3 Running Title: NEUROG1 methylation in stool DNA 4 5 Lijing Zhang^{1,2,3}, Aiping Lin^{1,2,3}, Jie Lin⁴, Juan Chen^{1,2,3}, Mengshi Chen^{1,2,3}, Xunbin 6 Yu⁴, Yijuan Wu⁴, Tao Wang⁵, Yan Lu⁵, Zhaofen Ba⁵, Xiaowei Cheng⁵, Tiantian Zhang⁵, 7 Minghong Chen^{1,2,3*} 8 9 10 ¹Department of Gastroenterology, the Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China 11 12 ²Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, China ³Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, 13 14 Fuzhou, Fujian, China 15 ⁴Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China ⁵Jiangsu Microdiag Biomedical Technology Co., LTD, Suzhou, Jiangsu, China 16 17 18 *Corresponding author: Minghong Chen, No.134 East Street Fuzhou, Fuzhou 350001, Fujian, China. 19 20 Email: mhchen9035@sohu.com 21 22 **Abstract** 23 Background: To assess the performance of NEUROG1 methylation in the colorectal cancer auxiliary diagnosis. 24 Methods: The NEUROG1 methylation in tissue and stool samples from patients with 25 26 colorectal cancer (CRC), advanced adenoma (AA), and non-advanced adenoma (NAA) 27 were evaluated using methylation-specific quantitative PCR. 28 Results: In tissue samples, the NEUROG1 methylation detection rates were 36% for CRC, 24% for NAA, and 88% for AA. In stool samples, the NEUROG1 methylation 29 detection had a sensitivity of 62.86% for CRC with a PPV of 86.72%. The overall 30 diagnostic specificity of the test for the NAA and the healthy control was 77.92%, with 31 32 an NPV of 41.10%. 33 Conclusion: NEUROG1 methylation detection can be used in the CRC and AA Deleted: potentially

Formatted: Justified

Keywords: Colorectal cancer, NEUROG1, stool, DNA methylation, diagnosis

NEUROG1 methylation detection in stool DNA: a potential screening biomarker

1

2

34

35 36 auxiliary diagnosis.

for colorectal cancer

Introduction

38 39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

61

62

63

64

65

66 67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. According to the latest statistics, there are approximately 104,270 new cases of CRC in the United States annually, making it the third most common form of cancer in that country. In addition, the mortality rate is the second-highest among all cancer-related deaths in the United States (Siegel and Miller, 2021). In China, the incidence of CRC ranks fourth after lung cancer, breast cancer, and stomach cancer, and mortality is also fourth among all cancers (Du et al., 2017). Furthermore, the prognosis is poor for patients with advanced metastatic CRC, which has a five-year survival rate of less than 10%. However, most patients with CRC can benefit from surgery when diagnosed early, and the five-year survival rate of TNM stage 1 CRC is greater than 90% (Werner et al., 2016). Therefore, the early screening and diagnosis of CRC play a critical role in positive clinical outcomes. Recently, several countries have initiated CRC screening programs, and a series of consensuses were published on the early screening guidelines of CRC (2021).

The most common methods for CRC screening include colonoscopy, fecal occult blood testing (FOBT), and fecal immunochemical test (FIT),

FOBT comprises hydrogen peroxide for detecting fecal occult blood, known as the guaiac-based FOBt (gFOBt). The fecal immunochemical test (FIT) is based on immunochemistry. FIT has had a distinct advantage over gFOBt; its lack of dietary restrictions prior to sample collection (Benton et al., 2015). FIT has gradually replaced gFOBt in the clinic, but studies have indicated its effectiveness is relatively limited to early-stage CRC diagnosis (Tepus and Yau, 2020). Hence, there is an urgent need for newer screening systems for early-stage CRC.

Colonoscopy is the "gold standard" diagnostic method for CRC due to its high sensitivity and specificity; however, it is invasive, requires skilled technical expertise, and patient noncompliance (Ziegler et al., 2010).

Accumulated evidence has indicated that CRC is a genetic-driven disease driven by DNA mutations, chromatin abnormalities, and epigenetic changes that influence the expression of critical oncogenes (Dickinson et al., 2015; Huang et al., 2018). Epigenetic changes, such as abnormal DNA methylation, non-coding RNA (miRNA and siRNA), and, histone modifications, are closely associated with CRC development and progression (Okugawa et al., 2015).

Abnormal DNA hypomethylation in the promoter regions of tumor suppressor genes was reported to be an early event in CRC. For example, DNA hypomethylation of the <u>promoter region of Secreted frizzled-related protein 2 SFRP2 gene</u>, activates the Wnt signalling pathway and promotes tumorigenesis in CRC (Zhang et al., 2014).

Let Studies have shown that genetic methylation biomarkers can be detected in body fluids, such as blood, urine, and stool. Hence, they may serve as novel biomarkers for CRC screening in the future. Furthermore, stool samples from patients with cancer often contain more DNA than blood, as tumor cells can be shed off from mass and excreted through the stool. Studies have shown that the sensitivity of stool samples is significantly higher than plasma samples (Ahlquist et al., 2012a).

Deleted: and

Deleted:

Deleted: Colonoscopy is the "gold standard" for CRC due to its high sensitivity and specificity; however, colonoscopies are invasive, they require skilled technical expertise, and they suffer from poor patient compliance (Ziegler et al., 2010).

Formatted: Justified, Indent: First line: 0 ch

Deleted:

Deleted: is composed of

Deleted: test

Deleted: the chemical

Deleted:, and

Deleted: t

Deleted: , which is

Deleted: Since its development,

Deleted: , which is

Formatted: Indent: First line: 0 ch

Formatted: Justified, Indent: First line: 0 ch

Formatted: Justified

Deleted: dysregulation of

Deleted: (e.g.,

Deleted:),

Deleted: disordered

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, 12 pt, Not Bold, Font color: Auto, Complex Script Font: Times New Roman, 12 pt, Not Bold, Pattern: Clear

Formatted: Font: Italic, Complex Script Font: Italic

Deleted: promoter

Deleted: In addition, Ssubsequent

Deleted: s

Deleted: these

Deleted:

Deleted: also

Deleted: that of

In the last decade, stool DNA methylation detection has become a non-invasive, highly specific, and cheap screening method for diagnosing CRC. In 2014, the United States Food and Drug Administration (FDA) approved a multi-target stool DNA (MTsDNA) test for screening CRC among high-risk asymptomatic patients (Imperiale et al., 2014).

Recently, it was demonstrated that abnormal methylation of genes adenomatous polyposis coli (APC), ataxia telangiectasia mutated (ATM), cyclin-dependent kinase inhibitor 2A(CDKN2A), GATA binding protein 4 (GATA4), and secreted frizzledrelated protein 2 (SFRP2) could be used for CRC screening in stool samples (Kadiyska and Nossikoff, 2015; Laugsand et al., 2021).

Neurogenin 1 (NEUROG1) is one of the classic methylation biomarkers that can distinguish the degree of the CpG island methylator phenotype (CIMP) (Ibrahim et al., 2011). Previous studies have shown that the methylation of NEUROG1 could be used as a serum biomarker for early-stage CRC (Herbst et al., 2011; Otero-Estévez and Gallardo-Gomez, 2020). However, it has not been investigated for stool samples.

This study aimed to evaluate the performance of the NEUROG1 methylation test in screening CRC. Herein, we detected NEUROG1 methylation levels in stool samples and tumor specimens from CRC patients.

1 Materials and Method

1.1 , sample selection

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

In this study, The formalin-fixed, paraffin-embedded (FFPE) samples were collected and stored at room temperature from a total of 75 patients, 25 with CRC, 25 with non-advanced adenomas (NAA), and 25 with advanced adenomas (AA), were diagnosed at the First Affiliated Hospital of Henan University of Science and Technology from May, 2019 to May, 2020 the patients were confirmed by two experienced doctors, depending on the colonoscopy results and along with the pathology results of CRC, AA, and NAA patients,

Stool samples were collected from 274 patients diagnosed and treated at Fujian Provincial Hospital from July 2019 to December 2023, including 105 CRC patients, 92 AA patients, and 39 NAA patients.

None of the patients had received any anticancer treatment before admission. Control stool samples were collected from 38 healthy individuals undergoing colonoscopy, and CRC, AA, NAA patients were excluded.

In addition, several clinical characteristics were collected, including age, sex, and classification.

This study was approved by the Institutional Review Board of Fujian Provincial Hospital (K2019-11-027). Informed consent was obtained from all enrolled patients and healthy control subjects.

Stool samples were collected before tumor resection and stored at -80 °C in a storage buffer.

Formatted: Font: Italic, Complex Script Font: Italic Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Font: Italic, Complex Script Font: Italic

Commented [A1]: Write about fuunction of the NEUROG1 in normal cell, then mention the effect of abnormal matylaytion of NEUROG1on colon cancer

Deleted: , h

Deleted: but

Moved down [1]: Herein, we detected NEUROG1 methylation in stool samples and tumor specimens from CRC patients.

Deleted: the screening of

Moved (insertion) [1]

Deleted: Patients and

Moved (insertion) [2]

Deleted: ¶

in The study protocol is shown in Figure 1. In

Deleted: .

Deleted:, including [

Deleted:],

Deleted: who

Deleted: .

Deleted:,

Commented [A2]: Write about ACTB gene

Deleted: were included in this study. The formalin-fixed, paraffin-embedded (FFPE) samples were collected and stored at room temperature.

Formatted: Justified

Moved up [2]: The formalin-fixed, paraffin-embedded (FFPE) samples were collected and stored at room temperature

Deleted: the

Deleted: Stool samples were collected at the day before colonoscopy. The colonoscopy results of all the patients, along with the pathology results of CRC, AA, and NAA patients, were confirmed by two experienced doctors.

Formatted: Justified

1.2 DNA extraction from stool,

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194 195

196

197

198

199

200

201

202 203

204

205

206

207

209

210

217

218

221

"Stool DNA was extracted according to the operation manual and published protocol using a DNA extraction kit in the stool (Ahlquist et al., 2012b). After thawing, the buffered stool samples were homogenized with an oscillator and centrifuged. Then, an aliquot of 12 mL stool supernatant was treated with 50 mg/mL polyvinyl polypyrrolidone PVPP (Aladdin, Shanghai, China).

The target gene sequence was directly captured by hybridization with the oligonucleotide probe

(CGTGCAGCGCCGGGTATTTGCATAATTTATGCTCGCGGGAGGCCGCCATCGCCCTCCCCCAACCCGGAGTGTGCCCGTAATTACCG).

For this purpose, 10 mL polyvinylpolypyrrolidone-treated supernatant was denatured using 2.4M (molar) guanidine isothiocyanate at 92°C for 15 min (Aladdin, Shanghai, China). Next, 50 μ L oligonucleotide capture probe-modified carboxyl magnetic beads (JSR) were added, mixed, and incubated at room temperature for 30 minutes.

The beads were collected using the magnetic rack and washed with washing buffer (10 mM MOPS,150 mM NaCl, pH 7.5) three times. Finally, 50 μ L nuclease-free water containing 20 ng/ μ L transfer RNA (Merck K GaA, Darmstadt, Germany) was added to the eluted DNA.

The 50 μL elution was used for bisulfite conversion, and the purified DNA was eluted to 60 μL in the elution buffer. The bisulfite transformation Kit (Zymo Research, Irvine, CA, USA) was used for DNA bisulfite transformation and purification of transformation products. All steps were performed <u>following</u> the manufacturer's instructions.

1.3 DNA extraction of FFPE specimens

TIANamp FFPE DNA Kit (Tiangen Biotech Co., Ltd, Beijing, China) was used to isolate DNA from FFPE tissue samples. Briefly, 4-5 sections of FFPE specimens were collected in 1.5mL centrifuge tubes. Deparaffinization and dehydration were performed by adding dimethylbenzene and 100% ethanol. After air drying, 400 μL digest buffer with 20 μL proteinase K was added to the precipitation. Then, the precipitation was suspended and digested at 55 °C for one hour. Following a one-hour incubation at 90°C, the suspension was added into spin columns. After cleaning and centrifugation, the spin

columns were dried and eluted with 50-100 μ L elution buffer. The DNA samples were stored at -20 °C.

After extraction, the concentration of DNA was determined with the Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc., California, USA).

μg of extracted DNA was treated with bisulfite using the EZ DNA Methylation-Gold
 Kit (Zymo Research, Irvine, CA, USA).

1.4 Methylation-specific Quantitative PCR (MSP)

The methylation status of NEUROG1 was evaluated by MSP (Suzhou MicroDiag Biomedicine Co., Ltd, Suzhou, China). Sequences of the primers and probes for

NEUROG1 and β-Actin (ACTB)_were designed and synthesized by GENEWIZ

Deleted: Stool collection,

Deleted: ,...and pre-treatment

Deleted: Stool samples were collected before colonoscopy or >1 week after colonoscopy. In either case, collection occurred before tumor resection. Stool samples of at least 36 g were collected using a collection kit mounted on the toilet seat. After collection, the stool samples were immediately stored at -80 °C in a storage buffer.¶

Stool DNA was extracted according to the operation manual and published protocol using a DNA extraction kit in the stool (Ahlquist et al., 2012b). Briefly, immediately a

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, 12 pt, Not Bold, Font color: Auto, Complex Script Font: Times New Roman, 12 pt, Not Bold, Pattern: Clear

Deleted: polyethylene polypyrrolidone ...Aladdin, Shanghai, China) with a concentration of 50 mg/mL

Deleted: The detailed operations are as follows: ...0 mL polyvinylpolypyrrolidone-treated supernatant was denatured by ...singin...2.4 ... (molar) guanidine isothiocyanate at for 15 min (Aladdin, Shanghai, China). solution...at 92°C for 15 min. ...ext, 50 μL oligonucleotide capture probe ...robemodified carboxyl magnetic beads (JSR) were subsequently—

Deleted: 1×MOPS

Deleted: in accordance with

Deleted: kits...(Tiangen Biotech Co., Ltd, Beijing, China) were ...

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, 12 pt, Font color: Auto, Complex Script Font: Times New Roman, 12 pt

Deleted: and gathered into...in 1.5mL centrifuge tubes. Deparaffinization and dehydration were performed by adding dimethylbenzene and 100% ethanol. After air drying, 400 μ L

Deleted: In total, ... μg of extracted DNA was removed and

Commented [A3]: Write brifly about the procedure of the bisulfite conversion method

Commented [A4]: Mention the software link

Commented [A5]: Wite the linj of the softwarer

Deleted:

Deleted:,

Formatted: Font: Italic, Complex Script Font: Italic

294 (Suzhou, China). The ACTB gene is located on chromosome 7 (7p22.1), and

295 <u>NEUROG1 on chromosome 5 (5q31.1) was used</u> as a reference. The sequences of the

296 primers and probes for the indicated genes are as follows:

297 NEUROG1 Forward: TCGTGTAGCGTTCGGGT, NEUROG1 Reverse:

298 CACTCCGAATTAAAAAAAAAACG, NEUROG1 probe: ATCCCGCGAACATA;

ACTB Forward: GTGATGGAGGAGGTTTAGTAAGTT, ACTB Reverse:

300 CCAATAAAACCTACTCCTCCCTTAA, ACTB probe:

301 ACCACCACCCAACACACAATAACAAACACA.

299

302

303

304

305

306

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325 326

327

328

329

330

331

332

333

334

335

336

In brief, the total volume of qPCR was 30 μ L, including 15 μ L of DNA <u>sample</u> and 15 μ L of PCR master mix. Next, qPCR was conducted on a LightCycler480 II thermal cycler (Roche Diagnostics Corporation, Indianapolis, USA) using the following conditions: <u>denaturation</u> 95 °C for 20 min <u>on cycle</u>; 45 cycles (<u>annealing</u> 95 °C for 20s and extension 60 °C for 35 s; and finally chilled to 40 °C for 30 s).

After the amplification, the data were analyzed on LC480-II (Roche Diagnostics Corporation, Indianapolis, USA).

A standard curve <u>elaborated</u> for NEUROG1 methylation to calibrate the investigation system (100%-0% bisulfite-converted NEUROG1-positive genomic DNA; slope = -0.2762; R² = 0.9906). In brief, bisulfite conversion <u>was performed</u> of genomic DNA extracted from cells, in which the NEUROG1 promoter region was fully methylated (HCT116 cells) or unmethylated (293T cells) using a commercially available kit (EZ DNA Methylation-Gold Kit, Enzo, USA). Then, <u>bisulfite-converted fully methylated genomic DNA</u> was mixed with <u>bisulfite-converted unmethylated DNA</u> to obtain a bisDNA gradient (where NEUROG1 methylated DNA was 100%, 50%, 25%, 10%, 5%, 1%, 0.5%, 0.1%, 0.05%, and 0% to the total mixture), while the whole <u>mixture's bisDNA</u> concentration was maintained at <u>two ng/μL</u>. After that, the samples were subjected to amplification, and the results were plotted to generate the standard curve. Negative and positive cell DNA were purchased from Fubio Biotechnology, Co., Ltd. (Suzhou, China).

The quality control's cycle threshold/crossing point (CP) value is 27-30 for tissue methylation DNA. For stool DNA detection, the CP value of the quality control needs to be <36. For samples without amplification in the target channels, 45 (maximum amplification cycle number of PCR) should be taken for the fitting calculation.

SPSS software (IBM Corp., Armonk, NY, USA) was used to conduct the fitting logistic regression analysis of CP values for target genes and internal reference genes, and the fitting formula was obtained:

 $\frac{1}{1 + e^{-(8.135 - 0.101 * \text{NEUROG1-0.098*ACTB})}}$

The sample is positive if the fitting value <u>is</u>>0.7848.

1.5 Statistical analysis

Statistical analysis was performed using SPSS software version 22.0 (IBM Corp., Armonk, NY, USA). Receiver operating characteristic (ROC) curves, constructed by the pROC package (Kuang et al., 2020), were employed to determine the <u>marker's</u> discriminative capacity, providing the area under the curve (AUC). The cut-off selected

Deleted:

Formatted: Font: Italic, Complex Script Font: Italic

Deleted: was utiliz

Commented [A6]:

Commented [A7]: •Did design Methylation-specific primers (for methylated DNA) and unmethylation-specific primers (for unmethylated DNA)?

Deleted: of

Deleted:

Formatted: Font:

Deleted: We elaborated

Formatted: Justified, Indent: First line: 0 ch

Deleted: a

Deleted: we

Deleted: performed

Deleted: bisulfite

Deleted: bisulfite

Deleted: s

Deleted: mixture's

Deleted: 2

Deleted:,

Deleted: For tissue DNA detection, the cycle threshold/crossing point (CP) value of the quality control should be in the range of 27-30

Formatted: Justified

Deleted: The samples were considered positive if there was an amplification curve. F

Deleted: in

Deleted: which t

Deleted: was

Deleted: marker's

resulted from setting the confidence interval close to 95%. The detection performance of stool NEUROG1 gene methylation in CRC and precancerous lesions was investigated. All the data were presented in percentages (%). The Chi-square test was used to compare the data, and *P*-values <0.05 were considered statistically significant.

2 Results

2.1 NEUROG1 methylation detection in FFPE specimens

To elucidate the methylation status of the promoter region of NEUROG1 in colon cancer, MSP was conducted in both FFPE specimens and <u>patients'</u> feces samples. We determined the detection rates of NEUROG1 methylation in 75 FFPE samples, including (25 CRC, 25 AA, and 25 NAA) <u>as shown in (Table 1)</u>. The <u>methylation rate</u> for CRC <u>was 36%</u>, and <u>for NAA was 24%</u>, <u>Notably, the methylation level of AA was 88% and exhibited positive NEUROG1 methylation. Moreover, the CP values were in acceptable ranges for all samples. Hence, these findings revealed that NEUROG1 has the potential to be a biomarker for precancerous colon lesions.</u>

2.2 Stool DNA-NEUROG1 methylation detection in CRC

The methylation level of the NEUROG1gene in stool samples was evaluated by collecting stool samples from 274 patients, including (105 CRC, 92 AA, 39 NAA) and 38 healthy cohorts. The clinical characteristics of these patients are listed in **Table 2**. The ages ranged from 24 to 87, with 154 males and 115 females. Next, NEUROG1 methylation in stool samples was tested in different cancer stages.

In the 105 CRC patients, <u>the NEUROG1</u> methylation <u>level</u> was 62.86%. To further evaluate the sensitivity of NEUROG1 methylation for different tumor classifications and positions, <u>the methylation level was assessed in various CRC stages (I, II, III, IV)</u>, <u>as shown in (Table 3)</u>.

In the 95 patients with known stages, the detection rate ranged from 41.18% to 70.37%, with no significant differences between each subgroup. The methylation rates of different tumor positions were explored among 101 patients. The methylation rate, of proximal colorectal cancer was 46.42%, and for distal colorectal cancer, it was 67.12%, However, the methylation rates in CRC patients with distal CRC, seemed higher, and the difference was not statistically significant, as shown in (Table 3).

2.3 Stool DNA-NEUROG1 methylation detection in AA and NAA

In 92 cases of AA, the methylation level was 48.91%. Further analysis was conducted to compare the rates in different subtypes of AA based on the tumor position and size. *NEUROG1* methylation rates of proximal and distal AA were 38.71% and 57.41%, respectively (*P*>0.05).

Additionally, when the diameter of the adenoma was ≥3 cm, the detection rate increased significantly, reaching up to 66.67% as shown in (Table 4). However, there were no significant differences between the different tumor sizes.

In the 39 NAA cases, 26 <u>samples</u> were negative, resulting in a detection specificity of 66.67%._

Deleted: patients' ...atients' feces samples. First, we evaluated the NEUROG1 methylation in colon tissues.

Deleted: detection...rates...for CRC was 36%, and for NAA were not low...as, at 36% for CRC ...24% for NAA... Importantly...otably, 22 of the 25...he methylation level of was cases (...8%)

Deleted: We then designed and conducted experiments to explore NEUROG1 ...he methylation level of the NEUROG1gene in stool samples was evaluated by collecting stool ed ...amples from 274 patients, including (105 CRC, 92 AA, 39 NAA) and 38 a...healthy cohorts (38 healthy volunteers)... The clinical characteristics of these patients are listed in Table 2. The ages ranged from 24 to 87, with 154 males and 115 females. Next, NEUROG1 methylation in stool samples was tested in different subgroups.

Formatted: English (United States)

Deleted: detection sensitivity...evel was 62.86%. To further evaluate the sensitivity of NEUROG1 methylation for different tumor classifications and positions, we...further analyzed the...he methylation level was assessed detection sensitivity of...in different ...arious subtypes of

Deleted: classification... the detection rate ranged from 41.18% to 70.37%, with no significant differences between each subgroup. The detection ...ethylation rates of different tumor positions were then...explored among 101 patients. The methylationdetection...rates...of proximal colorectal cancer ...was 46.42%, and for distal colorectal cancer, it was colorectal cancer were 46.42% and ...7.12%, respectively... However, While...the detection ...ethylation rates in CRC patients with distal CRC positions

Deleted: detection ...ethylation levelsensitivity

Formatted: Font: Italic, Complex Script Font: Italic

Deleted: detection...rates of proximal and distal AA with known positions

Deleted:

Commented [A8]: The result is not clear

2.4 stool DNA methylation Level in healthy control

In the 38 healthy volunteers, 34 <u>samples</u> were negative, resulting in a detection specificity of 89.47%. Hence, the NEUROG1 methylation detection sensitivity was 56.35% (111/197) in the positive group of 197 CRC and AA. By comparison, the detection specificity was 77.92% (60/77) in the cases of NAA and healthy people in the control group.

2.4 Diagnostic performance of NEUROG1 methylation detection with stool samples

Receiver operating characteristic (ROC) curves were elaborated to evaluate the discriminatory capacity of NEUROG1, as shown in (Figure 2). In our study, 274 stool samples were subjected to NEUROG1 methylation detection. Among those from NAA, healthy individuals were selected as controls, and ROC curve analyses were performed. As shown in Figure 2, the AUC for the NEUROG1 detection of CRC and AA was 0.718 (95% CI 0.652-0.781).

In conclusion, in the positive group of CRC and AA, the sensitivity value of NEUROG1 methylation was 56.35%, _PPV_86.72%, _PLR2.55. In the control group of NAA and healthy volunteers, the specificity value of NEUROG1 methylation detection was 77.92%, _NPV41.10%, _NLR0.56, as shown in (Table 5).

3 Discussion

Methylation in the promoter region of *NEUROG1* was identified long ago, and applications of NEUROG1 methylation in blood DNA tests have been reported in CRC (Goel et al., 2010; Herbst et al., 2011; Li et al., 2018). However, studies of NEUROG1 methylation in the stool have not been reported. This study was the first to systematically study the methylation of NEUROG1 in stool, and tissue, samples from patients with CRC, AA, and NAA.

CRC development is a complex process of five steps, including normal intestinal epithelium, NAA, AA, adenocarcinoma, and finally, cancer metastasis (Siraj et al., 2014). This process is associated with a large number of oncogene and tumor suppressor gene, disturbances, including mutations of APC, Kirsten rat sarcoma viral oncogene homolog (KRAS), and Tumor Protein P53 (TP53), microsatellite instability, and DNA methylation abnormalities (Okugawa et al., 2015).

In patients with CRC, a proportion of tumor cells can be shed from the gut into the stool (Diehl et al., 2008). Therefore, the preliminary for CRC can be conducted by detecting the DNA shedding in stool samples. Previously, Sidransky and colleagues discovered the presence of the KRAS gene in stool samples from CRC patients in 1992 (Sidransky et al., 1992). Unfortunately, the sensitivity of the DNA mutation detection in stool samples was too low, and screening was difficult.

Many studies have reported the role of DNA methylation and suggested that DNA methylation detection could be a great approach for screening early-stage CRC (Barault et al., 2018). However, in a previous report, the sensitivity of DNA methylation detection for a single gene in the early stages of the disease was low (Zhao et al., 2020).

<u>Various DNA methylation molecular targets</u> could be used as biomarkers in CRC.

Formatted: Font: Bold, Complex Script Font: Bold
Formatted: Font: Bold, Complex Script Font: Bold

Formatted: Justified, Indent: First line: 0 ch

Formatted: Justified

Deleted: and

Deleted: methylationwas56

Deleted:

Formatted: Font: Italic, Complex Script Font: Italic

Deleted:,

Deleted: as well as different

Deleted: s

Deleted: s

Deleted: /

Deleted: /

Deleted:

Deleted: difficult for the screening.

Deleted: There are various DNA methylation molecular targets that

For example, one study explored the role of Syndecan-2 (SDC2) methylation in CRC and found that SDC2 methylation could be detected in 81.1% (159/196) CRC and 58.2% (71/122) adenomas in stool samples (Niu et al., 2017). In addition, the tumor suppressor gene, tissue factor pathway inhibitor 2 (TFPI2), was reported to be methylated in CRC. The sensitivity of methylated TFPI2 in stool DNA of stage I-III CRC patients was 76% to 89%, with a specificity of 79% to 93% (Glöckner et al., 2009). Recently, one report implied that potassium voltage-gated Channel Subfamily Q Member 5 (KCNQ5) methylation and Chromosome 9 Open Reading Frame 50 (C9orf50) methylation in stool DNA could be possible biomarkers for CRC detection, with sensitivities of 77.3% and 85.9%, and specificities of 91.5% and 95.0%, respectively (Niu et al., 2017). In addition, one study explored the application of Phosphatase and Actin Regulator 3 (PHACTR3) methylation in CRC stool DNA, with a sensitivity of 55% (95% CI: 33-75) and specificity of 95%. In our study, we investigated the role of methylated NEUROG1 in the stool DNA of CRC patients and found the sensitivity was 62.86% and specificity was 77.92%. In addition, accumulating evidence has evaluated stoolbased DNA methylation markers for CRC diagnosis. Although methylated genes, such as SDC2, SFRP2, and TFPI2, have been demonstrated to possess the capacity to detection of established cancers (Glöckner et al., 2009; Zhang et al., 2014; Sun et al., 2019; Wang et al., 2020), the goal of effective diagnosis has not been achieved yet. For instance, the most known methylation marker approved by the FDA is SEPT9. A prospective analysis of SEPT9 methylation detection showed a sensitivity of 48.2% for CRC and a sensitivity of only 11.2% for AA (Church et al., 2014). These findings have compelled us to consider evaluating multiple markers for a more precise diagnosis.

534 535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573574

575

576

577

In this study, the detection rate of NEUROG1 methylation in AA FFPE tissue was significantly higher than in CRC and NAA tissue. We speculate that NEUROG1gene methylation may occur in precancer or early-stage cancer and participate in the process of tumor progression.

The overall NEUROG1 methylation detection sensitivity for CRC in stool samples was 62.86%. The detection rate of stage I-III was similar, whereas the detection rate of stage IV was relatively low, which may be due to the small number of cases (17 cases). It is also possible that the gene becomes unmethylated due to several factors in stage IV. The sample size should be increased in further study.

In stool samples, the overall NEUROG1 methylation detection sensitivity for AA was 48.91%. The detection rate of AA size was comparable in the≤1.9cm and 2-2.9cm groups. In the AA size≥3cm_the hypermethylation was significant.

Currently, the research on NEUROG1 methylation in CRC mainly focuses on serum to detect the early stage of CRC (Herbst et al., 2011). Studies of NEUROG1 methylation in the stool have not been reported. Our study initially clarified its detection performance and laid a certain foundation for the later development of detection methods using this gene or the combination of this gene with the other genes. This study also has some limitations. First, future studies should evaluate the diagnostic performance of stool DNA testing in large cohorts of NAA patients, healthy volunteers and patients with other upper gastrointestinal diseases, inflammatory bowel diseases and liver cancer patients. Second, most of the samples are from Fujian Provincial

Formatted: Highlight Deleted: have Formatted: Highlight Formatted: Highlight Commented [A9]: Put it in introduction Deleted: ccording to a prospective analysis of SEPT9 methylation detection, it Deleted: the sensitivity for AA was only 11.2% Deleted: is Deleted: that Deleted: early Deleted: of Deleted: In stool samples, the overall NEUROG1 methylation detection sensitivity for CRC Deleted: is Deleted: is Deleted: . The possible reason Deleted: that the number of IV samples Deleted: is too small Deleted: methylation of this gene, as a marker of precancer or early early-stage of cancer Deleted: . Deleted: has a low detection rate i Deleted: , Deleted: the detection rate had a significant improvement Deleted: Deleted: At present, the reports on the NEUROG1 Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Highlight

Deleted: provincial h

Hospital, which may limit the representativeness of the findings. Further studies with large sample sizes are needed to provide more reliable evidence for the clinical application of combined methylation detection.

4 Conclusions

606

607

608

609 610

611

612

613

614 615 616

617

618 619

620

621 622

623

624

625

626

627 628 629

630

631 632

633 634

635

636

637

638 639

640

In conclusion, NEUROG1 methylation has a good sensitivity in detecting CRC and precancer, especially in detecting the precancerous stage. Therefore, NEUROG1 has the potential to serve as a marker alone or in combination with other markers for CRC auxiliary diagnosis.

Deleted: the detection of CRC and precancer, especially in the detection of

Acknowledgements

Not Applicable.

Funding

This study was supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2021J01367). The funder had no role in study design, data collection and analysis, publication decisions, or manuscript preparation.

Deleted: decision to publish

Deleted: preparation of the manuscript

Competing interests

Tao Wang, Yan Lu, Zhaofen Ba, Xiaowei Cheng and Tiantian Zhang are employed by Jiangsu Microdiag Biomedical Technology Co., LTD. All other authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Fujian Provincial Hospital (K2019-11-027). Informed consent was obtained from all enrolled patients and healthy control subjects.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Deleted: analysed

Authors' contributions

Conceptualization: MHC, and TW; Validation/Investigation/Formal analysis/Writingoriginal draft, editing: LZ, AL, JC, XC, ZB, and YL; Resource: JL, MSC, YW, TZ and XY. All authors have read and agreed to the published version of the manuscript.

REFERENCES

649	Ahlquist DA, Taylor WR, Mahoney DW, Zou H, Domanico M, Thibodeau SN,
650	Boardman LA, Berger BM, and Lidgard GP. 2012a. The stool DNA test is more
651	accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin
652	Gastroenterol Hepatol 10: 272-277.e271. doi: 10.1016/j.cgh.2011.10.008.
653	Ahlquist DA, Zou H, Domanico M, Mahoney DW, Yab TC, Taylor WR, Butz ML,
654	Thibodeau SN, Rabeneck L, Paszat LF, Kinzler KW, Vogelstein B, Bjerregaard
655	NC, Laurberg S, Sørensen HT, Berger BM, and Lidgard GP. 2012b. Next-
656	generation stool DNA test accurately detects colorectal cancer and large
657	adenomas. Gastroenterology 142: 248-256; quiz e225-246. doi:
658	10.1053/j.gastro.2011.10.031.
659	Barault L, Amatu A, Siravegna G, Ponzetti A, Moran S, Cassingena A, Mussolin B,
660	Falcomatà C, Binder AM, Cristiano C, Oddo D, Guarrera S, Cancelliere C,
661	Bustreo S, Bencardino K, Maden S, Vanzati A, and Zavattari P. 2018. Discovery
662	of methylated circulating DNA biomarkers for comprehensive non-invasive
663	monitoring of treatment response in metastatic colorectal cancer. Gut 67: 1995-
664	2005. doi: 10.1136/gutjnl-2016-313372.
665	Benton SC, Seaman HE, and Halloran SP. 2015. Faecal occult blood testing for
666	colorectal cancer screening: the past or the future. Curr Gastroenterol Rep 17:
667	428. doi: 10.1007/s11894-015-0428-2.
668	Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, Castanos-
669	Velez E, Blumenstein BA, Rosch T, Osborn N, Snover D, Day RW, Ransohoff

670	DF, Presept Clinical Study Steering Committee I, and Study T. 2014.
671	Prospective evaluation of methylated SEPT9 in plasma for detection of
672	asymptomatic colorectal cancer. Gut 63: 317-325. doi: 10.1136/gutjnl-2012-
673	304149.
674	Dickinson BT, Kisiel J, Ahlquist DA, and Grady WM. 2015. Molecular markers for
675	colorectal cancer screening. Gut 64: 1485-1494. doi: 10.1136/gutjnl-2014-
676	308075.
677	Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, Kinzler KW,
678	and Vogelstein B. 2008. Analysis of mutations in DNA isolated from plasma
679	and stool of colorectal cancer patients. Gastroenterology 135: 489-498. doi:
680	10.1053/j.gastro.2008.05.039.
681	Du LB, Li HZ, Wang YQ, Zhu C, Zheng RS, Zhang SW, Chen WQ, and He J. 2017.
682	[Report of colorectal cancer incidence and mortality in China, 2013]. Zhonghua
683	Zhong Liu Za Zhi 39: 701-706. doi: 10.3760/cma.j.issn.0253-
684	3766.2017.09.012.
685	Glöckner SC, Dhir M, Yi JM, McGarvey KE, Van Neste L, Louwagie J, Chan TA,
686	Kleeberger W, de Bruïne AP, Smits KM, Khalid-de Bakker CA, Jonkers DM,
687	Stockbrügger RW, Meijer GA, Oort FA, Iacobuzio-Donahue C, Bierau K,
688	Herman JG, Baylin SB, Van Engeland M, Schuebel KE, and Ahuja N. 2009.
689	Methylation of TFPI2 in stool DNA: a potential novel biomarker for the
690	detection of colorectal cancer. Cancer Res 69: 4691-4699. doi: 10.1158/0008-
691	5472.can-08-0142.

692	Goel A, Xicola RM, Nguyen TP, Doyle BJ, Sohn VR, Bandipalliam P, Rozek LS, Reyes
693	J, Cordero C, Balaguer F, Castells A, Jover R, Andreu M, Syngal S, Boland CR,
694	and Llor X. 2010. Aberrant DNA methylation in hereditary nonpolyposis
695	colorectal cancer without mismatch repair deficiency. Gastroenterology 138:
696	1854-1862. doi: 10.1053/j.gastro.2010.01.035.
697	Herbst A, Rahmig K, Stieber P, Philipp A, Jung A, Ofner A, Crispin A, Neumann J,
698	Lamerz R, and Kolligs FT. 2011. Methylation of NEUROG1 in serum is a
699	sensitive marker for the detection of early colorectal cancer. Am J Gastroenterol
700	106: 1110-1118. doi: 10.1038/ajg.2011.6.
701	Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, Xia D, Xu E, Lai M, Wu Y, and Zhang
702	H. 2018. Mutations of key driver genes in colorectal cancer progression and
703	metastasis. Cancer Metastasis Rev 37: 173-187. doi: 10.1007/s10555-017-
704	9726-5.
705	Ibrahim AE, Arends MJ, Silva AL, Wyllie AH, Greger L, Ito Y, Vowler SL, Huang TH,
706	Tavaré S, Murrell A, and Brenton JD. 2011. Sequential DNA methylation
707	changes are associated with DNMT3B overexpression in colorectal neoplastic
708	progression. Gut 60: 499-508. doi: 10.1136/gut.2010.223602.
709	Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, Ahlquist
710	DA, and Berger BM. 2014. Multitarget stool DNA testing for colorectal-cancer
711	screening. N Engl J Med 370: 1287-1297. doi: 10.1056/NEJMoa1311194.
712	Kadiyska T, and Nossikoff A. 2015. Stool DNA methylation assays in colorectal cancer
713	screening. World J Gastroenterol 21: 10057-10061. doi:

714	10.3748/wjg.v21.i35.10057
715	Kuang Y, Wang Y, Zhai W, Wang X

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

10.3748/wjg.v21.i35.10057.

X, Zhang B, Xu M, Guo S, Ke M, Jia B, and Liu H. 2020. Genome-Wide Analysis of Methylation-Driven Genes and Identification of an Eight-Gene Panel for Prognosis Prediction in Breast Cancer. Front Genet 11: 301. doi: 10.3389/fgene.2020.00301. Laugsand EA, Brenne SS, and Skorpen F. 2021. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: a systematic review of paired samples. Int J Colorectal Dis 36: 239-251. doi: 10.1007/s00384-020-03757-x. Li W, Zhao LZ, Ma DW, Wang DZ, Shi L, Wang HL, Dong M, Zhang SY, Cao L, Zhang WH, Zhang XP, Zhang QH, Yu L, Qin H, Wang XM, and Chen SL. 2018. Predicting the risk for colorectal cancer with personal characteristics and fecal immunochemical test. Medicine (Baltimore) 97: e0529. doi: 10.1097/MD.000000000010529. Niu F, Wen J, Fu X, Li C, Zhao R, Wu S, Yu H, Liu X, Zhao X, Liu S, Wang X, Wang J, and Zou H. 2017. Stool DNA Test of Methylated Syndecan-2 for the Early Detection of Colorectal Neoplasia. Cancer Epidemiol Biomarkers Prev 26: 1411-1419. doi: 10.1158/1055-9965.epi-17-0153. Okugawa Y, Grady WM, and Goel A. 2015. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 149: 1204-1225.e1212. doi:

Methylation for the Detection of Advanced Adenomas and Colorectal Cancer.

Otero-Estévez O, and Gallardo-Gomez M. 2020. Value of Serum NEUROG1

10.1053/j.gastro.2015.07.011.

737	Pankiewicz K, Fijałkowska A, Issat T, and Maciejewski TM. 2021. Insight into the Key
738	Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the
739	Role of MicroRNAs. Int J Mol Sci 22: 3132. doi: 10.3390/ijms22063132.
740	Sidransky D, Tokino T, Hamilton SR, Kinzler KW, Levin B, Frost P, and Vogelstein B
741	1992. Identification of ras oncogene mutations in the stool of patients with
742	curable colorectal tumors. Science 256: 102-105. doi
743	10.1126/science.1566048.
744	Siegel RL, and Miller KD. 2021. Cancer Statistics. CA Cancer J Clin 71: 7-33. doi
745	10.3322/caac.21654.
746	Siraj AK, Bu R, Prabhakaran S, Bavi P, Beg S, Al Hazmi M, Al-Rasheed M, Alobais
747	K, Al-Dayel F, AlManea H, Al-Sanea N, Uddin S, and Al-Kuraya KS. 2014. A
748	very low incidence of BRAF mutations in Middle Eastern colorectal carcinoma
749	Mol Cancer 13: 168. doi: 10.1186/1476-4598-13-168.
750	Sun M, Liu J, Hu H, Guo P, Shan Z, Yang H, Wang J, Xiao W, and Zhou X. 2019. A
751	novel panel of stool-based DNA biomarkers for early screening of colorecta
752	neoplasms in a Chinese population. J Cancer Res Clin Oncol 145: 2423-2432
753	doi: 10.1007/s00432-019-02992-2.
754	Tepus M, and Yau TO. 2020. Non-Invasive Colorectal Cancer Screening: An Overview
755	Gastrointest Tumors 7: 62-73. doi: 10.1159/000507701.

Diagnostics (Basel) 10: 437. doi: 10.3390/diagnostics10070437.

736

756

757

X, Wang X, Guo H, Guan J, Sun Y, Song X, Li Z, Mu D, Sun J, Liu X, Qi Y,

Wang J, Liu S, Wang H, Zheng L, Zhou C, Li G, Huang R, Wang H, Li C, Fan X, Fu

758	Niu F, Chen C, Wu X, Wang X, Song X, and Zou H. 2020. Robust performance
759	of a novel stool DNA test of methylated SDC2 for colorectal cancer detection:
760	a multicenter clinical study. Clin Epigenetics 12: 162. doi: 10.1186/s13148-020-
761	00954-x.
762	Werner S, Krause F, Rolny V, Strobl M, Morgenstern D, Datz C, Chen H, and Brenner
763	H. 2016. Evaluation of a 5-Marker Blood Test for Colorectal Cancer Early
764	Detection in a Colorectal Cancer Screening Setting. Clin Cancer Res 22: 1725-
765	1733. doi: 10.1158/1078-0432.ccr-15-1268.
766	Zhang H, Zhu YQ, Wu YQ, Zhang P, and Qi J. 2014. Detection of promoter
767	hypermethylation of Wnt antagonist genes in fecal samples for diagnosis of
768	early colorectal cancer. World J Gastroenterol 20: 6329-6335. doi:
769	10.3748/wjg.v20.i20.6329.
770	Zhao G, Ma Y, Li H, Li S, Zhu Y, Liu X, Xiong S, Liu Y, Miao J, Fei S, Zheng M, and
771	Zhao X. 2020. A novel plasma based early colorectal cancer screening assay
772	base on methylated SDC2 and SFRP2. Clin Chim Acta 503: 84-89. doi:
773	10.1016/j.cca.2020.01.010.
774	Ziegler M, Schubring-Giese B, Bühner M, and Kolligs FT. 2010. Attitude to secondary
775	prevention and concerns about colonoscopy are independent predictors of
776	acceptance of screening colonoscopy. Digestion 81: 120-126. doi:
777	10.1159/000223448.
778	

Figure 1: Experimental design in this study. Two separated cohorts were included: the FFPE cohort (N=75) and the stool cohort (N=274). NEUROG1 methylation detection and analysis were performed on all the samples enrolled.

Figure 2: Result of ROC analysis evaluating 274 stool samples undergone NEUROG1 methylation.