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ABSTRACT

Background. Coptis chinensis, a prominent herb in traditional Chinese medicine, is
widely utilized for its therapeutic effects against Streptococcus infections, though its
precise mechanisms of action remain insufficiently understood. This study aims to
clarify the potential mechanisms and active compounds of C. chinensis in the treatment
of Streptococcus.

Methods. Active compounds of C. chinensis were identified using the Traditional
Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP)
database, and their potential targets were predicted from multiple public resources.
These targets were intersected with streptococcus-related genes to identify overlapping
targets, which were then used to construct a protein—protein interaction (PPI) network
and screen for key hub genes. To investigate the pharmacological mechanisms, Gene
Ontology and KEGG pathway enrichment analyses were performed. Molecular docking
was employed to evaluate the binding affinities between active compounds and core
target proteins, followed by molecular dynamics simulations and Molecular Mechanics
Poisson-Boltzmann Surface Area (MM-PBSA) calculations to assess binding stability
and free energy.

Results. A total of 24 active compounds were identified, along with 180 overlapping
targets related to streptococcal infection. PPI network analysis revealed ten key hub
genes, including IL1f3, IL6, and MMP9. Enrichment analysis suggested that C. chinensis
may inhibit the TLR4/NF-kB inflammatory pathway to modulate host immunity and
mediate lipid metabolism reprogramming to restrict pathogen proliferation. Several
core targets were also enriched in pathways related to extracellular matrix remodeling
and immune regulation, indicating potential indirect effects on host—pathogen interface
interactions. Molecular docking and simulation confirmed stable binding between
major active ingredients and streptococcus-associated proteins.

Conclusion. This study provides mechanistic insights into the multi-component,
multi-target, and multi-pathway effects of C. chinensis against streptococcal infections.
The findings offer a theoretical basis for future experimental validation and clinical
translation.

How to cite this article Qi W, Shi B, Tang W, Zeng J, Zhuo M, Ma H. 2025. Integrating network pharmacology, molecular docking, and
molecular dynamics simulations to explore potential compounds and mechanisms of Coptis chinensis in treating streptococcal infections.
Peer] 13:¢19960 http://doi.org/10.7717/peer}. 19960


https://peerj.com
mailto:xzmahongcai@126.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.19960
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
http://doi.org/10.7717/peerj.19960

Peer

Subjects Biochemistry, Computational Biology, Veterinary Medicine, Pharmacology

Keywords Streptococcus, Coptis chinensis, Network pharmacology, Molecular docking, Molecular
dynamics

INTRODUCTION

Streptococcus is a genus of Gram-positive cocci, predominantly facultative anaerobes. Based
on their hemolytic properties, they can be classified into alpha-hemolytic, beta-hemolytic,
and gamma-hemolytic streptococci (Renzhammer et al., 2020; Wong et al., 2022). Notably,
several species, such as Streptococcus pneumoniae, Streptococcus agalactiae, and Streptococcus
pyogenes, are common human pathogens. A 2023 survey of 2,274 pneumonia patients
in a specific area of Japan revealed that the prevalence of Streptococcus pneumoniae
exceeded 20% (Hamaguchi et al., 2023). Among these, Streptococcus pyogenes stands out
as a significant bacterial pathogen, infecting at least 700 million people annually, with a
mortality rate ranging from 15% to 30% (Wong et al., 2022). Streptococcus agalactiae is
often isolated from pregnant women and newborns globally, leading to early and late-onset
infections in infants, and it has also been implicated in outbreaks affecting various livestock
and aquatic species (Bobadilla et al., 2021; Khunrang, Pooljun ¢» Wuthisuthimethavee,
2023).

In the realm of animal husbandry, streptococci are of critical concern. For instance,
Streptococcus suis is a major pathogen in pigs, emerging as a significant zoonotic threat
worldwide. Research indicates that Strepfococcus suis can cause meningitis, arthritis,
and sepsis in pigs, resulting in substantial economic losses for the swine industry, with
infection rates exceeding 20% in intensive farming settings (Goyette-Desjardins et al., 2014).
Additionally, Streptococcus dysgalactiae and Streptococcus uberis are primary pathogens
responsible for mastitis in dairy cows, with infection rates in Streptococcus uberis reaching
30%, severely impacting dairy production and quality (Bolbol et al., 2017). In sheep,
infections caused by Streptococcus ovis exhibit a high incidence rate, with reports indicating
rates of up to 15%, leading to severe sepsis and mortality, particularly in pastoral regions
of China (al-Quarawi et al., 1995).

Although numerous antibiotics are available for treating streptococcal diseases, the
misuse of these drugs has led to a yearly increase in antibiotic resistance among streptococcal
strains (Bilgin et al., 2017). Natural compounds, generally associated with fewer toxic
side effects and lower risks of resistance, represent a promising avenue for developing
anti-streptococcal therapies (Yang et al., 2019). Consequently, researchers are exploring
traditional Chinese medicine (TCM) and various natural compounds to identify new “green
and environmentally friendly antibacterial agents” for treating streptococcal infections.

Coptis chinensis (C. chinensis, Huanglian) is a traditional Chinese medicinal herb with
a bitter taste and cold nature, and it has been used for over two thousand years for
its properties in clearing heat, drying dampness, detoxifying, and expelling parasites
(Zhang et al., 2018). Modern pharmacological studies have shown that C. chinensis exhibits
significant antibacterial activity against a broad range of Gram-negative and Gram-positive
bacteria, including Shigella spp., Salmonella spp., Escherichia coli, and various Streptococcus
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species (Teggi et al., 2019). It is a common ingredient in several TCM formulations that
demonstrate anti-streptococcal effects, and its therapeutic potential against streptococcal
infections has been partially validated in prior studies (Ferguson, Polskaia ¢ Tokuno,
2017; Wang et al., 2020). However, current research on its anti-streptococcal mechanisms
remains limited. Most studies focus on in vitro antibacterial activity, with insufficient
systematic investigation into its bioactive components and pharmacological mechanisms.
In addition, molecular-level studies on its targets and signaling pathways are lacking, which
hinders its further development as a modern therapeutic agent.

Network pharmacology is an interdisciplinary approach that integrates systems biology,
bioinformatics, and pharmacology to explore the complex interactions between drugs and
biological systems from a holistic perspective (Matsushita et al., 2023). Unlike traditional
pharmacological methods that focus on a “one drug—one target” paradigm, network
pharmacology is particularly suitable for studying TCM, which is characterized by
“multiple components, multiple targets, and multiple pathways” (Zhang et al., 2019).
Traditional approaches often fail to reveal the synergistic effects of multiple active
ingredients, whereas network pharmacology enables the construction of drug—target—
disease networks to systematically analyze the comprehensive therapeutic actions of
multi-component medicines. This approach not only aids in identifying novel therapeutic
targets but also contributes to optimizing treatment strategies, enhancing efficacy, and
reducing adverse effects (Hopkins, 2008). Complementary to this, molecular docking
serves as a theoretical tool to predict binding conformations and affinities between
ligands and receptors (Mansoori et al., 2020), while molecular dynamics (MD) simulations
further explore molecular interactions and stability at the atomic level. The integration
of these computational approaches provides strong technical support for elucidating the
mechanisms of TCM and has become increasingly vital in modern drug development.

Given the unclear mechanisms underlying the anti-streptococcal effects of C. chinensis,
this study employs a combined approach of network pharmacology, molecular docking,
and molecular dynamics simulation to systematically explore its bioactive compounds,
potential targets, and key signaling pathways (Fig. 1). For the first time, we constructed
an integrated “C. chinensis—target—pathway—streptococcal disease” network model to serve
as a preliminary framework for uncovering its molecular mechanisms. This study aims to
provide theoretical support for the modernization of TCM and the development of novel
therapeutic agents.

MATERIALS & METHODS

Screening of effective active ingredients and target prediction in

c. chinensis

In this study, a multi-database integrative strategy was employed to systematically
identify the bioactive compounds of C. chinensis and predict their potential targets,
ensuring both data comprehensiveness and accuracy. Initially, the TCMSP database
(https:/www.tcmsp-e.com/tcmsp.php) was used to screen the active compounds of C.
chinensis, with oral bioavailability (OB) > 20% and drug-likeness (DL) > 0.1 set as
selection criteria to ensure favorable pharmacokinetic properties. To address potential
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Figure 1 Analysis flow chart.
Full-size Cal DOTI: 10.7717/peer;j.19960/fig-1

limitations of a single database and to increase compound coverage, data were further
supplemented with information from the TCMID database and relevant literature.

Target prediction for the selected bioactive compounds was conducted using five
databases: tCMSP (old.tcmsp-e.com), DrugBank (go.drugbank.com), SwissTargetPredic-
tion (swisstargetprediction.ch), BATMAN-TCM (ncpsb.org.cn), and TargetNet (targetnet.
scbdd.com). Specific thresholds were applied where applicable, including Probability > 0
for SwissTargetPrediction and Score cutoff > 20% with P < 0.05 for BATMAN-TCM. These
databases incorporate diverse methodologies—including experimental data, computational
prediction, machine learning, and network pharmacology—complementing each other
to enhance both the breadth and reliability of target identification. To standardize data
formats, target names retrieved from TCMSP and TargetNet were converted into official
gene symbols using the UniProt database. All predicted targets were subsequently integrated
and duplicates removed, resulting in a comprehensive target library for C. chinensis.

Target acquisition and key target intersection in streptococcal
disease

To comprehensively collect streptococcal disease—associated targets, four databases
were queried: GeneCards (http:/iwww.genecards.org), OMIM (https:/omim.org/), TTD
(https:/db.idrblab.net/ttd/), and DisGeNET (http:/iwww.disgenet.org). These databases

Qi et al. (2025), PeerdJ, DOI 10.7717/peerj.19960 4/21


https://peerj.com
https://doi.org/10.7717/peerj.19960/fig-1
http://old.tcmsp-e.com
http://go.drugbank.com
http://targetnet.scbdd.com
http://targetnet.scbdd.com
http://www.genecards.org
https://omim.org/
https://db.idrblab.net/ttd/
http://www.disgenet.org
http://dx.doi.org/10.7717/peerj.19960

Peer

encompass diverse layers of information, including genetic, clinical, and pharmacological
associations, thereby providing a multidimensional overview of disease-related genes. After
integrating the results and removing duplicate entries, a relatively comprehensive dataset of
streptococcal disease—related targets was constructed. The predicted targets of C. chinensis
bioactive compounds were then intersected with the disease-related targets to identify
potential therapeutic targets.

PPI network construction and hub gene identification
The intersection of predicted drug targets and disease-related targets was input into the
STRING database (https:/cn.string-db.org) with the species set to Homo sapiens and the
minimum required interaction score set to high confidence (>0.7); other parameters were
kept at default. After removing disconnected nodes (PPI) network data were exported in
TSV format and imported into Cytoscape 3.9.1 for network construction and visualization.
To identify potential key targets, topological features of the network nodes were further
analyzed using the CytoNCA plugin in Cytoscape, focusing on three main metrics: Degree,
Betweenness Centrality, and Closeness Centrality. Based on a comprehensive evaluation of
these metrics, the top 10 hub genes were selected as key candidate targets for subsequent
analyses.

GO and KEGG pathway enrichment analysis

To elucidate the functional characteristics and associated signaling pathways of the potential
targets, GO and KEGG enrichment analyses were performed on 180 intersecting genes using
the DAVID database (https:/davidbioinformatics.nih.gov/). The analyses were conducted
through the “Functional Annotation” module, with the species set to Homo sapiens and the
background gene list corresponding to the human reference genome. GO analysis included
annotations in three categories: biological process (BP), cellular component (CC), and
molecular function (MF), while KEGG analysis was used to identify relevant signaling
and disease pathways. Given the moderate size of the gene set, a significance threshold
of p < 0.05 without multiple testing correction was applied to retain more biologically
meaningful entries for subsequent analyses. GO results were ranked by gene count and the
top ten terms of each category (BP, CC, MF) were selected for visualization. All KEGG
pathways meeting the criteria were included. Enrichment results were visualized using
the Bioinformatics online platform (https:/www.bioinformatics.com.cn) through GO
bubble plots and KEGG classification bar charts, illustrating the functional distribution
and pathway characteristics of the targets.

Construction of drug ingredient-target-pathway network

The top 10 pathways with the most targets identified in the KEGG pathway enrichment
analysis, along with target association information and the corresponding numbers of active
ingredients from C. chinensis, were imported into Cytoscape 3.9.1 software to construct
a drug ingredient-target-pathway network diagram. This network diagram can provide
insights into the mechanisms by which C. chinensis exerts its therapeutic effects.
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Molecular docking validation

To evaluate the binding potential between candidate active compounds and key target
proteins, this study selected 10 critical protein targets, whose three-dimensional structures
were primarily obtained from the Research Collaboratory for Structural Bioinformatics
Protein Data Bank (RCSB PDB; https:/iwww.rcsb.org/) database. Priority was given to
crystal structures with co-crystallized ligands or resolutions better than 2.5 A. Active sites
were defined based on the co-crystallized ligand binding pockets and relevant literature
reports, and further refined with grid predictions from AutoDock Tools to ensure accuracy
and biological relevance of the docking regions. Molecular docking of 15 potential active
compounds was performed using AutoDock 4.2, resulting in a total of 28 protein-ligand
complexes. Binding free energy was used as the primary evaluation metric to preliminarily
screen the binding affinities of all complexes.

Molecular dynamics simulation and Molecular Mechanics
Poisson-Boltzmann Surface Area binding free energy calculation
Protein-ligand complexes with favorable binding free energies from molecular docking
screening were further subjected to molecular dynamics (MD) simulations using
GROMACS 2024.2 to evaluate their stability and binding behavior under dynamic
physiological conditions. The protein was parameterized with the CHARMM36-jul2021
force field, while ligand parameters were generated using CGenFF. TIP3P water molecules
were used as the solvent model. Following energy minimization and equilibration under
NVT and NPT ensembles, production MD simulations were conducted for 200 ns at
310 K and 1 atm. Fach simulation was independently repeated three times to ensure
data reliability. Stability and flexibility of the complexes were assessed by analyzing
RMSD, RMSF, hydrogen bond counts, and radius of gyration (Rg) from the simulation
trajectories (Mejia-Gutierrez et al., 2021). Detailed binding mode analyses were based on
conformations from the final stage of MD simulations, focusing on hydrogen bonds,
hydrophobic interactions, and 7 -7 stacking between ligands and key residues within the
protein binding pockets to elucidate the molecular basis of stable binding. Additionally,
binding free energies were calculated using the Molecular Mechanics Poisson-Boltzmann
Surface Area (MM-PBSA) method over the 191-200 ns interval, providing a quantitative
theoretical basis for binding affinity evaluation.

RESULTS

Active ingredients of c. chinensis and potential targets for
streptococcal disease

From the TCMSP database, 48 active ingredients of Coptis chinensis were retrieved. After
applying the screening criteria of OB > 20% and DL > 0.1, 24 active ingredients were
selected for further analysis. The target genes for these ingredients were identified using five
databases: 202 targets from TCMSP, 47 from DrugBank, 621 from SwissTargetPrediction,
101 from BATMAN-TCM, and 260 from TargetNet. After removing duplicates and
converting protein names to gene symbols, a total of 871 unique targets were identified.
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Figure 2 Venn diagram of targets related to Coptis chinensis and streptococcal disease.
Full-size & DOI: 10.7717/peer;j.19960/fig-2

For streptococcal disease, 1,198 target genes were gathered from DisGeNET,
supplemented by a literature review. Additional relevant targets were retrieved from
GeneCards, OMIM, and TTD databases. After eliminating duplicates and converting
protein names to gene symbols, a total of 1,210 target genes related to streptococcal disease
were identified.

When intersecting the 871 Coptis chinensis targets with the 1,210 streptococcal disease
targets, 180 common targets were identified, which could potentially be involved in Coptis
chinensis’s therapeutic effect on streptococcal disease (Fig. 2, Table S1).

Construction of protein—protein interaction (PPI) network and hub
gene screening

A protein—protein interaction (PPI) network was constructed using the STRING database,
comprising 179 nodes and 1,546 edges, with an average node degree of 17.2 and an average
local clustering coefficient of 0.52 (Fig. 3A). In this network, nodes represent protein targets,
and edges indicate potential functional or physical interactions between targets. The size
and color intensity of each node are proportional to its degree value, with higher-degree
nodes positioned closer to the network core.

Topological properties of the network nodes were systematically analyzed using the
CytoNCA plugin. Node importance was comprehensively assessed based on Degree,
Betweenness, and Closeness centrality metrics, leading to the identification of 10 key
hub genes: TP53, ACTB, AKT1, TNF, HIF1A, IL6, MYC, EGFR, IL1B, and ALB. Among
these, TP53 exhibited the highest degree value (125) and was located at the network core,
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Figure 3 Key protein—protein interaction (PPI) and hub gene network diagram of C. chinensis and
streptococcal disease.
Full-size &l DOI: 10.7717/peerj.19960/fig-3

suggesting its potential pivotal regulatory role in the anti-streptococcal mechanism of
C. chinensis (Fig. 3B, Table S2).

GO and KEGG pathway enrichment analysis

To further investigate the functional characteristics and biological pathways involving the
180 screened common target genes, GO and KEGG enrichment analyses were performed
(Fig. 4, Table S3). GO analysis revealed that these targets were mainly involved in key
biological processes (BP) such as immune response, signal transduction, and cellular
regulation, including “inflammatory response”, “cellular response to lipopolysaccharide”,
“protein phosphorylation”, and “positive regulation of transcription”, suggesting their
potential roles in modulating host immunity and pathogen-related signaling pathways. In

bR

terms of cellular components (CC), targets were enriched in “extracellular space”, “plasma
membrane”, “extracellular exosome”, and “cytoplasm”, indicating their important roles
in signal sensing and transduction. At the molecular function (MF) level, significant
enrichment in “protein kinase activity”, “enzyme binding”, “ATP binding”, and “protein
binding” was observed, implying that these targets may regulate infection-related processes
through kinase-mediated signaling.

KEGG pathway classification analysis revealed that the common targets participate in
multiple biological systems, including metabolism, environmental information processing,
cellular processes, organismal systems, and human diseases. Among these, environmental
information processing was dominated by “signal transduction” pathways (19 pathways);
organismal systems showed significant enrichment in “immune system” (20 pathways),
endocrine system (15 pathways), and nervous system (five pathways); cellular processes
encompassed pathways related to cell community behaviors, cell growth and death, and
substance transport. In the disease category, enriched pathways were mainly associated with

cancer (26 pathways), viral and bacterial infections (22 pathways), and parasitic infections
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Full-size & DOI: 10.7717/peer;j.19960/fig-4

(six pathways), indicating strong enrichment trends. These findings are highly consistent
with the GO functional analysis, highlighting the core roles of common targets in immune
regulation and signal transduction. Furthermore, many of these pathways include hub
targets identified in the protein—protein interaction network analysis (AKT1, MAPK3,
TNF), suggesting that these proteins may act as key nodes mediating signal transduction
and constitute crucial pathway hubs for C. chinensis intervention against streptococcal
infection.

Drug component-target-pathway network analysis

To better visualize the relationships between C. chinensis components, target genes,
and Streptococcus-related signaling pathways, a drug component-target-disease pathway
network was constructed, comprising 132 nodes and 807 edges (Fig. 5). In this network, blue
square nodes represent common targets, green oval nodes indicate Streptococcus-associated
signaling pathways, and red hexagonal nodes denote the potential active components of
Coptis chinensis. The network analysis revealed that several active compounds, including
quercetin, coptisine (DPEC), epiberberine, and palmatine, were associated with the highest
number of targets. These active components may serve as the key bioactive compounds
responsible for the therapeutic effects of C. chinensis against Streptococcus infections.
Through multiple mechanisms, they collectively contribute to the pharmacological activity
of C. chinensis, highlighting its potential clinical applications.

Molecular docking and binding energy analysis

The docking results indicated that all complexes exhibited binding free energies lower than
—6 kcal/mol, suggesting strong interactions between these active compounds and their
target proteins (Table 1). Notably, seven complexes showed binding free energies below
—9 kcal/mol, indicating exceptionally high binding affinities. Among them, the Palmidin
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these active compounds.

A-SRC complex demonstrated the strongest binding affinity, with a binding free energy of
—10.7 kcal/mol. Additionally, quercetin, epiberberine, and tetrandrine were identified as
key ligand molecules, while SRC, MMP9, and AKT1 emerged as critical target proteins for

Molecular dynamics simulation and MM-PBSA binding free energy
calculation
Palmidin A interacts with the binding pocket of SRC protein but exhibits weak binding
affinity and moderate overall stability. As shown in Fig. 6A, the small molecule remains
relatively fixed within the binding pocket, while the overall protein conformation undergoes
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Table 1 Molecular docking results of 28 sets of complexes.

Small molecular ligand Receptor protein Maximum binding
(PDBID) energy (kcal/mol)

Palmidin A SRC (1y57) —10.7
Quercetin MMP9 (6esm) —9.8
Quercetin AKT1 (6s9x) —-9.8
Moupinamide MMP9 (6esm) -9.7
Coptisine SRC (1y57) -9.2
Tetrandrine CCL2 (4zk9) -9.2
Berberine SRC (1y57) —-9.1
Obacunone SRC (1y57) —8.9
Epiberberine SRC (1y57) —8.8
Epiberberine MMP9 (6esm) —8.6
Obacunoic acid MMP9 (6esm) —8.6
Groenlandicine MMP9 (6esm) -84
Pycnamine SRC (1y57) -8.3
Tetrandrine IFNYy (6e31) -8.1
Tetrandrine AKT1 (6s9x) -8
Columbamine SRC (1y57) -7.8
Quercetin IFNYy (6€31) -7.8
Quercetin MMP9 (6esm) -7.8
Palmatine MMP9 (6esm) —7.6
Limonin TNF (2e7a) —7.4
DPEC IL6 (1alu) 7.1
Quercetin TLR4 (2Z64) —7.1
Obacunoic acid TNF (2e7a) -7
Quercetin CCL2 (4zk9) —6.9
Quercetin IL1B (1t4q) —6.8
Moupinamide TNF (2¢e7a) —6.4
Columbamine CXCLS8 (licw) —6
Quercetin TLR4 (2Z64) —6

significant changes. Centroid distance analysis indicates that the distance between the

small molecule and the active site ranges from 1.75 to 2.75 nm, suggesting a rigid binding

mode, whereas the protein backbone RMSD fluctuates considerably (Fig. 6C). Residue

RMSF trajectories reveal high flexibility in the binding pocket region, particularly with

pronounced fluctuations at the C-terminal (Fig. 6D). Additionally, the hydrogen bond

count and radius of gyration remain stable, indicating no conformational collapse in the
system (Figs. 6E, 6F). Binding mode analysis (Fig. 6G) suggests that Palmidin A primarily
interacts with key residues through hydrogen bonding, hydrophobic interactions, and
m—n stacking, maintaining a certain degree of binding at the end of the simulation.
MM-PBSA calculations (191-200 ns) reveal a binding free energy (AG) of approximately
—24.08 kJ/mol for Palmidin A with SRC protein, corresponding to a binding affinity (Ki)
of approximately 6.06 wM, indicating weak binding. Among the interaction components,
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Figure 6 (A—G) Molecular dynamics simulation results of Palmidin A-SRC.
Full-size & DOI: 10.7717/peer;j.19960/fig-6

Table 2 MM-PBSA binding free energy results.

Parameters SRC-Palmidin A MMP9-Quercetin
AG (kJ/mol) —24.08 £ 13.6 —98.40 £ 4.2
Van der Waals ’contribution —135.24 £10.2 —179.61 £ 12.3
Electrostatic contribution —27.02 £ 15.3 —44.92 £ 8.6

Ki 61.46 uM 5.77 nM

van der Waals interactions (—135.24 kJ/mol) contribute the most, whereas electrostatic
interactions (—27.02 kJ/mol) are relatively minor (Table 2).

In contrast, the MMP9-quercetin complex demonstrates higher stability over the 200 ns
simulation. Conformational superposition analysis (Fig. 7A) shows minimal changes in
the small molecule within the active pocket, with quercetin dynamically anchored through
a hydrophobic core (Phel10, Leul88) and a hydrogen bond network (Tyr219). Its benzene
ring forms w—m stacking with His226 (Fig. 7G). The protein backbone RMSD stabilizes
at 0.3-0.4 nm after 30 ns (Fig. 7C), while the RMSD of quercetin remains below 0.1 nm,
indicating rapid conformational convergence. Residues at the binding site (Leul181-Tyr223)
exhibit low flexibility (Fig. 7D), and the distance between the small molecule and the active
site remains stable at 0.3-0.5 nm (Fig. 7B). The hydrogen bond count and radius of
gyration show minimal fluctuations (Figs. 7E, 7F), further supporting the tight binding of
the complex. MM-PBSA calculations (191-200 ns) indicate that the binding free energy
(AG) of quercetin with MMP9 is —107.9 kJ/mol, with a corresponding binding affinity of
5.77 x 10~ nM, suggesting strong binding. The binding energy is mainly derived from
van der Waals forces (—179.6 kJ/mol) and electrostatic interactions (—48.9 kJ/mol) (Table
2).

To assess the stability of the simulations, three independent simulations were conducted
for each complex system (Figs. 8 and 9). Multi-trajectory analysis indicates that the stability
of the Palmidin A-SRC complex is independent of initial conditions, with its binding mode
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achieved through the coordination of dynamic hydrogen bond networks and protein
conformational adjustments (Fig. 8A). Meanwhile, the three RMSD curves of the MMP9-
quercetin complex nearly overlap (Fig. 9A), with a maximum centroid distance deviation
of only 0.3 nm (Fig. 9C). The hydrogen bond network (Fig. 9D) and radius of gyration
(Fig. 9E) exhibit consistent dynamic patterns, further confirming the stability of the

complex. These findings demonstrate good reproducibility of the simulation data, aligning
with the technical standards of molecular dynamics research and ensuring the reliability of

the study conclusions (Shirts et al., 2017).

Qi et al. (2025), PeerdJ, DOI 10.7717/peerj.19960 13/21


https://peerj.com
https://doi.org/10.7717/peerj.19960/fig-7
https://doi.org/10.7717/peerj.19960/fig-8
http://dx.doi.org/10.7717/peerj.19960

Peer

A RMSD B

RMS!
Protein skeleton: black. yellow, green Micromolecole: od, blue, pnk NoVel: black: Vel-: red: Vel-2: green

g

AN i IM\!

C Disunce

istanc
NoVel: lack: Vel- I red; Vel-2: groen

o
o
20

RMSD (s

)
Yoo 5 300 30 0 0 0 150 0

D Number of hydrogen bonds E Radius of gyration (total and around axes)
NoVel:black: Vel r: Vel-2: geen NoVel:black: VeI d: V-2 gren

Figure 9 Integrated analysis chart of multi-trajectory dynamic parameters of Palmidin A-SRC
complex. (A) RMSD; (B) RMSF; (C) distance between small molecules and protein active sites; (D)
Hbnum; (E) gyrate.

Full-size &4 DOI: 10.7717/peer;j.19960/fig-9

DISCUSSION

The effects and mechanisms of Rhizoma Coptidis and its active ingredients in treating
various diseases caused by pathogenic streptococci have been widely studied (Du et al.,
20205 Li et al., 2018b). However, the diversity of its active ingredients and pharmacological
effects means that traditional research methods focused on a single drug, disease, or target
are insufficient to elucidate its mechanisms of action. This study is the first to systematically
analyze the potential active ingredients and mechanisms of Rhizoma Coptidis in treating
streptococcal diseases from the perspectives of multiple components, targets, and pathways.
Additionally, molecular docking and kinetic simulation methods were employed to validate
the reliability of the analytical results, providing new insights into the complex systems of
Rhizoma Coptidis in disease treatment.

Through network pharmacology screening, this study identified 180 potential targets.
Among them, compounds such as quercetin, DPEC, and epiberberine emerged as key
components of C. chinensis for the treatment of streptococcal disease due to their large
number of common targets. Quercetin, a flavonoid widely found in plants, exhibits
significant anti-inflammatory activity, primarily through the inhibition of inflammatory
factors. Barrientos et al. (2013) also discovered that quercetin inhibits the growth of
streptococci. DPEC, an important active compound in C. chinensis, exhibits promising
clinical potential in antibacterial, anti-inflammatory, and antioxidant applications (Gong
et al., 2019). Epiberberine, a representative alkaloid, has demonstrated potent antibacterial
and anti-inflammatory properties, making it a promising candidate for various diseases
(Liu, Li ¢~ He, 2020).
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Based on the hub gene algorithm of the PPI network, this study identified 10 key
host genes, including IL1f, IL6, SRC, and interferon gamma (IFNG), as core targets of
C. chinensis in the treatment of streptococcal disease. This suggests that C. chinensis exerts its
therapeutic effects through these targets. The inflammatory response elicited by streptococci
is closely linked to mediators such as IL1p and IL6, which streptococci manipulate to
evade immune destruction, enhance inflammatory mediators, and increase inflammatory
macrophages. This results in a persistent inflammatory environment. IFNG plays a key
role in moderating the local inflammatory response during streptococcal infection by
regulating pro-inflammatory cytokines in macrophages, aiding bacterial clearance and
preventing progression to severe infection, making it a potential specific target for bacterial
disease treatmen (Ivin ef al., 2017). Toll-like receptor 4 (TLR4) is crucial in initiating
immune responses in the early stages of streptococcal infection. It recognizes pathogen-
associated molecular patterns on the streptococcal surface, triggering signaling pathways
that activate immune cells, such as macrophages and dendritic cells, promoting antigen
presentation and specific immune responses while initiating inflammatory responses to
contain pathogen spread (Akira, Uematsu & Takeuchi, 2006; Medzhitov, 2007). During the
persistent inflammation stage, IL1§3, IL6, and tumor necrosis factor (TNF) significantly
amplify inflammation. IL1f induces inflammatory mediator production, promotes fever
responses, and contributes to tissue damage (Dinarello, 2009); IL6 activates immune cells,
triggers acute phase reactions, and enhances inflammation ( Tanaka, Narazaki ¢ Kishimoto,
2014); TNF heightens immune cell bactericidal activity, induces vascular reactions, and
can cause tissue damage at high concentrations (Tracey ¢» Cerami, 1994). In regulating
immune cell function, IFNG and AKT1 are critical. IFNG enhances macrophage function,
facilitates antigen presentation, and regulates cellular immunity (Biron et al., 1999); AKT1
manages immune cell survival, metabolism, and stress responses, playing a role in immune
cell activation (Manning ¢» Toker, 2017). Additionally, matrix metalloproteinase 9 (MMP9)
may promote bacterial spread by degrading the extracellular matrix, facilitating bacterial
dissemination, enhancing inflammatory responses, and potentially delaying tissue repair
(Visse ¢ Nagase, 2003). Collectively, these proteins interact during streptococcal infection,
forming a complex network of immune and inflammatory responses. C. chinensis acts on
these targets through its effective ingredients, contributing to the treatment of streptococcal
disease.

Molecular docking results showed that the primary active ingredients of C. chinensis
exhibited strong docking activity with core targets, which was further validated through
molecular dynamics simulations and MM-PBSA binding free energy calculations. Notably,
the binding site of quercetin with MMP9 was the most stable, indicating high intrinsic
biological activity. These findings offer insights into the potential mechanisms by which
C. chinensis treats streptococcal diseases and could serve as a reference for clinical
applications.

To gain deeper insights into the mechanisms by which C. chinensis (Huanglian) acts
against streptococcal infection, this study conducted GO functional and KEGG pathway
enrichment analyses on potential therapeutic targets and constructed a drug—target—
pathway—disease network. The enrichment results indicated that the anti-streptococcal
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effects of Huanglian involve multiple biological processes and signaling pathways. GO
analysis revealed significant enrichment of Huanglian targets in biological processes
such as “protein phosphorylation”, “inflammatory response”, and “regulation of cell
proliferation”, suggesting that Huanglian may modulate host immune signaling by
regulating kinase activity to suppress excessive inflammation induced by streptococcal
infection. Additionally, the enrichment of target molecules in “cell surface” and
“extracellular region” supports the notion that Huanglian’s active compounds may
exert direct antibacterial effects by interfering with host—pathogen interactions. KEGG
pathway analysis further uncovered broad involvement of Huanglian targets in metabolic
reprogramming processes, including “lipid metabolism” and “amino acid metabolism”,
which may restrict streptococcal nutrient uptake and proliferation by altering the host
cellular metabolic microenvironment. Notably, enrichment in pathways related to the
“immune system” and “bacterial infectious diseases” suggests that Huanglian not only
enhances the host innate immune response but may also directly disrupt streptococcal
virulence factors, thereby achieving a dual antibacterial effect. Numerous experimental
studies have confirmed the significance of these pathways in Streptococcus’ growth,
apoptosis, and host interactions (Wang et al., 2017). In 2017, Kurosawa et al. (2018)
discovered that the cAMP factor of Streptococcus pyogenes promotes adhesion and
invasion of pharyngeal epithelial cells via the PI3K/Akt signaling pathway. Concurrently,
transcriptome analysis of hybrid tilapia infected with Streptococcus agalactiae identified the
induction of NADPH oxidase and ichthyosidase mediated by the Toll-like receptor pathway
as the primary immune response (Ken et al., 2017). Li, Chen & Zhou (2018a) demonstrated
that batryticatine, combined with clindamycin, inhibited severe pneumonia caused by
mixed infections of H5N1 influenza virus and Streptococcus pneumoniae in vitro and in vivo
via the NF-xB signaling pathway. These findings suggest that C. chinensis may modulate the
inflammatory response and immune disorders caused by streptococcal infection through
a multi-target, multi-pathway approach, regulating cell signaling pathways to exert its
anti-infection effects.

Although this study preliminarily constructed an integrated “C. chinensis—target—
pathway—streptococcal disease” network model through network pharmacology, molecular
docking, and molecular dynamics simulations to reveal the potential active compounds and
mechanisms of Huanglian, several limitations remain. First, the current model primarily
focuses on host (human) targets and does not systematically incorporate key streptococcal
pathogen targets, which may limit its ability to fully capture the direct effects of Huanglian
on the pathogen. Second, network pharmacology relies heavily on existing databases
and algorithms, and the completeness and accuracy of these data restrict the coverage
and predictive power of the model. Moreover, as an association-based approach, it
is challenging to directly reflect true causal relationships within the complex in vivo
physiological environment. Biological factors such as drug absorption, metabolism, and
bioavailability also significantly influence actual therapeutic efficacy. Therefore, future
research should integrate streptococcal target screening and systematic experimental
validation to enhance the biological relevance and clinical translational potential of the
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computational model, facilitating the transition from in silico prediction to effective

intervention.

CONCLUSIONS

This study reveals that C. chinensis exerts its effects by targeting host core molecules such
as IL-1B, IL-6, and MMP9 through active components like quercetin and berberine,
demonstrating a multi-component, multi-target, and multi-pathway synergistic effect.
The mechanism primarily involves inhibiting the TLR4/NF-xB inflammatory pathway
to regulate host immunity and mediating lipid metabolism reprogramming to restrict
pathogen proliferation. Furthermore, the enrichment of related targets in extracellular
matrix remodeling and immune regulation networks suggests that C. chinensis may
indirectly inhibit infection by modulating host-pathogen interface functions. This study
offers a novel perspective on host-directed antimicrobial mechanisms of traditional
Chinese medicine, and in the future, combining pathogen target screening with dual-
target intervention strategies will help further elucidate the C. chinensis’s potential for
host-pathogen synergistic therapy.
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