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ABSTRACT

Acute respiratory distress syndrome (ARDS), a critical condition with high mortality,
arises from dysregulated inflammation and lung injury. While evidence-based sup-
portive care remains foundational, the lack of effective targeted therapies underscores
the need for novel approaches. This review focuses on the emerging role of intestinal
microecology in ARDS pathogenesis via the gut-lung axis. We discuss how ARDS
disrupts gut barrier integrity, promotes dysbiosis and bacterial translocation, and
highlight the significance of some gut microbiota-derived metabolites in modulating
pulmonary immunity and inflammation. Furthermore, we explore how intestinal
microecology influences ARDS progression through mechanisms like oxidative stress,
apoptosis, autophagy, and pyroptosis. The review also examines the potential of
microecology-based interventions and draws insights from failed immunomodulatory
trials, emphasizing the critical interplay between the microbiome and host immunity.
By synthesizing these links, this review identifies the gut microbiota as a source of
potential early-warning biomarkers and novel therapeutic targets, aiming to inform
future strategies for managing ARDS in the intensive care unit (ICU).

Subjects Biochemistry, Microbiology, Respiratory Medicine

Keywords Intestinal microecology, Inflammation, Gut microbiota, Dysbiosis, Acute respiratory
distress syndrome, Gut-lung axis

INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by
intractable hypoxemia caused by intra-pulmonary (e.g., pneumonia, aspiration) and/or
extra-pulmonary (e.g., sepsis, trauma) factors. Its pathophysiology is characterized by
acute, diffuse, and acute lung injury (ALI), which leads to increased permeability of
alveolar capillaries, pulmonary edema, alveolar collapse, and damage to lung tissue (Kain,
Dionne ¢ Marshall, 2024). Current management of ARDS prioritizes evidence-based
supportive therapies, particularly lung-protective ventilation strategies and adjunctive
interventions such as prone positioning for moderate-to-severe cases. However, there
remains a critical lack of “targeted pharmacological therapies” proven to effectively
modulate the dysregulated inflammatory response underlying ARDS pathogenesis (Qadir
et al., 2024). Although the optimization of mechanical ventilation therapy in recent years
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Figure 1 Several inflammatory pathways involved in ARDS. HMGB1, high-mobility group box 1 pro-
tein; DAMPs, damage-associated molecular pattern; TLR, toll-like receptor; PAMPs, pathogen-associated
molecular patterns; NF-k B, nuclear factor-k B; MAPK, mitogen-activated protein kinase; IL, interleukin;
TNF-a, tumor necrosis factor-a; IFN-y, interferon-y.

Full-size G DOI: 10.7717/peer;j.19995/fig-1

has improved the prognosis of ARDS patients to a certain extent, the in-hospital mortality
rate of approximately a million ARDS patients per year worldwide still exceeds 30%
(Gorman, O’Kane & McAuley, 2022). According to survey data from over 50 countries,
10.4% (95% confidence interval CI [10.0-10.7]%) of intensive care unit (ICU) patients
suffered from ARDS. When patients progress to severe ARDS, the mortality rate rises
above 40.0% (Bellani et al., 2016). Due to prolonged hospital stays, a difficult-to-treat
condition, and high treatment costs, ARDS significantly increases the socioeconomic
burden. Therefore, exploring the pathogenesis of inflammatory injury in ARDS will help
develop fundamental treatments, improve therapeutic efficacy, shorten the treatment
period, and save social costs.

In response to lung injury, the immune system initiates an inflammatory response to
clear pathogens and protect lung tissue, and a balance of immune regulatory mechanisms
is essential for mitigating lung injury and promoting lung function recovery. Available
evidence suggests that several inflammatory pathways are involved in activating immune
cells and releasing inflammatory mediators (Fig. 1). Understanding the mechanisms of
action of these inflammatory pathways is essential for elucidating their contributions to
ARDS recovery and identifying potential therapeutic targets (Matthay ¢ Zemans, 2011).
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As shown in Fig. 1, upon pathogen invasion, multiple signaling pathways transmit
inflammatory signals from extra-cellular to intra-cellular. The interactions among
these signaling pathways constitute a complex network, collectively regulating the
immune and inflammatory responses in ARDS (Zheng et al., 2024). HMGBI is a damage-
associated molecular pattern (DAMP) that activates inflammatory responses by binding
to toll-like receptor (TLR) 4 and other receptors (Li et al., 2020). TLRs are crucial
receptors for recognizing pathogen-associated molecular patterns (PAMPs) and DAMPs
(Khanmohammadi & Rezaei, 2021). In ARDS, TLRs can transmit downstream signals
through MyD88-dependent or independent pathways, leading to the nuclear translocation
of NF-xB, or activate members of the mitogen-activated protein kinase (MAPK) family
such as p38, ERK, and JNK through TRAF6-mediated pathways, thereby increasing the
release of inflammatory cytokines such as IL-1, IL-6, IL-8, and TNF-a. These cytokines
have been proven to play a key role in the pathogenesis of ALI/ARDS (Tolle ¢ Standiford,
2013; Wu et al., 2018). Specifically, there may exist a positive feedback regulation between
the NF-kB signaling pathway and the MAPK signaling pathway (Feng, Sun ¢ Li, 2015).
Additionally, the PI3K/Akt pathway is also involved in regulating the activation of NF-xB
through phosphorylation of IKKf, collectively exacerbating the inflammatory response
and damage in lung tissue (Finnberg ¢ El-Deiry, 2004). Furthermore, various cytokines
such as IFN-vy and IL-6 participate in regulating the inflammatory response by activating
the JAK/STAT signaling pathway (Luyt et al., 2020).

Numerous previous studies have explored the inflammatory mechanisms underlying
the development and progression of ARDS induced by various precipitating factors such
as systemic infections, pneumonia, aspiration, trauma, etc. Unfortunately, neither the
research focused on the host (e.g., genetic polymorphisms, inflammatory phenotypes)
nor the studies on exposure factors (e.g., virulence of pathogens, host susceptibility) have
achieved breakthroughs in this field (Meyer, Gattinoni & Calfee, 2021). Identifying new
entry points and uncovering the hidden causes of ARDS will provide a strong basis for
precise and targeted therapies.

SURVEY METHODOLOGY

We conducted a literature search on PubMed (MeSH), Google Scholar, and CNKI
databases for research progress on the gut microbiota in patients with ARDS. The search
keywords included “intestinal microecology”, “acute respiratory distress syndrome”,
“ARDS”, “acute lung injury”, “gut microecology” in combination with, “gut microbiota”,
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“gut microbes”, “gut microbiome”, “inflammation”, “dysbiosis”’, “immune system”,

> Cce

“inflammatory pathway”, “intestinal mucosal barrier”, “intestinal permeability”, “gluco-
corticoid”, “corticosteroid”, “methylprednisolone”, “hydrocortisone”, “ketoconazole”,
“convalescent plasma”, “immune plasma”, “immunomodulat”, “immunosuppress”,
“anti-inflammatory”, “failure” and “no benefit” which were then cross-referenced using
Boolean operators “OR” and “AND” for further retrieval. Studies were screened according
to the following pre-defined criteria:

Inclusion criteria: (i) Population: Human subjects diagnosed with ARDS (based on

Berlin Definition or clinical diagnosis). (ii) Exposure/Intervention: Studies investigating
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gut microbiota composition, dysbiosis, or related mechanisms (e.g., inflammation, immune
response, barrier function). (iii) Outcomes: Reported data on gut microbiota changes,
inflammatory biomarkers, or clinical outcomes linked to microbiota. (iv) Study design:
Clinical trials, cohort studies, case-control studies, or mechanistic human studies.

Exclusion criteria: (i) Reviews, editorials, conference abstracts without original data. (ii)
Studies not focused on ARDS or microbiota. (iii) Non-English/Non-Chinese publications.
(iv) Duplicate publications or data from the same cohort.

Titles/abstracts were independently screened by two authors using the above criteria.
Full texts of potentially eligible articles were assessed, with disagreements resolved by a
third reviewer. After screening, 103 high-quality articles met all inclusion criteria and were
included.

Intestinal microecology

Intestinal microecology has been an important area of research in recent years due to its
crucial role in maintaining the normal function of the body (Fu et al., 2022). In normal
physiological conditions, there is a stable symbiosis between the human body and the
gut microbiota. However, during disease states, notable changes occur in the quantity
and types of gut microbiota, especially drastic alterations observed in critically ill patients
(Dickson, 2016). The blows of shock, respiratory failure, or multi-organ dysfunction

in critically ill patients may lead to intestinal ischemia, hypoxia, or reperfusion injury,
which can damage the integrity of the intestinal mucosal barrier, thus causing intestinal
microecological disorders. Petrilla et al. (2024) compared fecal samples from critically ill
patients and healthy populations, and the results showed that the abundance of Firmicutes
and Bacteroidetes was lower in the gut microbiota of the experimental group, while the
abundance of Proteobacteria increased. Significant changes in the patient’s gut microbiota
occur within 6 h of the onset of critical illness, characterized by a notable decrease in
beneficial bacteria such as obligate anaerobes and Lactobacillus, and an increase in harmful
bacteria such as Enterococcus and Pseudomonas (Kain, Dionne ¢ Marshall, 2024).

Besides alterations in microbial diversity, changes in phenotype and virulence may
also occur within the gut microbiota. Studies have shown that sepsis can promote the
intestinal colonization of Klebsiella pneumoniae strains carrying the SHV-18 resistant gene
that produce extended-spectrum f3-lactamases, and facilitate the transfer of resistant
genes to potential endogenous pathogens during antibiotic treatment (Guan et al.,
2014). Furthermore, the gut microbiota can also translocate to other parts of the body,
participating in the development of various diseases (Marnfredo et al., 2018).

Mucin, primarily composed of the MUC2 glycoprotein secreted by goblet cells,
constitutes the first line of defense against microbial invasion and serves as a major
carbon source for the host (Paone ¢ Cani, 2020). Notably, certain bacteria, such as
Akkermansia muciniphila (AKK ), not only degrade mucin but also disrupt claudin proteins,
thereby compromising intestinal barrier integrity. This synergistic degradation mechanism
warrants emphasis (Bakshani et al., 2025). Furthermore, AKK abundance exhibits a
negative correlation with depressive phenotypes in both ARDS patients and murine
ARDS models (Zhu et al., 2025). Additionally, under hypoxic ARDS conditions, reduced
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HIF-1a expression creates a “dual assault”: diminished host mucin synthesis coupled
with enhanced bacterial degradation (Ma, Yeom ¢ Lim, 2022). Therefore, preserving and
restoring intestinal mucin barrier function and modulating associated microbiota represent
promising therapeutic strategies for ARDS, potentially mitigating gut barrier injury and
improving patient outcomes.

Recent research has increasingly focused on gut microbiota-derived metabolites—such as
short-chain fatty acids (SCFAs), indoles and their derivatives, bile acids, and vitamins—due
to their critical roles in modulating the intestinal micro-environment (Krautkramer, Fan
¢ Bickhed, 2021). Among these metabolites, SCFAs are the most abundant and beneficial,
primarily comprising acetate, propionate, and butyrate (Hays, Pfaffinger ¢ Ryznar, 2024).
Butyrate serves as the primary energy source for colonic epithelial cells, stimulating mucin
secretion and tight junction (T]) protein expression to maintain gut barrier integrity (Cheng
et al., 2025). Furthermore, SCFAs (notably butyrate and propionate) enter the systemic
circulation, reach distal organs such as the lungs, and participate in pulmonary immune
responses (Hays, Pfaffinger ¢ Ryznar, 2024). Consequently, SCFAs represent key mediators
within the gut-lung axis.

Antimicrobial peptides (AMPs), evolutionarily conserved molecules secreted by Paneth
cells and epithelial lineages, critically shape intestinal microbiota composition. Among
the most extensively studied intestinal AMPs are three primary classes: a-defensins
(HD5/6), REG3y, and cathelicidin (LL-37) (Zhang, 2025). REG3y specifically binds
peptidoglycan to neutralize Gram-positive pathogens, whereas LL-37 exhibits broad-
spectrum antimicrobial activity against diverse bacteria and viruses (Saini et al., 2022;
Shin, Bozadjieva-Kramer ¢ Seeley, 2023). Conversely, a-defensins primarily target Gram-
negative bacteria such as Enterobacteriaceae (Wierzbicka-Rucitiska et al., 2025). Notably,
intricate bidirectional crosstalk exists between the microbiota and AMPs. For instance,
commensal microbes induce HD5 secretion through MyD88-dependent signaling, while
Parabacteroides goldsteinii’s outer membrane protein A upregulates REG3y expression
in murine models (Filipe Rosa et al., 2023; Wang et al., 2024). Furthermore, SCFAs like
propionate enhance REG3y expression in cecal tissue and intestinal organoids (Darnaud
et al., 2018). Dysregulation of AMPs significantly contributes to disease pathogenesis, as
evidenced in Crohn’s disease, where nucleotide-binding oligomerization domain 2 confers
protection partly by directly modulating a-defensin expression—a process potentially
involving NF-kB/MAPK pathway regulation, lysozyme sorting, and ATG16L1 recruitment
(Yang & Shen, 2021). In ARDS, however, TLR4/NF-kB-driven overproduction of pro-
inflammatory cytokines (TNF-a/IL-1f3) suppresses HD5/6 expression, consequently
permitting pathogenic overgrowth of organisms like Enterococcus and Klebsiella spp
(Aarbiou, Rabe ¢ Hiemstra, 2002). Therefore, therapeutic strategies designed to augment
AMP activity—such as butyrate supplementation or histone deacetylase (HDAC)
inhibition—represent promising approaches to restore microbial equilibrium in ARDS by
counteracting this critical immune defect.

Chen et al. (2025), PeerJ, DOI 10.7717/peerj.19995 5/22


https://peerj.com
http://dx.doi.org/10.7717/peerj.19995

Peer

Table 1 Summaries of major gut microbiota involved in ARDS.

Reference

Sample number Species Gut microbiota Changes in ARDS

Hu et al. (2023)

Konget al. (2019)

Zuo et al. (2020)
Cheng et al. (2022)
Zheng et al. (2023)

Lietal (2014)

26AP-ARDS/39AP-

Proteobacteria phylum, Enterobacteriaceae family, Upregulated
Escherichia-Shigella genus, Klebsiella pneumoniae

H .
nonARDS/20n0rmal uman Bifidobacterum genus Downregulated
Firmicutes, Acinetobacter Upregulated
7ARDS/4normal Human ) )
Bacteroidetes, Proteobacteria Downregulated
15ARDS-COVID- 0 Coprobacillus, Clostridium ramosum, Clostridium hathewayi Upregulated
uman
19/15normal Faecalibacterium prausnitzii Downregulated
120ARDS/120normal Human Bifidobacterum, Enterococcu, Lactobacillus, Eubacterium Downregulated
Eubacterium, Barnesiella, Escherichia-Shigella Lactobacillus Upregulated
21ARDS-CAP/21normal  Rats . . .
Muribaculum, Ruminococcacee_NK4A214_group, Blautia Downregulated
16ALI-ARDS Rats Fusobacteria, Helicobacter, Roseburia Downregulated

Impact of ARDS on the intestinal microecology
The hallmark inflammatory response in ARDS is characterized by elevated IL-6, TNF-a, and
HMGBI, which actively compromises intestinal tight junction (T]) integrity. These pro-
inflammatory cytokines down-regulate the expression of occludin and zonula occludens-
1 (ZO-1), thereby increasing intestinal permeability. This disruption facilitates bacterial
translocation from the intestinal lumen into the systemic circulation (Zhang et al., 2020). In
patients with ARDS, intestinal dysbiosis is manifested by a decrease in beneficial commensal
bacteria (e.g., Faecalibacterium prausnitzii, Bacteroides, and Bifidobacterium) and an increase
in opportunistic pathogens (including certain Enterobacteriaceae, Clostridium difficile, and
Streptococcus spp.) which primarily play crucial roles in affecting the intestinal mucosal
barrier, systemic inflammatory status, and immune responses (Li et al., 2014; Kong et al.,
2019; Zuo et al., 2020; Cheng et al., 2022; Hu et al., 2023; Zheng et al., 2023) (Table 1).
Notably, changes in some taxa are inconsistent across human studies. This variability
may arise from differences in patient populations (e.g., etiology of ARDS, comorbidities),
sample collection timing, sequencing methodologies, or statistical approaches (Li ¢ Ma,
2021). In addition, opposite changes in gut microbiota have been observed in animal
models of ARDS compared to human studies (Eubacterium being one example) (Cheng et
al., 20225 Zheng et al., 2023). While animal models provide valuable mechanistic insights
into gut-lung axis interactions in ARDS, the specific microbial shifts observed in these
models may not fully recapitulate the dysbiosis patterns seen in human patients. Future
studies with larger, more homogeneous cohorts are needed to clarify these associations.
Multiple studies demonstrate a significant reduction in a-diversity in the lung
microbiome of ARDS patients compared to those without ARDS (Kyo et al., 2019; Schmitt
et al., 20205 Imbert et al., 2024). However, findings exhibit considerable heterogeneity
across studies involving ARDS of differing etiologies. Notably, Li ef al. (2024) reported a
progressive decline in microbial diversity within the pulmonary microbiome of septic ARDS
patients over time, whereas Zhang et al. (2022) observed increased microbial diversity in
patients with extrapulmonary infection-induced ARDS. Compared to the microecology
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of a healthy lung, which is primarily dominated by Streptococcaceae, Veillonellaceae,
Prevotellaceae, Ruminococcaceae, and Flavobacteriaceae, the lung microbiota of ARDS
patients is predominantly composed of Pasteurellaceae and Enterobacteriaceae (Panzer et
al., 2018; Dickson et al., 2020).

Animal studies indicate that the lung microbiome plays a key role in the pathogenesis
of respiratory diseases. Its potential protective mechanisms may involve assisting the
host in establishing and maintaining balanced immune homeostasis (Martin-Loeches et
al., 2020). For instance, intranasal administration of Acinetobacter Iwoffii to mice induces
IL-6 and IL-10 production, thereby significantly alleviating allergen-induced airway
inflammation (Alashkar Alhamwe et al., 2023). Conversely, studies in respiratory disease
models have also revealed associations between the presence of Ruminococcus gnavus and
the promotion of respiratory allergic responses (Chua et al., 2018). Notably, changes in
the lung microbiota may influence the composition of the gut microbiota in patients with
sepsis-induced ALI/ARDS. Sze et al. (2014) observed lung microbiota dysbiosis and an
increase in total bacterial count in the cecum of mice in a sepsis-associated ALI mouse
model. Studies have found that vancomycin treatment in mice with acute Pseudomonas
aeruginosa pneumonia can induce gut microbiota dysbiosis, resulting in an increase
in Proteobacteria and a decrease in Bacteroidetes, accompanied by changes in intestinal
inflammation. These changes significantly improved after fecal microbiota transplantation
(FMT) (Rosa et al., 2020). In addition to this, there have been some findings on the effect
of lung inflammation on gut microbiota. The systemic inflammatory cascade in ARDS
directly compromises the integrity of the intestinal barrier through TNF-a-mediated
downregulation of T] proteins (e.g., claudin, occludin, ZO-1) (Ziaka & Exadaktylos, 2024).
During sepsis-induced ARDS, increased proinflammatory factors can inhibit intestinal
cell regeneration and promote apoptosis, leading to a reduction in intestinal mucosal
layer thickness and barrier dysfunction (Chen et al., 2018). In a mouse model of influenza,
influenza-induced interferon-I production in the lungs promotes the depletion of obligate
anaerobes and the enrichment of Proteobacteria in the gut, creating a “malnourished”
micro-environment (Deriu et al., 2016). Furthermore, ARDS-associated hypoxemia and
hemodynamic instability can induce intestinal ischemia-reperfusion injury. This creates an
anaerobic micro-environment conducive to pathogen overgrowth, thereby driving a shift
toward intestinal dysbiosis (Lv et al., 2024).

Under normal conditions, the intestinal barrier consisting of intercellular junctions in
the intestinal mucosal epithelia, permits the movement of water and immunoregulatory
factors while preventing the passage of macromolecules and microorganisms (Westrim
et al., 2020). During sepsis, an increase in inflammatory cytokines leads to increased
intestinal permeability by affecting the T] between cells and the intracellular cytoskeleton.
This results in the translocation of intestinal microorganisms, such as Bacteroidetes and
Enterobacteriaceae, across the intestinal mucosa in patients with sepsis and ARDS, and
even into the lungs (Dickson et al., 2016). Such bacterial translocation triggers localized
activation of inflammatory mediators within the mucosal immune system. This process is
intricately linked to the pathogenesis of ARDS, which involves dysregulated activation of
inflammatory cytokine cascades (Assimakopoulos et al., 2018). The continued accumulation
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of inflammatory cells attracts more proinflammatory factors, which interact to induce
greater infiltration of inflammatory cells, thereby establishing a vicious cycle of lung injury
(Li et al., 2019), in addition, lung inflammation may affect the structure of the gut bacterial
community and further exacerbate lung inflammation (Vital et al., 2015). Notably, gut
microbiota-derived metabolites also influence pulmonary immunity. Specifically, SCFAs
modulate immune cell function and dampen excessive inflammation (e.g., via NF-xB
pathway inhibition) through mechanisms such as HDAC inhibition and activation of G
protein-coupled receptors (GPR41, GPR43, GPR109a) (Cox et al., 2009). Furthermore,
SCFAs may exert protective effects on alveolar epithelial barrier integrity (Mukhopadhya &
Louis, 2025). However, both ARDS patients and animal models exhibit reduced intestinal
and/or circulating SCFA levels. This decline compromises their protective roles in
maintaining gut barrier function and suppressing pulmonary inflammation, thereby
exacerbating disease severity (Bezemer et al., 2024; Xuan et al., 2024). Conversely, SCFA
supplementation (e.g., butyrate gavage) demonstrates protective effects in animal models,
highlighting its therapeutic potential (Diao et al., 2019; Mao et al., 2024). Collectively,
these mechanisms jointly establish a “gut-lung axis” of the injury cycle. Targeting this
axis—particularly barrier integrity, dysbiosis, and bacterial translocation—represents a
promising therapeutic frontier.

Impact of intestinal microecology on ARDS

Studies have explored the roles of apoptosis, autophagy, pyroptosis, and oxidative stress
in the pathogenesis of ARDS, but have typically examined these pathways in isolation or
focused solely on lung inflammation (Shi ef al., 2022). In this review, we systematically
integrate these four mechanisms within the framework of the gut microbiota-ARDS axis
and link these mechanisms to clinically actionable interventions in an attempt to address
gaps in the purely mechanistic literature (Fig. 2).

Oxidative stress, an imbalance between pro-oxidants and anti-oxidants, plays a key
role in the development of ARDS (Sies, 2015). Tang et al. (2021) have demonstrated that
gut microbiota exerts a protective effect on regulating LPS-induced immune responses in
ALI by modulating the TLR4/NF-xB signaling pathway, which may induce inflammation
and oxidative stress. In an ARDS mouse model, LPS treatment significantly increases the
levels of MDA, IL-6, and TNF-a, while decreasing the activity of SOD and GSH-PX43.
Conversely, inhibiting ROS and enhancing the levels of SOD and glutathione in lung tissue
help protect mice from ARDS infection (Zhang et al., 2015). These findings collectively
suggest a complex interaction network between oxidative stress and gut microbiota.

Apoptosis is a critical factor in the development of ARDS. When changes occur in
the gut microbiota during ARDS, these changes are often associated with increased
apoptosis in lung and intestinal tissues (Fleisher, 1997). In a Staphylococcal enterotoxin
B-induced mouse model of ARDS, researchers observed disruptions in both lung and
gut microbiota, as well as an increased proportion of apoptotic cells (Alghetaa et al.,
2021). Similarly, Li et al. (2018) observed a significant increase in the proportion of
apoptotic cells in the ALI-BALB/c mouse model, accompanied by downregulation of Bcl-2
expression and upregulation of TNF-a, IL-6, IL-1f, Bax, and cleaved caspase-3. Apoptosis
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Figure 2 The modulation of gut microbiota impacts the onset and progression of ARDS by triggering
oxidative stress, cellular apoptosis, cellular autophagy, and cell pyroptosis mechanisms. MDA, malon-
dialdehyde; SOD, superoxide dismutase; GSH-PX, glutathione peroxidase; ROS, reactive oxygen species;
LPS, lipopolysaccharide; Atg, autophagy-related proteins; AKT, alpha serine/threonine kinase; FoxO, fork-
head box O; AMPK, AMP-activated protein kinase; mTOR, mammalian target of rapamycin.
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is triggered by two pathways: the intrinsic pathway involves regulators within the cell
itself, including cytochrome c, cleaved caspase-3, Bax, and Bcl-2; and the extrinsic pathway
associated with extracellular stimuli and apoptotic receptors on the cell membrane (Shi ef
al., 2022). Furthermore, Xu et al. (Mustansir et al., 2021) proposed that the administration
of lysophosphatidylcholine can reduce monocyte infiltration in a mouse model of ARDS
by modulating the MAPK/NF-«B signaling pathway and inhibiting monocyte apoptosis
triggered by galactosamine-lipopolysaccharide, thereby improving survival rates and lung
function.

Cell autophagy is a “double-edged sword,” exerting protective effects under normal
conditions but potentially becoming harmful when over-activated (Peng et al., 2022).
Inducing autophagy can protect mice from ALI triggered by LPS and mechanical ventilation,
and it can also improve arterial oxygenation and vascular function (Nosaka et al., 2020). In
patients with sepsis combined with ARDS, the expression of autophagy-related proteins,
such as LC3II, Beclin-1, RAB7, and LAMP?2, is reduced in peripheral blood, while p62 is
significantly increased. This suggests that autophagy is inhibited in these patients (Xu et al.,
2022). Notably, the gut microbiota interacts with cellular autophagy to promote disease
progression. Cheng et al. (2018) triggered intestinal mucosal autophagy through FMT and
alleviated intestinal barrier damage in piglets caused by Escherichia coli K88. Various Atg,
such as Atg8, Atg7, Atg5, and Atg3, as well as several signal transduction pathways, including
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the AKT/FoxO, AMPK, and mTOR pathways, are involved in regulating autophagy at
different stages of autophagosome formation. Another study in cellular models of ARDS
and rat models of ALI confirmed that penehyclidine hydrochloride treatment enhances
proliferation and autophagy in the ALI model, while reducing apoptosis and inflammation
(Wang et al., 2021). However, there are currently few clinical studies on ARDS patients, and
how the gut microbiota affects cellular autophagy in ARDS still lacks sufficient evidence.
In contrast to apoptosis, cellular pyroptosis is a novel type of programmed cell death
associated with inflammation. Initially, PAMPs and DAMPs activate inflammasomes,
which subsequently trigger the activation of caspases, ultimately leading to the cleavage of
the gasdermin protein family (Hsu et al., 2021). Recent studies have shown that pyroptosis-
related cytokines, such as IL-1f and IL-18, are significantly elevated in bronchoalveolar
lavage fluid from ARDS patients, and previous research has demonstrated that specific
inhibition of IL-1f and IL-18 expression can significantly reduce lung injury (Peukert et
al., 2021). Furthermore, activated caspase-1 and gasdermin D have been detected in the
serum of ARDS patients, which may trigger a cascade of pyroptosis (Homsy et al., 2019).
Notably, some Gram-negative bacteria in the gut (e.g., Pseudomonas aeruginosa) can initiate
NLRC4 and caspase-11-dependent pyroptosis through flagellin and LPS (Wei, Zhang &
Song, 2022). A decrease in intestinal Parabacteroides merdae during pregnancy can lead to
weakened interaction with NLRP3, which promotes cellular pyroptosis and increases sepsis
responses and tissue damage (Chen et al., 2023). Currently, there is limited research on the
relationship between pyroptosis and the gut microbiota. Understanding the link between
pyroptosis and alterations in the gut microbiota in ARDS is an emerging research area that

may reveal new therapeutic approaches.

Current management and emerging microbiome-targeted interventions
for ARDS

Current cornerstones of ARDS management include lung-protective ventilation (notably
low tidal volume), adjunctive therapies (such as prone positioning in moderate-to-severe
cases), and conservative fluid management in the absence of shock, all supported by
robust randomized controlled trial (RCT) evidence. However, targeted pharmacological
interventions addressing immune dysregulation and inflammatory injury remain markedly
lacking. Consequently, exploring novel therapeutic avenues, such as modulating the
microbiome, represents a promising approach (Meyer, Gattinoni ¢ Calfee, 2021).

Some studies have explored the application of certain bacterial species as biomarkers
for the early diagnosis of respiratory diseases. Cher et al. (2024) revealed that circulating
microbiome DNA can be a biomarker for the diagnosis and recurrence of lung cancer, with
a high sensitivity of 87.7% and an AUC of 93.2% in an independent validation dataset for
their diagnostic model. Similarly, Marshall et al. (2022) analyzed the respiratory microbiota
profiles of nearly 400 patients and created and validated a microbiome-based classifier that
can predict the likelihood of lung cancer in asymptomatic patients before clinical diagnosis.
This study demonstrated the clinical potential of respiratory microbiota profiling for early
lung cancer detection.
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Given these limitations, microbiome-targeted interventions represent a promising
frontier for addressing immune dysregulation in ARDS. It is noteworthy that probiotics
have already been applied in the clinical treatment of diseases. Since the 1950s, FMT has
made significant progress in correcting microbiota disorders, repairing intestinal barriers,
and regulating immunity (Wang et al., 2019). Furthermore, several meta-analyses have also
reported the success of FMT in the treatment and prevention of acute infectious diarrhea
and upper respiratory infections (Hempel et al., 2012; Popova et al., 2012). A study in 2020
showed that intranasal irrigation with live Lactobacillus lactis W136 in patients with chronic
rhinosinusitis significantly improved their sinus symptoms (including nasal obstruction,
postnasal drip, and “needing to blow their noses”), quality of life, and mucosal scores
(Endam et al., 2020). However, there are few reports on the direct use of gut microbiota in
the diagnosis and treatment of ARDS. As early as 1972, the Cuevas team found prevention
of ARDS by enteral antibiotic pretreatment in an animal model of shock (Silvestri, De la
Cal & Van Saene, 2012). In a mouse model of ALI, FMT was used to reconstruct the gut
microbiota, resulting in increased gut microbiota diversity and an increase in beneficial
bacteria capable of producing SCFAs that counteract acute lung injury. This effectively
inhibited the activation of the TLR4/NF-xB signaling pathway, inflammation, and the
release of oxidative stress factors in the lungs of ALI animals (Tang et al., 2021). Another
study reported a significant reduction in in-hospital mortality among high-risk patients who
received prophylactic gastrointestinal decontamination therapy (Hammond et al., 2022).
However, the application of intestinal microecology in the diagnosis and management of
ARDS needs to be explored with more studies.

Lessons from failed immunomodulatory trials and microbiome
interactions

Despite extensive research into ARDS pathogenesis, numerous clinical trials targeting
immune dysregulation have failed to improve outcomes, highlighting the disease’s clinical
and biological heterogeneity (The ARDS Network Authors for the ARDS Network, 2000;
Steinberg et al., 2006; Normand, 2020). Notably, several agents designed to modulate host
immunity showed promise preclinically but proved ineffective in RCTs.

For instance, an ARDS network trial conducted in 2006 demonstrated no mortality
benefit with methylprednisolone, with potential harm in late-phase ARDS (Steinberg et al.,
2006). It is known that steroids in non-ARDS diseases (e.g., IBD) may cause or exacerbate
dysbiosis, reduce microbial diversity, and increase the abundance of potentially pathogenic
bacteria (Selinger et al., 2017). We speculate whether these known effects may be under-
recognized in ARDS trials and may partially counteract their anti-inflammatory benefits
or pose additional risks. In addition, the results of an RCT showed that ketoconazole as
an anti-inflammatory agent did not reduce the incidence of ARDS in high-risk patients
(The ARDS Network Authors for the ARDS Network, 2000). Although it failed as an anti-
inflammatory agent in ARDS, it is a potent antifungal agent in its own right (Akova et al.,
2025). Even if the purpose of the trial was anti-inflammatory, its significant perturbation of
the intestinal fungal group (as well as the bacterial group affected by fungi) was unavoidable.
We wonder whether this unintended, strong perturbation of the microbiome might be a
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factor in its lack of efficacy or even potential harm. Otherwise, COVID-19 convalescent
plasma has not shown any efficacy in patients with severe COVID-19 ARDS (Normarnd,
2020). Although plasma components (e.g., antibodies) may alter the resilience of microbial
communities, direct evidence in ARDS remains scarce (Vogl et al., 2021).

These failures underscore the complexity of ARDS immunopathology and the
overlooked role of microbiome-immune crosstalk. While microbiome shifts during such
interventions are poorly characterized in ARDS cohorts, studies in sepsis suggest that
immunomodulatorscan exacerbate dysbiosis and bacterial translocation (Lin et al., 2023;
Wang et al., 2025). Future trials should integrate microbiome monitoring to elucidate
whether microbial dynamics contribute to treatment non-response and identify patient
subsets benefiting from microbiota-targeted adjuvants.

CONCLUSIONS

In conclusion, ARDS persists as a critical condition with high mortality despite optimized
supportive care, necessitating novel therapeutic strategies. This review establishes intestinal
microecology as a central regulator of ARDS pathogenesis through bidirectional gut-lung
axis interactions, wherein ARDS-induced gut barrier dysfunction (involving TJ disruption,
mucin depletion, and antimicrobial peptide suppression) drives dysbiosis and bacterial
translocation, while gut-derived metabolites (notably SCFAs) and dysbiotic microbiota
exacerbate lung injury via oxidative stress, apoptosis, autophagy, and pyroptosis. Although
microbiome-targeted interventions (e.g., FMT, probiotics) show preclinical promise,
lessons from failed immunomodulatory trials (e.g., corticosteroids, ketoconazole) reveal
that microbiome-immune crosstalk is a critical yet understudied determinant of treatment
efficacy. Moving forward, resolving inconsistencies between animal models and human data
through standardized longitudinal sampling, multi-omics integration, and validation of gut
microbiota signatures as early biomarkers will be essential to advance microbiota-directed
therapies. By bridging these mechanistic insights with clinical translation, targeting the
gut-lung axis represents a paradigm shift toward precision management of ARDS.
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