highly discouraged, and the use of native strains as a source of cysts should

be encouraged even within the Americas.

CONCLUSIONS
Our analyses suggest that A. franciscana phylogeography in its native range was shaped

by (1) Pliocene/Pleistocene climate fluctuations, which contributed to changes in the

areas available to the species, (2) historical bird-mediated colonization along migratory

flyways, which shaped the East-West population division, (3) strong and persistent founder

events, facilitated by high population growth rates and large population sizes, preventing

further gene flow despite ongoing bird-mediated dispersal, and (4) human introductions

coupled with regional bird dispersal, explaining the large but localised geographic range

of the lineages derived from the commercially exploited North American populations.

Our findings suggest that, at a continental scale, bird-mediated transport of invertebrate

propagules does not result in substantial ongoing gene flow, but instead determines species

phylogeography, facilitating the colonisation of newly available aquatic environments

along bird flyways.
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De Meester L, Gómez A, Okamura B, Schwenk K. 2002. The Monopolization Hypothesis
and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23:121–135
DOI 10.1016/S1146-609X(02)01145-1.

Edmands S. 2001. Phylogeography of the intertidal copepod Tigriopus californicus reveals
substantially reduced population differentiation at northern latitudes. Molecular Ecology
10:1743–1750 DOI 10.1046/j.0962-1083.2001.01306.x.

Ehlers J, Gibbard PL. 2004. Quaternary glaciations: extent and chronology, Part 2. Amsterdam:
Elsevier, 450 pages.

Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for
population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50.

Figuerola J, Green AJ. 2002. Dispersal of aquatic organisms by waterbirds: a review of past research
and priorities for future studies. Freshwater Biology 47:483–494
DOI 10.1046/j.1365-2427.2002.00829.x.

Figuerola J, Green AJ, Michot TC. 2005. Invertebrate eggs can fly: evidence of waterfowl-mediated
gene flow in aquatic invertebrates. The American Naturalist 165:274–280 DOI 10.1086/427092.

Freeland JR, Romualdi C, Okamura B. 2000. Gene flow and genetic diversity: a comparison of
freshwater bryozoan populations in Europe and North America. Heredity 85(Pt 5):498–508
DOI 10.1046/j.1365-2540.2000.00780.x.
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Guantánamo, Cuba. Revista de Investigacion Marine 15:141–144.
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