

Analysis of imaging data on the population structure, vertical distribution, and growth of two dominant planktonic copepod species in the western subarctic Pacific (#118110)

1

First submission

Guidance from your Editor

Please submit by **24 May 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

7 Figure file(s)

1 Table file(s)

1 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Analysis of imaging data on the population structure, vertical distribution, and growth of two dominant planktonic copepod species in the western subarctic Pacific

Tian Gao¹, Atsushi Yamaguchi^{Corresp. 1, 2}

¹ Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan

² Arctic Research Center, Hokkaido University, Sapporo, Hokkaido, Japan

Corresponding Author: Atsushi Yamaguchi
Email address: a-yama@fish.hokudai.ac.jp

Traditionally, zooplankton analyses have relied on stereomicroscopes, but recent advancements in imaging analysis have offered significant advantages, including the simultaneous collection of abundance, size, and biovolume data. In this study, formalin-preserved samples were collected from depths of 0 to 1000 m across four seasons at a station in the western subarctic Pacific, using the imaging device ZooScan. Two dominant copepod genera, *Metridia* and *Eucalanus*, were examined for seasonal changes in abundance, biovolume, and diurnal vertical distribution. ZooScan measurements for each developmental stage were taken to calculate intermolt growth based on the equivalent spherical diameter (ESD) and biovolume. Four *Metridia* species were identified: *M. pacifica*, *M. okhotensis*, *M. asymmetrica*, and *M. curticauda*. *M. pacifica*, the dominant species, had an ESD of 2 mm or less, while the other three species exceeded 2 mm. *M. pacifica* exhibited diurnal migration to surface layers (0–50 m) at night, while the larger species were primarily located in the deeper layer (750–1000 m) both day and night. Only one species, *E. bungii*, was identified in the genus *Eucalanus*, with size cohorts corresponding to each developmental stage. Its vertical distribution was consistent day and night across seasons, but seasonal changes were evident. In October and February, *E. bungii* was found at depths of 200–500 m. In April, later developmental stages migrated to shallower depths of 50–200 m, while in July, younger stages (C1–C4) were found at 0–50 m, indicating recent reproduction during the spring phytoplankton bloom. The generation time of *E. bungii* varies from 1 to 3 years. Although it was clear that new individuals emerged in July, understanding the dynamics of later stages and generation time was difficult due to overlapping size distributions, particularly in C5 and C6. Inter-molt growth for *M. pacifica* ranged from 6.7% to 40.4% based on ESD and from 21.1% to 177.8% based on biovolume. For *E. bungii*, these ranges were 6.2% to 48.2% and 18.5% to 223.5%, respectively, with biovolume growth being significantly higher. Both species showed differences in inter-molt

growth between males and females, with females being larger. Notably, *M. pacifica* has functional mandible teeth in C6M, while *E. bungii* C6M's teeth are degenerate. *M. pacifica* C6F exhibits significant vertical migration to the surface at night, unlike C6M, which remains deeper. This difference in behavior likely impacts feeding conditions, contributing to the lower inter-molt growth rates for male stages.

1 Analysis of imaging data on the population structure, vertical distribution, and growth of two dominant
2 planktonic copepod species in the western subarctic Pacific

3
4 Tian Gao¹ and Atsushi Yamaguchi^{1,2,*}

5
6 ¹Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido,
7 041-8611, Japan

8 ²Arctic Research Center, Hokkaido University, Kita-21 Nishi-11 Kita-ku, Sapporo, Hokkaido, 001-0021,
9 Japan

10 *Corresponding author: a-yama@fish.hokudai.ac.jp (Atsushi Yamaguchi)

11

12 **Abstract:**

13 Traditionally, zooplankton analyses have relied on stereomicroscopes, but recent advancements in imaging
14 analysis have offered significant advantages, including the simultaneous collection of abundance, size, and
15 biovolume data. In this study, formalin-preserved samples were collected from depths of 0 to 1000 m across
16 four seasons at a station in the western subarctic Pacific, using the imaging device ZooScan. Two dominant
17 copepod genera, *Metridia* and *Eucalanus*, were examined for seasonal changes in abundance, biovolume,
18 and diurnal vertical distribution. ZooScan measurements for each developmental stage were taken to
19 calculate intermolt growth based on the equivalent spherical diameter (ESD) and biovolume. Four *Metridia*
20 species were identified: *M. pacifica*, *M. okhotensis*, *M. asymmetrica*, and *M. curticauda*. *M. pacifica*, the
21 dominant species, had an ESD of 2 mm or less, while the other three species exceeded 2 mm. *M. pacifica*
22 exhibited diurnal migration to surface layers (0–50 m) at night, while the larger species were primarily
23 located in the deeper layer (750–1000 m) both day and night. Only one species, *E. bungii*, was identified in
24 the genus *Eucalanus*, with size cohorts corresponding to each developmental stage. Its vertical distribution
25 was consistent day and night across seasons, but seasonal changes were evident. In October and February,
26 *E. bungii* was found at depths of 200–500 m. In April, later developmental stages migrated to shallower
27 depths of 50–200 m, while in July, younger stages (C1–C4) were found at 0–50 m, indicating recent
28 reproduction during the spring phytoplankton bloom. The generation time of *E. bungii* varies from 1 to 3
29 years. Although it was clear that new individuals emerged in July, understanding the dynamics of later
30 stages and generation time was difficult due to overlapping size distributions, particularly in C5 and C6.
31 Inter-molt growth for *M. pacifica* ranged from 6.7% to 40.4% based on ESD and from 21.1% to 177.8%
32 based on biovolume. For *E. bungii*, these ranges were 6.2% to 48.2% and 18.5% to 223.5%, respectively,
33 with biovolume growth being significantly higher. Both species showed differences in inter-molt growth
34 between males and females, with females being larger. Notably, *M. pacifica* has functional mandible teeth
35 in C6M, while *E. bungii* C6M's teeth are degenerate. *M. pacifica* C6F exhibits significant vertical migration
36 to the surface at night, unlike C6M, which remains deeper. This difference in behavior likely impacts
37 feeding conditions, contributing to the lower inter-molt growth rates for male stages.

38

39 Subjects: Ecology, Marine Biology, Zoology

40 Keywords: DVM, *Eucalanus*, Life cycle, *Metridia*, SVM, ZooScan

41

42 **Introduction**

43 In the western subarctic Pacific, St. K2 has been established as a long-term time-series observation station
44 by Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The quantification and flux of
45 various biogeochemical parameters from this station have been reported (Honda et al., 2017). Research on
46 zooplankton at St. K2 has provided several key findings, including estimates of vertical carbon flux to the
47 deep layers achieved through the ontogenetic vertical migration of large-sized copepods as they enter
48 diapause (Kobari et al., 2008). Other studies have compared zooplankton communities at St. K2 with those
49 at subtropical stations (Steinberg et al., 2008a) and estimated the consumption of sinking particles by

50 mesozooplankton and heterotrophic bacteria in the deep layers (Steinberg et al., 2008b). Additionally, the
51 community structure of zooplankton at St. K2 has been analyzed in comparison to subtropical stations
52 (Kitamura et al., 2016), and seasonal changes in zooplankton collected from time-series sediment traps at
53 a depth of 200 m have been documented (Yokoi et al., 2018). While these findings are significant, most
54 have focused on elucidating community structure and material circulation, leaving a gap in our
55 understanding of the dynamics and population structure of dominant species within each zooplankton
56 taxonomic group. To address this gap, examples of species-level analyses have been conducted using
57 vertically stratified samples collected both during the day and night across four seasons. Amei et al. (2021)
58 analyzed pelagic polychaetes, while Taniguchi et al. (2023) focused on pelagic amphipods. Additionally,
59 two other studies have documented seasonal changes in population structure, including body size and
60 gonadal development of dominant species, such as the chaetognath *Eukrohnia hamata* (Nakamura, Zhang
61 & Yamaguchi, 2023) and the hydromedusa *Aglantha digitale* (Aizawa, Gao & Yamaguchi, 2023).

62 Recent studies on zooplankton at St. K2 have shifted from traditional stereomicroscopes to
63 advanced imaging techniques. A standout innovation is ZooScan, developed in the 2000s, which measures
64 individual zooplankton size and identifies their species from images, proving effective in various marine
65 ecosystems (Gorsky et al., 2010; Irisson et al., 2022). At St. K2, ZooScan is used particularly for analyzing
66 pelagic amphipods (Taniguchi et al., 2023). In their study, Taniguchi et al. (2023) utilized ZooScan on
67 amphipod samples sorted with a stereomicroscope, enabling detailed assessments of population structure
68 in terms of both abundance and biovolume. For the dominant species, *Themisto pacifica*, they analyzed
69 growth and dynamics based on the equivalent spherical diameter (ESD). The advantages of ZooScan for
70 in-depth analysis of specific planktonic taxa are increasingly clear and could enhance our understanding of
71 marine biodiversity.

72 Copepods are the most dominant group in terms of both abundance and biomass within the
73 zooplankton community of the western subarctic Pacific (Ikeda, Shiga & Yamaguchi, 2008). The large-
74 sized copepod genus *Neocalanus* is particularly notable for its biomass, comprising three sympatric species:
75 *N. cristatus*, *N. flemingeri*, and *N. plumchrus* (Kobari & Ikeda, 2000). Identifying these three species
76 requires the use of a stereomicroscope, making it challenging to discern them from imaging data obtained
77 through other instruments. In addition to *Neocalanus*, *Metridia pacifica* and *Eucalanus bungii* are two
78 copepod species that also have significant biomass and large body sizes (Ikeda, Shiga & Yamaguchi, 2008).
79 The life cycles of these two species have been documented in the Oyashio region of the western North
80 Pacific subarctic (Padmavati, Ikeda & Yamaguchi, 2004; Shoden, Ikeda & Yamaguchi, 2005) and in the
81 Gulf of Alaska in the eastern North Pacific subarctic (Miller et al., 1984; Batchelder, 1985). However, these
82 studies relied on microscopic data gathered with a stereomicroscope, and no imaging analyses have been
83 conducted to explore the dynamics of these two species.

84 Imaging analysis of zooplankton offers several advantages, allowing researchers to
85 simultaneously gather not only abundance data but also information on size (equivalent spherical diameter,
86 ESD) and biovolume. When analyzing the entire zooplankton community, researchers can calculate a
87 Normalized Biovolume Size Spectrum (NBSS), with zooplankton size represented on the horizontal axis
88 and biovolume on the vertical axis. This analysis enables the evaluation of energy transport efficiency to
89 higher organisms, such as fish (Naito et al., 2019; Teraoka et al., 2022). For copepods, imaging analysis
90 can be performed on samples sorted by copepodite stage, allowing for the measurement of both ESD and
91 biovolume for each stage. Traditionally, the intermolt growth of copepodite stages has been assessed using
92 body length and dry weight (Mauchline, 1998). However, with the use of imaging equipment like ZooScan,
93 it is now possible to evaluate intermolt growth through ESD and biovolume. Understanding these
94 characteristics is increasingly important as imaging analysis becomes more widespread.

95 In this study, we conducted ZooScan measurements on formalin-preserved zooplankton samples
96 collected from vertical stratified sites at depths ranging from 0 to 1000 meters at Station K2 during four
97 consecutive seasons. We identified two large copepod species: *Metridia* spp. and *E. bungii*, based on the
98 images obtained. Our analysis focused on seasonal changes in the abundance and vertical distribution of
99 the biovolume of these species, as well as the size spectra measured in equivalent spherical diameter (ESD)
100 units. Additionally, we sorted *M. pacifica* and *E. bungii* from the formalin-preserved samples according to

101 each copepodite stage. ZooScan measurements were performed on each stage to assess intermolt growth,
102 analyzing the ESD and biovolume for each copepodite stage to evaluate growth characteristics related to
103 body size and biovolume.

104

105 Materials and Methods

106 Field sampling

107 On October 29, 2010, February 26, April 22, and July 3–4, 2011, we conducted day and night vertically
108 stratified oblique tows using a multi-stage open-close net system called IONESS (Intelligent Operative Net
109 Sampling System, SEA Co. Ltd.) with a mesh size of 335 μm and an opening area of 1.5 m^2 . The net was
110 divided into eight layers corresponding to depths of 0–50 m, 50–100 m, 100–150 m, 150–200 m, 200–300
111 m, 300–500 m, 500–750 m, and 750–1000 m, at Station K2 (47°N, 160°E; depth 5230 m) in the western
112 subarctic Pacific (see Table 1). The collected samples were immediately preserved on board the ship using
113 5% borax-buffered formalin in seawater. During each sampling period, environmental data, including water
114 temperature, salinity, dissolved oxygen concentration, and fluorescence, were measured with a CTD (SBE
115 911 plus; Sea-Bird Electronics Inc.).

116

117 ZooScan measurements

118 In the land laboratory, the zooplankton samples were divided into subsamples ranging from 1/2 to 1/128,
119 depending on the abundance of the zooplankton. Measurements were conducted using the ZooScan imaging
120 device (ZooScan MIII, Hydroptic Inc.), following the methodologies outlined by Gorsky et al. (2010).
121 Initially, the ZooScan scanning cell was filled with distilled water, and a background scan was performed.
122 Next, the zooplankton sample was poured into the scanning cell, and the sample was scanned. During the
123 scanning process, care was taken to adjust the sample's position using a dissection needle or other tools.
124 This was done to prevent the sample from floating on the water surface or to avoid overlap between multiple
125 individual organisms. The scanned images were then segmented into individual images using ZooProcess
126 in ImageJ software. Finally, these images were uploaded to EcoTaxa (<http://ecotaxa.obs-vlfr.fr/>) via
127 FileZilla to acquire species identification and equivalent spherical diameter (ESD, measured in mm) data
128 for each individual.

129

130 Data analysis

131 *Metridia* spp. and *E. bungii* dominate the copepod community in terms of both abundance and biomass,
132 and their distinct morphological features make them easy to identify from other species. The *Metridia* genus
133 includes *M. pacifica*, *M. okhotensis*, *M. asymmetrica*, and *M. curticauda* (Fig. 2). For each sample, we
134 calculated the abundance (individuals per cubic meter, ind. m^{-3}) and biovolume (cubic millimeters per cubic
135 meter, $\text{mm}^3 \text{ m}^{-3}$) of both species, as well as the equivalent spherical diameter (ESD), based on the aliquot
136 rate and filtered volume. These abundance and biovolume values were then multiplied by the net towing
137 depth (in meters) to determine the abundance (ind. m^{-2}) and biovolume ($\text{mm}^3 \text{ m}^{-2}$) per square meter,
138 providing estimates for each depth layer in the water column. To assess the standing stock (abundance
139 throughout the water column), we integrated the abundance (ind. m^{-2}) across all layers of the 0–1000 m
140 water column. The percentage of abundance at each layer was calculated as a proportion of the total standing
141 stock, allowing us to evaluate the vertical distribution of the population. We generated histograms in 0.1
142 mm ESD intervals to assess the population structure based on the standing stock values within the 0–1000
143 m water column. Additionally, the vertical distribution was analyzed by examining the percentage of each
144 depth layer in relation to the standing stock values across the 0–1000 m water column, again in 0.1 mm
145 ESD intervals.

146 For *M. pacifica* and *E. bungii* found in the IONESS samples, individuals were sorted by
147 copepodite stage from their most abundant samples. ZooScan measurements were then taken for each
148 copepodite stage. The mean and standard deviation of the equivalent spherical diameter (ESD) were
149 calculated for each stage. In contrast, for *M. okhotensis*, *M. asymmetrica*, and *M. curticauda*, ZooScan
150 measurements were conducted solely on adult females (C6F), and the mean and standard deviation of ESD
151 were also calculated for these species.

152

153 **Intermolt growth of body length and volume**

154 The intermolt growth percentage of body length (Equivalent Spherical Diameter, ESD, in mm) and
155 biovolume (in mm³ per individual) for each copepodite stage of *M. pacifica* and *E. bungii* was calculated
156 using the following formula (Mauchline, 1998):

$$157 \text{Increment (\%)} = 100 \times [(\text{Post-molt size} - \text{Pre-molt size}) / \text{Pre-molt size}]$$

158 Additionally, the proportion of growth at each copepodite stage was assessed for both body length (ESD)
159 and volume (biovolume), with the values for adult males and females set at 100% (Yamaguchi et al., 2020).

160

161 **Results**162 **Hydrological environments**

163 Figure 3 displays the vertical distributions of water temperature, salinity, dissolved oxygen, and
164 fluorescence for each sampling period. Throughout the study, water temperatures ranged from 0.7 to 8.5°C,
165 salinity varied between 32.5 and 34.5, dissolved oxygen concentrations ranged from 0.3 to 7.5 ml L⁻¹, and
166 fluorescence levels ranged from 0.02 to 2.32. A seasonal thermocline was observed at around 50 m in
167 October and June, while in February and April, the temperature remained nearly uniform down to 100 m.
168 Across all sampling periods, the water temperature exhibited a minimum of 1–2°C at depths of 100 m,
169 peaked at approximately 3.5°C around 200 m, and then declined with increasing depth below 200 m.
170 Salinity consistently increased with depth during all seasons, although it was uniform above 100 m in
171 February and April. In June and October, salinity remained low (below 33) at depths above 50 m. Dissolved
172 oxygen (DO) levels decreased with increasing depth; although some concentrations were measured down
173 to 200 m, they dropped to extremely low levels (below 2 ml L⁻¹) at depths greater than 200 m. Fluorescence
174 was predominantly high only above the thermocline during all seasons, with the peak value recorded in
175 June.

176

177 ***Metridia* spp.**

178 Figure 4 displays the day and night abundance (ind. m⁻²) and biovolume (mm³ m⁻²) of *Metridia* copepods,
179 along with their abundance distribution across eight layers in the 0–1000 m water column, categorized by a
180 0.1 mm ESD interval. Among the four *Metridia* species studied, *M. pacifica* was smaller, with an ESD
181 below 2 mm. In contrast, the other three *Metridia* species had an ESD greater than 2 mm (Fig. 4). During
182 the day, *M. pacifica* specimens, particularly the larger individuals, were found at greater depths. However,
183 they exhibited a distinct diel vertical migration, rising to the surface layer (0–50 m) at night across all four
184 seasons. In contrast, the remaining three larger *Metridia* species were predominantly located in the deepest
185 layer (750–1000 m) both day and night throughout all seasons. The abundance and biovolume of *Metridia*
186 spp. were observed to be low in February and April but peaked in July and October.

187

188 ***Eucalanus bungii***

189 Fig. 5 illustrates the abundance, biovolume, and vertical distribution composition of *E. bungii* during day
190 and night. Unlike *Metridia* spp., which includes multiple species, *E. bungii* consists of only a single species.
191 Consequently, the size of the cohorts in the ESD corresponds directly to each copepodite stage. There were
192 no diel variations in the vertical distribution of *E. bungii* observed in any season. However, a clear seasonal
193 shift in vertical distribution was noted. In October and February, *E. bungii* was found at depths of 200–500
194 meters both day and night. In contrast, during April, especially for the later copepodite stages, the
195 distribution became shallower, occurring in the 50–200 m layer both day and night. In July, the younger
196 copepodite stages, specifically those younger than C4, were located in the shallowest layer of 0–50 m both
197 day and night. The highest abundance of *E. bungii* was recorded in October, with the ESD indicating that
198 the developmental stages dominating this period were C5 and C6.

199

200 **Inter-molt growth**

201 The inter-molt growth of copepodite stages of *M. pacifica* and *E. bungii*, as measured by ESD and
202 biovolume, is illustrated in Fig. 6. For *M. pacifica*, the inter-molt growth in ESD ranged from 6.7% to

203 40.4%, while for *E. bungii*, it ranged from 6.2% to 48.2%. In contrast, the inter-molt growth based on
204 biovolume was observed to be between 21.1% and 177.8% for *M. pacifica* and between 18.5% and 223.5%
205 for *E. bungii*. Thus, it is evident that inter-molt growth based on biovolume was greatly higher than that
206 based on ESD. A notable observation for both species is that the inter-molt growth in the C5M/C6M stages
207 was considerably lower than in the C5F/C6F stages, regardless of whether measured by ESD or biovolume
208 (Fig. 6).

209 Figure 7 illustrates the percentage of each copepodite stage, with the equivalent ESD and
210 biovolume of adult females and males (C6F/M) of *M. pacifica* and *E. bungii* set as 100%. Clear differences
211 were observed based on the units of measurement (ESD vs. biovolume) and between sexes. Specifically,
212 regarding ESD, the percentage of C1 and earlier stages was the largest for both females and males across
213 the two species, indicating the importance of body length during early stages. Conversely, when considering
214 biovolume, females showed the highest percentage in the C5/C6 stages, while males exhibited the greatest
215 percentage in the C4/C5 stages. This highlights a significant difference between the sexes: in females, the
216 largest growth occurs at C5/C6 during the transition to adulthood, while in males, it occurs at C4/C5. These
217 differences in measurements (ESD versus biovolume) and between sexes were consistent across both
218 species.

219

220 **Discussion** 221 *Metridia* spp.

222 Studies conducted at depths of 1000 m or more in the subarctic Pacific and its marginal seas have reported
223 the presence of seven (Homma & Yamaguchi, 2010) or nine (Yamaguchi et al., 2002) species within the
224 genus *Metridia*. The most common species is *M. pacifica*, which ranks as the second most abundant species
225 among all calanoid copepods, following *Microcalanus pygmaeus* (Yamaguchi et al., 2002; Homma &
226 Yamaguchi, 2010). The life cycle of *M. pacifica* has been observed in various locations, including the Gulf
227 of Alaska in the eastern subarctic Pacific (Batchelder, 1985), Toyama Bay in the Japan Sea (Hirakawa &
228 Imamura, 1993), and the Oyashio region in the western subarctic Pacific (Padmavati, Ikeda & Yamaguchi,
229 2004). The number of generations per year varies by location: in Toyama Bay, only one generation is
230 produced annually (Hirakawa & Imamura, 1993), while two generations occur in the Oyashio region
231 (Padmavati, Ikeda & Yamaguchi, 2004), and three generations take place in the Gulf of Alaska. In this
232 study, collections occurred only four times over one year (Table 1), which made it challenging to analyze
233 the precise life cycle. However, during all four observational periods (October, February, April, and July),
234 *M. pacifica* populations exhibited clear diel vertical migration (DVM), ascending to the surface layer at
235 depths of 0–50 meters during the night (Fig. 4). Additionally, *M. pacifica* populations are known to undergo
236 a diapause period, during which they remain in deeper waters and do not migrate to the surface layer both
237 day and night in Toyama Bay and the Oyashio region (Hirakawa & Imamura, 1993; Padmavati, Ikeda &
238 Yamaguchi, 2004). Based on these observations, it is interpreted that *M. pacifica* in the western subarctic
239 Pacific, where this study was conducted, does not experience a diapause period. Its life cycle appears to
240 resemble that of the population in the Gulf of Alaska, which has repeat generations throughout the year
241 (Batchelder, 1985).

242 Various studies have indicated that the daytime vertical distribution of *M. pacifica* has shifted to
243 a deeper layer as the organisms develop (Hattori, 1989; Sato et al., 2011). In terms of the ontogenetic
244 changes that occur, wherein the daytime distribution depth increases as the copepodite stages progress,
245 Takahashi et al. (2009) observed seasonal variations in the daytime vertical distribution of *M. pacifica* and
246 *M. okhotensis* in the Oyashio region. They found that the daytime distribution depth of late copepodite
247 stages (C4–C6F), which occur at depths ranging from 100 to 400 m, is correlated with the depths of the
248 euphotic zone, which lies between 10 and 60 m at the surface. Takahashi et al. (2009) clarified that when
249 the euphotic zone is shallow—characterized by abundant surface phytoplankton that blocks light from
250 penetrating deeper—the distribution of late copepodite stages is also shallow. Conversely, when the
251 euphotic zone is deep, indicating a scarcity of surface phytoplankton and greater light penetration into the
252 deep sea, the distribution of late copepodite stages tends to be deeper. They posited that the deeper daytime
253 distribution of larger late copepodite stages is to avoid predation by visual predators, such as pelagic fish.

254 This study also observed that the increase in daytime distribution depth coincides with the later copepodite
255 stages of *M. pacifica* (Fig. 4).

256

257 ***Eucalanus bungii***

258 In studies conducted on pelagic copepods at depths of 1000 m or more in the subarctic Pacific and its
259 marginal seas, *Eucalanus bungii* is the only species from the genus *Eucalanus* identified in this region
260 (Yamaguchi et al., 2002; Homma & Yamaguchi, 2010). The size cohorts observed in ESD of *E. bungii*
261 correspond clearly to each copepodite stage, specifically stages C1–C6F/M (Fig. 5). However, from the C4
262 stage onward, *E. bungii* can be morphologically distinguished between females and males. Males possess
263 a small fifth leg, while females do not (Fig. 2b). Although the body size (ESD) of the C6F stage is notably
264 different from that of C6M, the ESD of females and males overlaps for the C4 and C5 stages (Fig. 5). This
265 overlap makes it challenging to confirm the presence or absence of the small fifth leg in images (Fig. 2b).
266 Additionally, the ESD of small adult C6M overlaps with that of C5F/M (Fig. 5). Considering these factors,
267 it becomes difficult to accurately identify the copepodite stage of *E. bungii* using ESD alone, particularly
268 for the later copepodite stages.

269 The life cycle of *E. bungii* has been reported in various regions, including the fjords of British
270 Columbia, Canada (Krause & Lewis, 1979), the Gulf of Alaska in the eastern subarctic Pacific (Miller et
271 al., 1984), and the Oyashio region in the western subarctic Pacific (Tsuda, Saito & Kasai, 2004; Shoden,
272 Ikeda & Yamaguchi, 2005). *E. bungii* experiences a deep-sea diapause period during several late copepodite
273 stages, with generation times reported as 1–2 years in the Oyashio region (Tsuda, Saito & Kasai, 2004;
274 Shoden, Ikeda & Yamaguchi, 2005) and 2–3 years in the Gulf of Alaska (Miller et al., 1984). In both
275 regions, the diapause period occurs from October to March of the following year, although there are regional
276 differences in the distribution depths during this period: 250–500 meters in the Gulf of Alaska (Miller et
277 al., 1984) and deeper than 500 meters in the Oyashio region (Shoden, Ikeda & Yamaguchi, 2005).

278 The vertical distribution of *E. bungii* observed in this study showed a concentration at depths of
279 200–500 meters both during the day and night in October and February. Individuals were rarely found
280 below 500 meters, with developmental stages C3 and later being dominant (Fig. 5). The vertical distribution
281 of these diapause individuals of *E. bungii* in the western subarctic Pacific is very similar to that of the
282 population in the Gulf of Alaska, as previously mentioned (Miller et al., 1984). This consistency aligns with
283 the characteristics of the life cycle of *M. pacifica* in the Gulf of Alaska. The vertical distribution of *E. bungii*
284 exhibited seasonal changes, particularly during the late copepodite stages. In April, individuals were found
285 at shallower depths of 50–200 meters both day and night (Fig. 5). This behavioral shift indicates that
286 individuals that were dormant in deeper waters begin to awaken and ascend to shallower layers during the
287 spring phytoplankton bloom period. This phenomenon has been documented in both the Gulf of Alaska
288 (Miller et al., 1984) and the Oyashio region (Yamaguchi et al., 2010a, 2010b). A short-term time series of
289 daily observations on zooplankton was conducted at one station in the Oyashio region from March to April
290 (Yamaguchi et al., 2010a). During this study, vertical stratified sampling was conducted five times over 9-
291 day intervals from depths of 0 to 1000 m (Yamaguchi et al., 2010b). It was noted that from March to April,
292 the gonads of *E. bungii* C6F began to develop, egg production commenced, and nauplii started to recruit
293 (Yamaguchi et al., 2010a). Initially, at the beginning of the study, all individuals were located at their
294 diapause depth during both day and night. However, by the second and third sampling periods, they had
295 migrated to the surface, showing no difference in vertical distribution between day and night. This upward
296 migration began first with the late copepodite stage, specifically C6F (Yamaguchi et al., 2010b). In April,
297 although the fluorescence values, which indicate phytoplankton abundance, were low, the population of *E.*
298 *bungii* had started to migrate upward to shallower layers during the late copepodite stage. This upward
299 movement was not observed during the dormant periods in October or February. This suggests that
300 copepods with a multi-year generation length, such as *E. bungii*, may possess an internal clock that prompts
301 them to awaken from dormancy at depth and triggers upward migration (cf. Mauchline, 1998).

302 In July of this study, all copepodite stages of *E. bungii* (C1–C6F) were present. The early
303 copepodite stages were found in the surface layer, ranging from 0 to 50 m, both during the day and at night
304 (Fig. 5). Adult males (C6M), nauplii, and the early copepodite stages C1 and C2 of *E. bungii* were observed

305 only during a limited seasonal window within a year. In contrast, the diapause developmental stages C3–
306 C6F were present year-round, which is consistent across all the marine areas examined in this study (Miller
307 et al., 1984; Tsuda, Saito & Kasai, 2004; Shoden, Ikeda & Yamaguchi, 2005). This study successfully
308 created a histogram of body length (ESD) for exclusively *E. bungii*, allowing for a clear distinction of the
309 population structure among the early developmental stages (C1–C4F/M) without overlap between the
310 stages. However, distinguishing between males and females in the later developmental stages (C5F/M–
311 C6F/M), and even stage C4, proved challenging. While it was evident that growth and the recruitment of
312 new generation recruits through reproduction occurred in July, evaluating the dynamics of the later
313 copepodite stages and understanding the life cycle, especially generation time, remained difficult using only
314 the image analysis data from ZooScan.

315

316 **Inter-molt growth of copepods**

317 Inter-molt growth in calanoid copepods has been extensively reviewed, highlighting data from 12 to 94
318 species at each copepodite stage (Mauchline, 1998). The findings indicate that the mean inter-molt growth
319 at each copepodite stage, when expressed in terms of body length (total length or prosome length), ranges
320 from 4.0% to 33.8%. In contrast, the mean inter-molt growth expressed in terms of body weight (either wet
321 weight or dry weight) varies from 10.3% to 94.0%. This suggests that the inter-molt growth relative to body
322 weight is greater than that relative to body length (Mauchline, 1998). In this study, inter-molt growth is
323 analyzed using equivalent spherical diameter (ESD) and biovolume. The results reveal that inter-molt
324 growth measured by ESD ranges from 6.2% to 48.2%, while inter-molt growth measured by biovolume
325 ranges from 18.5% to 223.5%. This indicates that inter-molt growth expressed by volume (which correlates
326 with body weight) is substantially larger than that represented by body length (ESD) (Fig. 6). The difference
327 in inter-molt growth is attributed to the fact that body length is a one-dimensional measure. In contrast,
328 volume and body weight are three-dimensional attributes (Mauchline, 1998).

329 It is important to note that the intermolt growth rates of the two copepod species examined in this
330 study are higher than those reported by Mauchline (1998). For example, the length-based growth rates in
331 Mauchline (1998) ranged from 4.0% to 33.8%, while this study found rates between 6.2% and 48.2%.
332 Similarly, the volume/weight-based growth rates reported by Mauchline (1998) were between 10.3% and
333 94.0%, compared to 18.5% to 223.5% in the current study. The differences in growth rates are likely due
334 to the copepod data collected in Mauchline (1998), which primarily involved small, coastal, and epipelagic
335 species with shorter generations. In contrast, the two copepod species studied here are larger, oceanic
336 species with longer generations. Indeed, previous research has reported extremely high maximum intermolt
337 growth rates based on body mass (either dry weight [DW] or ash-free dry weight [AFDW]) for large deep-
338 sea copepods that inhabit cold environments and have long generation lengths. For instance, growth rates
339 of 295% (Yamaguchi & Ikeda, 2000a), 339.6% (Koguchi et al., 2023), 358.8% (Yamaguchi et al., 2020),
340 418.6% (Yamaguchi & Ikeda, 2002), 498% (Yamaguchi & Ikeda, 2000b), 531% (Ikeda & Hirakawa, 1996),
341 and 683.2% (Yamaguchi et al., 2019) have been documented. These findings suggest that intermolt growth
342 in copepods varies significantly depending on their habitat. Small species with short generation lengths
343 living in warm coastal and surface waters exhibit limited intermolt growth, while larger species with longer
344 generation lengths in oceanic and deep-sea environments show substantial intermolt growth. In this context,
345 the results of this study align with the observation that *E. bungii*, which has a long generation length,
346 demonstrated greater intermolt growth than *M. pacifica*, which has a shorter generation length (Fig. 6).

347 A common characteristic observed in the inter-molt growth of both species, *M. pacifica* and *E.*
348 *bungii*, is a noticeable difference between the sexes as they grow to adulthood (C5/C6). Females tend to be
349 larger, while males are significantly smaller (see Figs. 6 and 7). In numerous calanoid copepod species,
350 adult males are typically smaller than adult females. Studies have reported that the mean inter-molt growth
351 based on body length at C5/C6 ranges from 23.0% to 23.1% for females and from 4.0% to 14.5% for males
352 (Mauchline, 1998). Research on the inter-molt growth of various deep-sea copepods commonly indicates
353 that females experience substantial growth to adulthood, while males show minimal growth. In some cases,
354 negative growth has been reported in C5M/C6M inter-molt growth based on dry weight (DW) or ash-free
355 dry weight (AFDW) (Yamaguchi & Ikeda, 2000a; Yamaguchi et al., 2020; Koguchi et al., 2023). Deep-sea

356 copepods, such as those from the family Aetideidae, that exhibit negative growth are believed to have
357 degenerated mandible teeth in C6M, rendering them unable to feed (Yamaguchi et al., 2005 and references
358 therein). Among the two copepod species studied, *M. pacifica* retains functional mandible teeth in C6M,
359 while *E. bungii* displays degeneration of these teeth in C6M (Hiiragi & Yamaguchi, 2019). Furthermore,
360 *M. pacifica* C6M, with its functional mandible teeth, shows a distinct sexual difference in diurnal vertical
361 distribution. While females (C6F) exhibit a clear diel vertical migration (DVM) and ascend to the surface
362 at night, males (C6M) remain in the deep layer throughout the day without ascending (Batchelder, 1985;
363 Hattori, 1989; Padmavati, Ikeda & Yamaguchi, 2004; Yamaguchi et al., 2004, 2010b; Sato et al., 2011).
364 The deep layer is believed to have limited food availability for *M. pacifica*, which feeds on particulates.
365 This reduced feeding environment for C6M, which remains in the deep layer all day, is likely poorer than
366 that of C6F, which migrates to the surface at night. This difference in feeding opportunities may explain
367 why the inter-molt growth of *M. pacifica* C5M/C6M is less than that of C5F/C6F, despite C6M having
368 functional mandible teeth.
369

370 Acknowledgements

371 We would like to express our heartfelt gratitude to Dr. Minoru Kitamura of the Japan Agency for Marine-
372 Earth Science and Technology (JAMSTEC) for collecting and providing the IONESS net samples used in
373 this study, as well as for his valuable suggestions. We also sincerely thank all the researchers involved in
374 the project, including Dr. Makio Honda of JAMSTEC, who served as the K2S1 research project leader. Our
375 thanks also go to the captain and crew of the JAMSTEC research vessel Mirai for their efforts in conducting
376 the offshore work. We also thank the World Association of Copepodologists for being a hub for PeerJ of
377 this manuscript.
378

379 Additional information and declarations

380 Funding

381 This work was partially supported by the Arctic Challenge for Sustainability II (ArCS II) Program (Grant
382 Number JPMXD1420318865), Grants-in-Aid for Challenging Research (JP20K20573 [Pioneering] to AY),
383 and Scientific Research (JP22H00374 [A] to AY) from the Japanese Society for the Promotion of Science
384 (JSPS).
385

386 Grant Disclosures

387 The following grant information was disclosed by the authors:
388 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
389 Japanese Society for the Promotion of Science (JSPS)
390

391 Competing Interests

392 The authors declare that they have no competing interests.
393

394 Author Contributions

395 Tian Gao conceived and designed the studies, performed the measurements, analyzed the data, prepared
396 figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
397 Atsushi Yamaguchi conceived and designed the studies, analyzed the data, authored or reviewed drafts of
398 the paper, and approved the final draft.
399

400 Data Availability

401 The following information was supplied regarding data availability:
402 The ZooScan data for the analysis are parameters reported in the figures.
403

404 Supplemental Information

405 Supplemental information for this article can be found online after acceptance.
406

407 **References**

408 **Aizawa M, Gao T, Yamaguchi A. 2023.** Seasonal changes in vertical distribution and population structure
409 of the dominant hydrozoan *Aglantha digitale* in the western subarctic Pacific. *Oceans* **4**(3):242–
410 252 DOI 10.3390/oceans4030017.

411 **Amei K, Dobashi R, Jimi N, Kitamura M, Yamaguchi A. 2021.** Vertical changes in abundance, biomass
412 and community structure of pelagic polychaetes down to 1000 m depths at Station K2 in the
413 western subarctic Pacific Ocean covering the four seasons and day–night. *Journal of Plankton
414 Research* **43**(3):442–457 DOI 10.1093/plankt/fbab031.

415 **Arima D, Yamaguchi A, Nobetsu T, Imai I. 2016.** Seasonal abundance, population structure, sex ratio
416 and gonad maturation of *Metridia okhotensis* Brodsky, 1950 in the Okhotsk Sea: Analysis of
417 samples collected by pumping up from deep water. *Crustaceana* **89**(2):151–161 DOI
418 10.1163/15685403-00003516.

419 **Batchelder HP. 1985.** Seasonal abundance, vertical distribution, and life history of *Metridia
420 pacifica* (Copepoda: Calanoida) in the oceanic subarctic Pacific. *Deep Sea Research Part A.
421 Oceanographic Research Papers* **32**(8):949–964 DOI 10.1016/0198-0149(85)90038-X.

422 **Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L, Romagnan J-B, Cawood A, Pesant
423 S, García-Comas C, Prejger F. 2010.** Digital zooplankton image analysis using the ZooScan
424 integrated system. *Journal of Plankton Research* **32**(3):285–303 DOI 10.1093/plankt/fbp124.

425 **Hattori H. 1989.** Bimodal vertical distribution and diel migration of the copepods *Metridia pacifica*, *M.
426 okhotensis*, and *Pleuromamma scutullata* in the western North Pacific Ocean. *Marine Biology*
427 **103**(1):39–50 DOI 10.1007/BF00391063.

428 **Hiragi M, Yamaguchi A. 2019.** Vertical distribution and population structure of large dominant planktonic
429 copepods down to greater depths in the Okhotsk Sea during early summer. *Bulletin of Fisheries
430 Sciences Hokkaido University* **69**(2):83–91 DOI 10.14943/bull.fish.69.2.83.

431 **Hirakawa K, Imamura A. 1993.** Seasonal abundance and life history of *Metridia pacifica* (Copepoda:
432 Calanoida) in Toyama Bay, southern Japan Sea. *Bulletin of Plankton Society of Japan* **40**(1):41–
433 54 <https://agriknowledge.affrc.go.jp/RN/2010511915.pdf>

434 **Homma T, Yamaguchi A. 2010.** Vertical changes in abundance, biomass and community structure of
435 copepods down to 3000 m in the southern Bering Sea. *Deep Sea Research Part I: Oceanographic
436 Research Papers* **57**(8):949–964 DOI 10.1016/j.dsr.2010.05.002.

437 **Honda MC, Wakita M, Matsumoto K, Fujiki T, Siswanto E, Sasaoka K, Kawakami H, Mino Y,
438 Sukigara C, Kitamura M, Sasai Y, Smith SL, Hashioka T, Yoshikawa C, Kimoto K,
439 Watanabe S, Kobari T, Nagata T, Hamasaki K, Kaneko R, Uchimiya M, Fukuda H, Abe O,
440 Saino T. 2017.** Comparison of carbon cycle between the western Pacific subarctic and subtropical
441 time-series stations: highlights of the K2S1 project. *Journal of Oceanography* **73**(5):647–667 DOI
442 /10.1007/s10872-017-0423-3.

443 **Ikeda T, Hirakawa K. 1996.** Early development and estimated life cycle of the mesopelagic
444 copepod *Pareuchaeta elongata* in the southern Japan Sea. *Marine Biology* **126**(2):261–270 DOI
445 10.1007/BF00347451.

446 **Ikeda T, Shiga N, Yamaguchi A. 2008.** Structure, biomass distribution and trophodynamics of the pelagic
447 ecosystem in the Oyashio region, western subarctic Pacific. *Journal of Oceanography* **64**(3):339–
448 354 DOI 10.1007/s10872-008-0027-z.

449 **Irisson J-O, Ayata S-D, Lindsay DJ, Karp-Boss L, Stemmann L. 2022.** Machine learning for the study
450 of plankton and marine snow from images. *Annual Review of Marine Science* **14**:277–301 DOI
451 10.1146/annurev-marine-041921-013023.

452 **Kitamura M, Kobari T, Honda MC, Matsumoto K, Sasaoka K, Nakamura R, Tanabe K. 2016.**
453 Seasonal changes in the mesozooplankton biomass and community structure in subarctic and
454 subtropical time-series stations in the western North Pacific. *Journal of Oceanography* **72**(5):387–
455 402 DOI 10.1007/s10872-015-0347-8.

456 **Kobari T, Ikeda T. 2000.** Life cycle of *Neocalanus* species in the Oyashio region. *Bulletin of the Plankton
457 Society of Japan* **47**(2):129–135. <https://agriknowledge.affrc.go.jp/RN/2010620369.pdf>

458 **Kobari T, Steinberg DK, Ueda A, Tsuda A, Silver MW, Kitamura M. 2008.** Impacts of ontogenetically
459 migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. *Deep-Sea
460 Research Part II: Topical Studies in Oceanography* **55**(14–15):1648–1660 DOI
461 10.1016/j.dsr2.2008.04.016.

462 **Koguchi Y, Tokuhiro K, Ashjian CJ, Campbell RG, Yamaguchi A. 2023.** Body length, dry and ash-
463 free dry weights, and developmental changes at each copepodid stage in five sympatric
464 mesopelagic aetideid copepods in the western Arctic Ocean. *Crustaceana* **96**(2):113–129 DOI
465 10.1163/15685403-bja10272.

466 **Krause EP, Lewis AG. 1979.** Ontogenetic migration and the distribution of *Eucalanus bungii* (Copepoda;
467 Calanoida) in British Columbia inlets. *Canadian Journal of Zoology* **57**(11):2211–2222 DOI
468 10.1139/z79-288.

469 **Mauchline J. 1998.** The biology of calanoid copepods. *Advances in Marine Biology* **33**:1–710 DOI
470 10.1086/393440.

471 **Miller CB, Frost BW, Batchelder HP, Clemons MJ, Conway RE. 1984.** Life histories of large, grazing
472 copepods in a subarctic ocean gyre: *Neocalanus plumchrus*, *Neocalanus cristatus*, and *Eucalanus
473 bungii* in the Northeast Pacific. *Progress in Oceanography* **13**(2):201–243 DOI 10.1016/0079-
474 6611(84)90009-0.

475 **Naito A, Abe Y, Matsuno K, Nishizawa B, Kanna N, Sugiyama S, Yamaguchi A. 2019.** Surface
476 zooplankton size and taxonomic composition in Bowdoin Fjord, north-western Greenland: A
477 comparison of ZooScan, OPC, and microscopic analyses. *Polar Science* **19**:120–129 DOI
478 10.1016/j.polar.2019.01.001.

479 **Nakamura Y, Zhang H, Yamaguchi A. 2023.** Vertical distribution, community and population structures
480 of the planktonic Chaetognatha in the western subarctic Pacific: Insights on the *Eukrohnia* species
481 group. *Oceans*, **4**(3):253–268 DOI 10.3390/oceans4030018.

482 **Padmavati G, Ikeda T, Yamaguchi A. 2004.** Life cycle, population structure and vertical distribution
483 of *Metridia* spp. (Copepoda: Calanoida) in the Oyashio region (NW Pacific Ocean). *Marine
484 Ecology Progress Series* **27**0:181–198 DOI 10.3354/meps270181.

485 **Sato K, Yamaguchi A, Ueno H, Ikeda T. 2011.** Vertical segregation within four grazing copepods in the
486 Oyashio region during early spring. *Journal of Plankton Research* **33**(8):1230–1238 DOI
487 10.1093/plankt/fbr018.

488 **Shoden S, Ikeda T, Yamaguchi A. 2005.** Vertical distribution, population structure and life cycle of
489 *Eucalanus bungii* (Copepoda: Calanoida) in the Oyashio region, with notes on its regional
490 variations. *Marine Biology* **146**(3):497–511 DOI 10.1007/s00227-004-1450-3.

491 **Steinberg DK, Cope JS, Wilson SE, Kobari T. 2008a.** A comparison of mesopelagic mesozooplankton
492 community structure in the subtropical and subarctic North Pacific Ocean. *Deep Sea Research
493 Part II: Topical Studies in Oceanography* **55**(14–15):1615–1635 10.1016/j.dsr2.2008.04.025.

494 **Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. 2008b.** Bacterial vs.
495 zooplankton control of sinking particle flux in the ocean's twilight zone. *Limnology and
496 Oceanography* **53**(4):1327–1338 DOI 10.4319/lo.2008.53.4.1327.

497 **Takahashi K, Kuwata A, Sugisaki H, Uchikawa K, Saito H. 2009.** Downward carbon transport by diel
498 vertical migration of the copepods *Metridia pacifica* and *Metridia okhotensis* in the Oyashio region
499 of the western subarctic Pacific Ocean. *Deep Sea Research Part I: Oceanographic Research
500 Papers* **56**(10):1777–1791 DOI 10.1016/j.dsr.2009.05.006.

501 **Taniguchi R, Amei K, Tokuhiro K, Yamada Y, Kitamura M, Yamaguchi A. 2023.** Diel, seasonal and
502 vertical changes in the pelagic amphipod communities in the subarctic Pacific: Insights from
503 imaging analysis. *Journal of Plankton Research* **45**(3):554–570 DOI 10.1093/plankt/fbad017.

504 **Teraoka T, Amei K, Fukai Y, Matsuno K, Onishi H, Ooki A, Takatsu T, Yamaguchi A. 2022.** Seasonal
505 changes in taxonomic, size composition, and Normalized Biomass Size Spectra (NBSS) of
506 mesozooplankton communities in Funka Bay, southwestern Hokkaido: Insights from ZooScan
507 analysis. *Plankton and Benthos Research* **17**(4):369–382 DOI 10.3800/pbr.17.369.

508 **Tsuda A, Saito H, Kasai H. 2004.** Life histories of *Eucalanus bungii* and *Neocalanus
509 cristatus* (Copepoda: Calanoida) in the western subarctic Pacific Ocean. *Fisheries Oceanography*
510 **13**(Suppl.1):10–20 DOI 10.1111/j.1365-2419.2004.00315.x.

511 **Yamaguchi A, Ikeda T. 2000a.** Vertical distribution, life cycle, and developmental characteristics of the
512 mesopelagic calanoid copepod *Gaidius variabilis* (Aetideidae) in the Oyashio region, western
513 North Pacific Ocean. *Marine Biology* **137**(1):99–109 DOI 10.1007/s002270000316.

514 **Yamaguchi A, Ikeda T. 2000b.** Vertical distribution, life cycle and body allometry of two oceanic calanoid
515 copepods (*Pleuromamma scutullata* and *Heterorhabdus tanneri*) in the Oyashio region, western
516 North Pacific Ocean. *Journal of Plankton Research* **22**(1):29–46 DOI 10.1093/plankt/22.1.29.

517 **Yamaguchi A, Ikeda T. 2002.** Reproductive and developmental characteristics of three mesopelagic
518 *Paraeuchaeta* species (Copepoda: Calanoida) in the Oyashio region, western subarctic Pacific
519 Ocean. *Bulletin of Fisheries Sciences Hokkaido University* **53**(1):11–21.
520 <http://hdl.handle.net/2115/21959>

521 **Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Furusawa K, Suzuki S, Ishizaka J, Ikeda T,**
522 **Takahashi M. 2002.** Community and trophic structures of pelagic copepods down to greater
523 depths in the western subarctic Pacific (WEST-COSMIC). *Deep Sea Research Part I: Oceanographic Research Papers* **49**(6), 1007–1025 DOI 10.1016/S0967-0637(02)00008-0.

525 **Yamaguchi A, Ikeda T, Watanabe Y, Ishizaka J. 2004.** Vertical distribution patterns of pelagic copepods
526 as viewed from the predation pressure hypothesis. *Zoological Studies* **43**(2):475–485.
527 <https://zoolstud.sinica.edu.tw/Journals/43.2/475.pdf>

528 **Yamaguchi A, Tachibana S, Hirakawa K, Ikeda T. 2005.** Descriptions of the copepodid stages of the
529 mesopelagic copepod, *Gaetanus variabilis* (Brodsky, 1950) (Calanoida, Aetideidae) from the
530 Japan Sea. *Crustaceana* **78**(7):819–837 DOI 10.1163/156854005774445447.

531 **Yamaguchi A, Onishi Y, Omata A, Kawai M, Kaneda M, Ikeda T. 2010a.** Population structure, egg
532 production and gut content pigment of large grazing copepods during the spring phytoplankton
533 bloom in the Oyashio region. *Deep Sea Research Part II: Topical Studies in Oceanography* **57**(17–
534 18):1679–1690 DOI 10.1016/j.dsr2.2010.03.012.

535 **Yamaguchi A, Onishi Y, Kawai M, Omata A, Kaneda M, Ikeda T. 2010b.** Diel and ontogenetic
536 variations in vertical distributions of large grazing copepods during the spring phytoplankton
537 bloom in the Oyashio region. *Deep Sea Research Part II: Topical Studies in Oceanography* **57**(17–
538 18):1691–1702 DOI 10.1016/j.dsr2.2010.03.013.

539 **Yamaguchi A, Ashjian CJ, Campbell RG, Abe Y. 2019.** Ontogenetic vertical migration of the
540 mesopelagic carnivorous copepod *Paraeuchaeta* spp. is related to their increase in body
541 mass. *Journal of Plankton Research* **41**(5):791–797 DOI 10.1093/plankt/fbz051.

542 **Yamaguchi A, Ashjian CJ, Campbell RG, Abe Y. 2020.** Vertical distribution, population structure and
543 developmental characteristics of the less studied but globally distributed mesopelagic
544 copepod *Scaphocalanus magnus* in the western Arctic Ocean. *Journal of Plankton Research*
545 **42**(3):368–377 DOI 10.1093/plankt/fbaa021.

546 **Yokoi N, Abe Y, Kitamura M, Honda MC, Yamaguchi A. 2018.** Comparisons between POC and
547 zooplankton swimmer flux from sediment traps in the subarctic and subtropical North
548 Pacific. *Deep Sea Research Part I: Oceanographic Research Papers* **133**:19–26 DOI
549 10.1016/j.dsr.2018.01.003.

Table 1(on next page)

Sampling data at St. K2 in the western subarctic Pacific during October 2010 to July 2021.

All the samples were collected from eight discrete depths between 0 and 1000 m (0-50, 50-100, 100-150, 150-200, 200-300, 300-500, 500-750, 750-1000 m) by oblique tow of IONESS.

1

Table 1. Sampling data at St. K2 in the western subarctic Pacific during October 2010 to July 2021. All the samples were collected from eight discrete depths between 0 and 1000 m (0–50, 50–100, 100–150, 150–200, 200–300, 300–500, 500–750, 750–1000 m) by oblique tow of IONESS.

Sampling date	Local time	D/N
29 Oct. 2010	12:09–13:52	D
29 Oct. 2010	22:09–23:38	N
26 Feb. 2011	12:35–14:41	D
26 Feb. 2011	22:01–23:44	N
22 Apr. 2011	21:59–23:56	N
22 Apr. 2011	12:45–14:37	D
3 July 2011	12:05–13:55	D
3/4 July 2011	22:51–0:55	N

2

Figure 1

Figure 1. Location of the sampling station (K2) in the western subarctic Pacific gyre.

Arrows represent approximate positions and directions of the currents (cf. Yasuda, 2003).

EKC: East Kamchatka Current, OY: Oyashio , KE: Kuroshio Extension, TC: Tsushima Warm Current, SAF: Subarctic Front, SAB: Subarctic Boundary, KBF: Kuroshio Bifurcation Front, OSMW: Okhotsk Sea Mode Water, DSW: Dense Shelf Water, OSMW: Okhotsk Sea Mode Water.

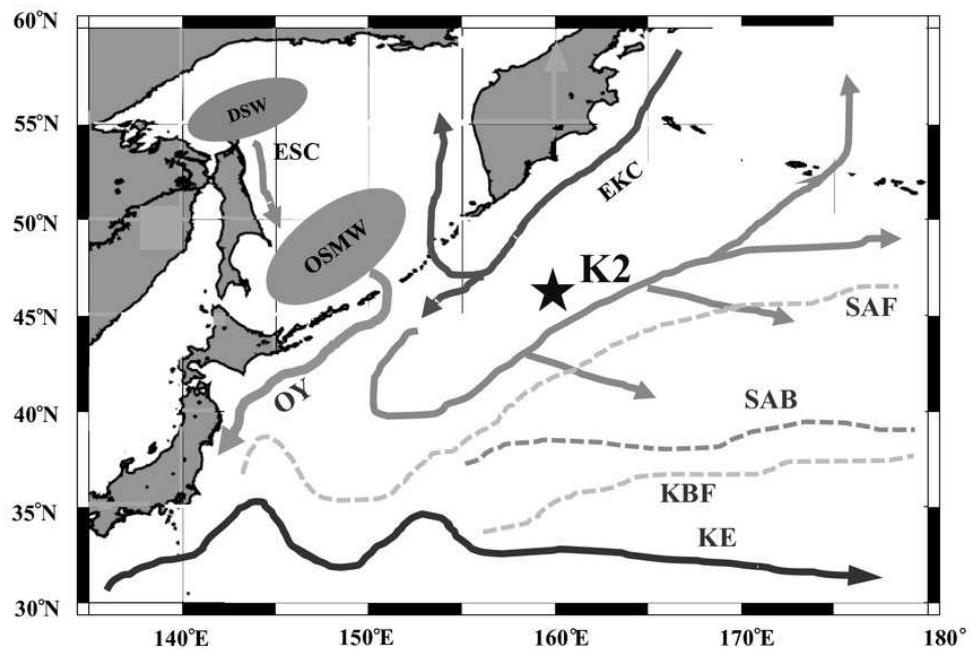


Figure 1. Location of the sampling station (K2) in the western subarctic Pacific gyre. Arrows represent approximate positions and directions of the currents (cf. Yasuda, 2003). EKC: East Kamchatka Current, OY: Oyashio, KE: Kuroshio Extension, TC: Tsushima Warm Current, SAF: Subarctic Front, SAB: Subarctic Boundary, KBF: Kuroshio Bifurcation Front, OSMW: Okhotsk Sea Mode Water, DSW: Dense Shelf Water, OSMW: Okhotsk Sea Mode Water.

Figure 2

Figure 2. ZooScan images of two treated general / species in this study: *Metridia* spp. (a) and *Eucalanus bungii* (b).

All copepodite stages were captured for *M. pacifica* and *E. bungii*. Note that scale bars are varied between (a) and (b). F: female, M: male.

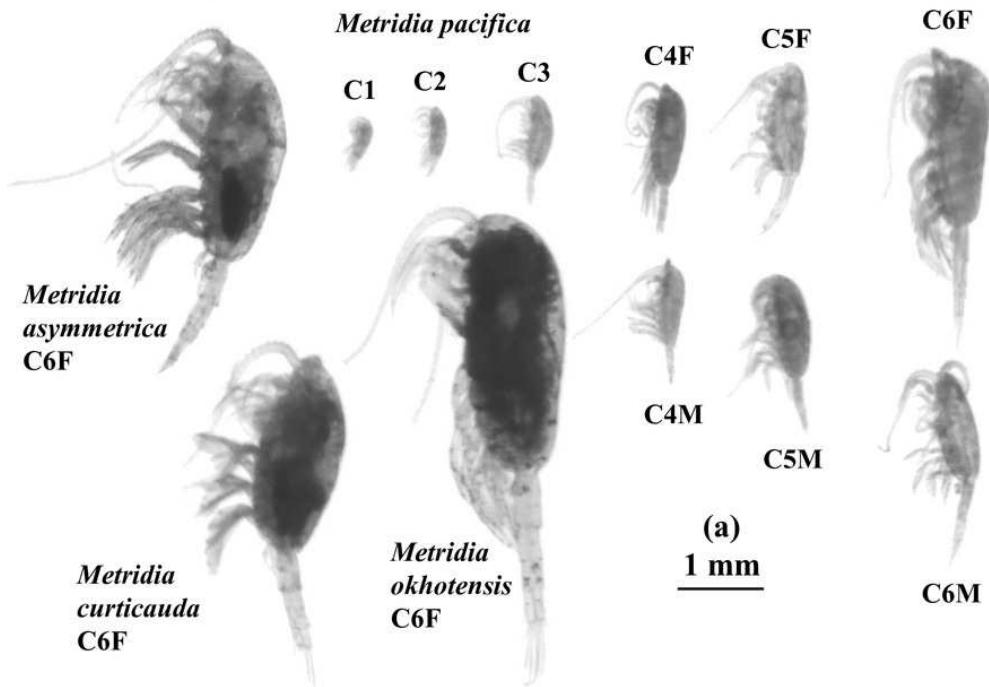
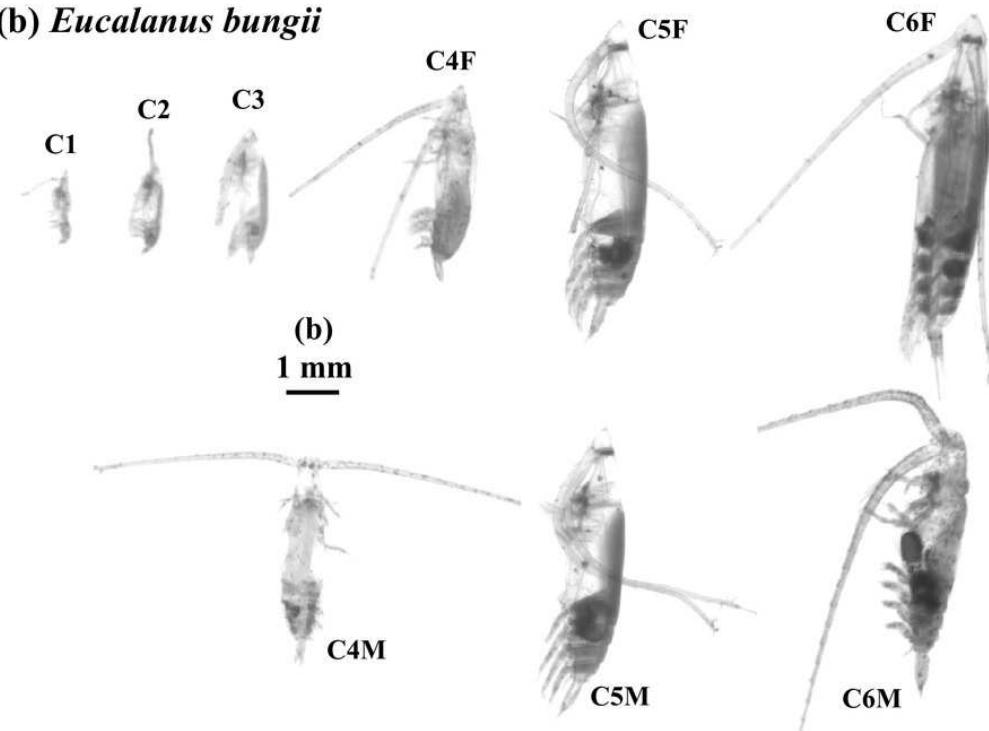


(a) *Metridia* spp.**(b) *Eucalanus bungii***

Figure 2. ZooScan images of two treated general/species in this study: *Metridia* spp. (a) and *Eucalanus bungii* (b). All copepodite stages were captured for *M. pacifica* and *E. bungii*. Note that scale bars are varied between (a) and (b). F: female, M: male.

Figure 3

Figure 3. Vertical changes in temperature (T), salinity (S), dissolved oxygen (O_2) and fluorescence (F) at St. K2 in the western subarctic Pacific from October 2010 to June 2011.

Circled numbers in the right column indicate the depth strata of the zooplankton sampling.

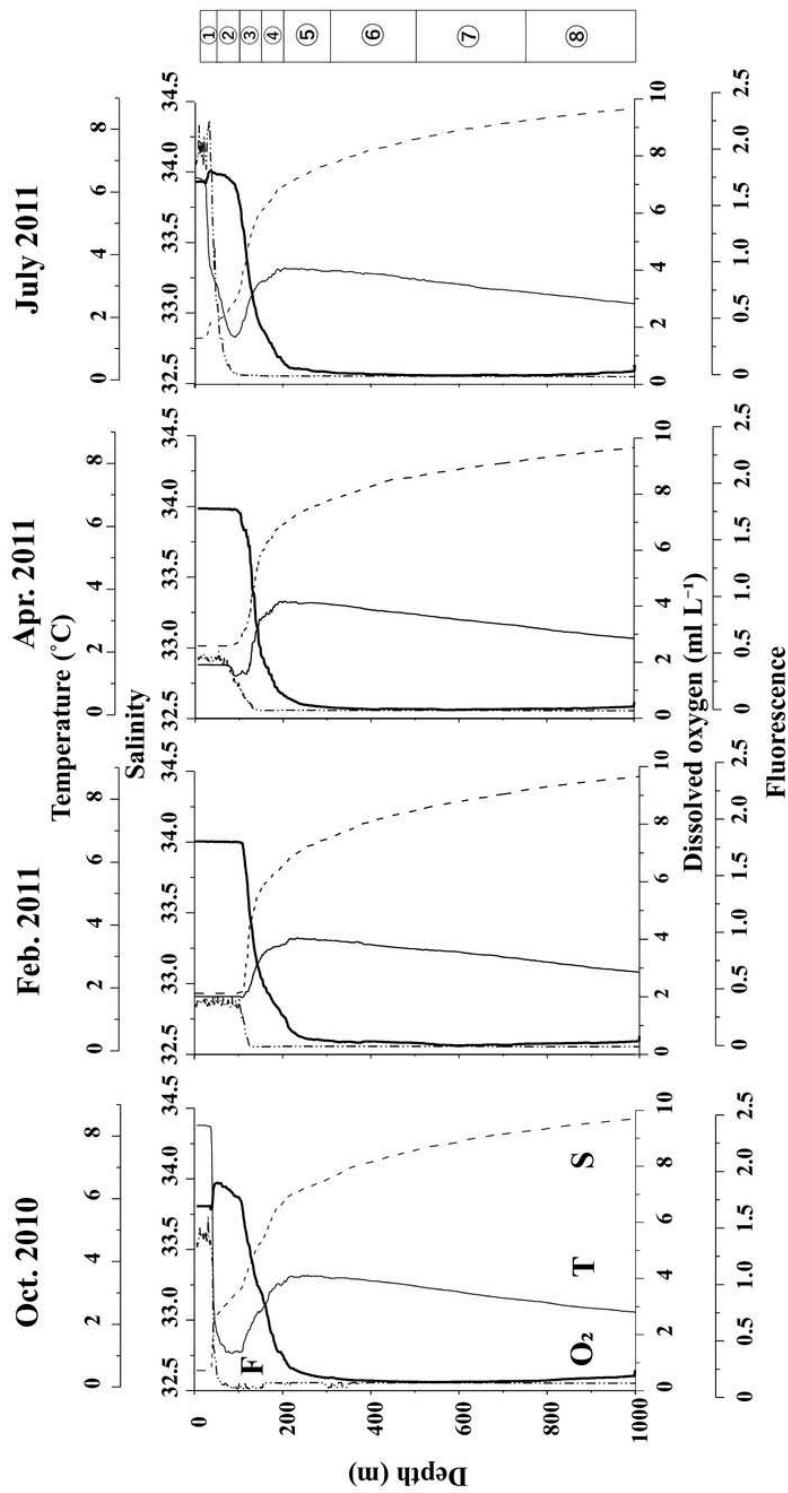


Figure 3. Vertical changes in temperature (T), salinity (S), dissolved oxygen (O₂) and fluorescence (F) at St. K2 in the western subarctic Pacific from October 2010 to June 2011. Circled numbers in the right column indicate the depth strata of the zooplankton sampling.

Figure 4

Figure 4. *Metridia* spp.: Abundance (ind. m⁻²), biovolume (mm³ m⁻²), and their vertical distribution composition (%) at eight discrete depths along with the equivalent spherical diameter (ESD) at station K2 in the western subarctic Pacific

For the bottom panel, the mean (symbol) and standard deviation (bar) of the ESD of each stage *Metridia pacifica* and adult female of other *Metridia* species are shown for reference. M. pacifica (Mp), M. okhotensis (Mo), M. asymmetrida (Ma), and M. curticauda (Mc). F: female, M: male.

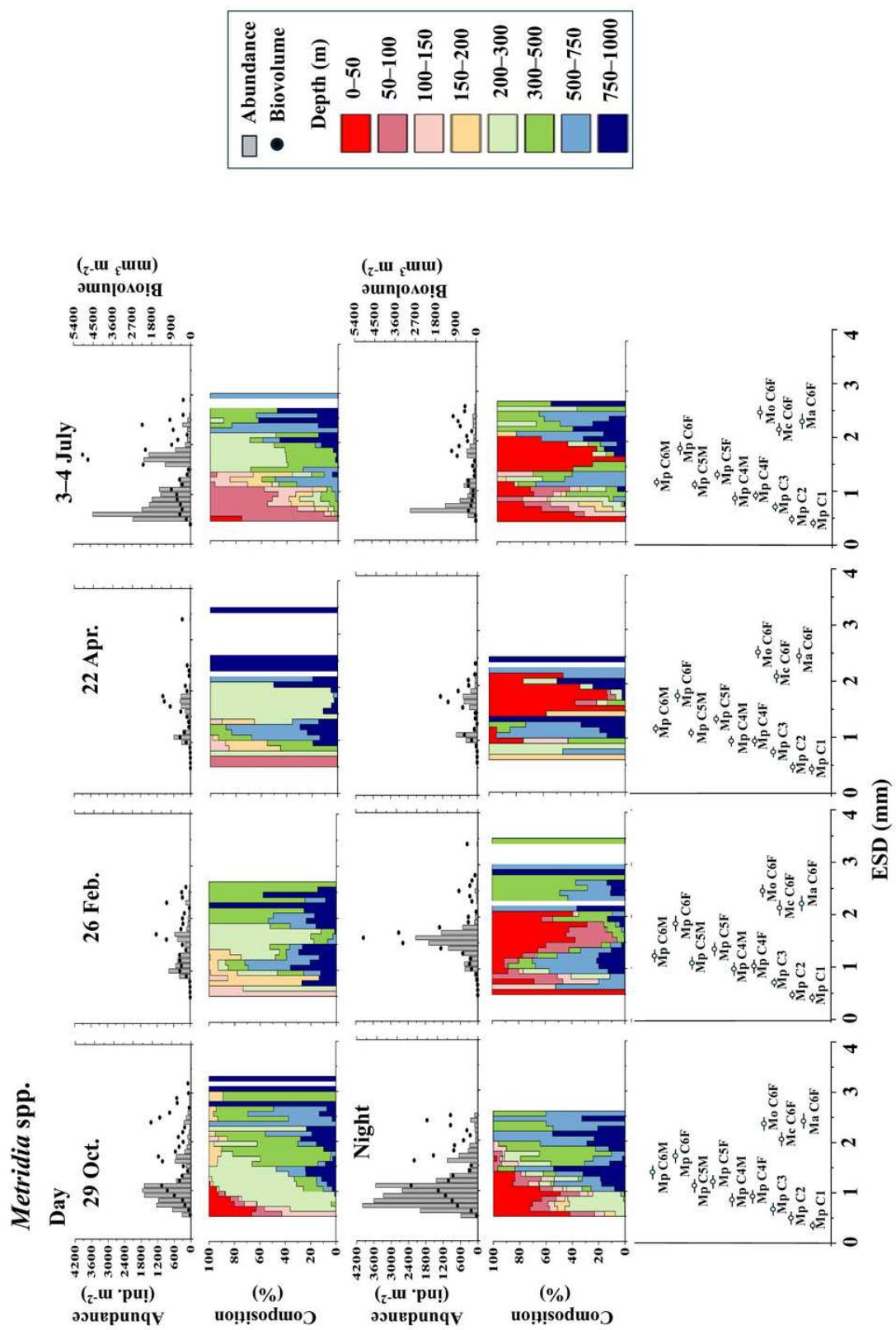


Figure 4. *Metridia* spp.: Abundance (ind. m^{-2}), biovolume ($mm^3 m^{-2}$), and their vertical distribution composition (%) at eight discrete depths along with the equivalent spherical diameter (ESD) at station K2 in the western subarctic Pacific during day (upper) and night (lower) of the four sampling dates: 29 October 2010, 26 February, 22 April, and 3-4 July 2011. For the bottom panel, the mean (symbol) and standard deviation (bar) of the ESD of each stage *Metridia pacifica* and adult female of other *Metridia* species are shown for reference. *M. pacifica* (Mp), *M. ohotensis* (Mo), *M. okhotensis* (Mo), *M. curricula* (Ma), and *M. asymmetrida* (Mc). F: female, M: male.

Figure 5

Figure 5. *Eucalanus bungii* : Abundance (ind. m⁻²), biovolume (mm³ m⁻²), and their vertical distribution composition (%) at eight discrete depths along with the equivalent spherical diameter (ESD) at station K2 in the western subarctic P

For the bottom panel, the mean (symbol) and standard deviation (bar) of the ESD of each copepodite stage of *E. bungii* are shown. F: female, M: male.

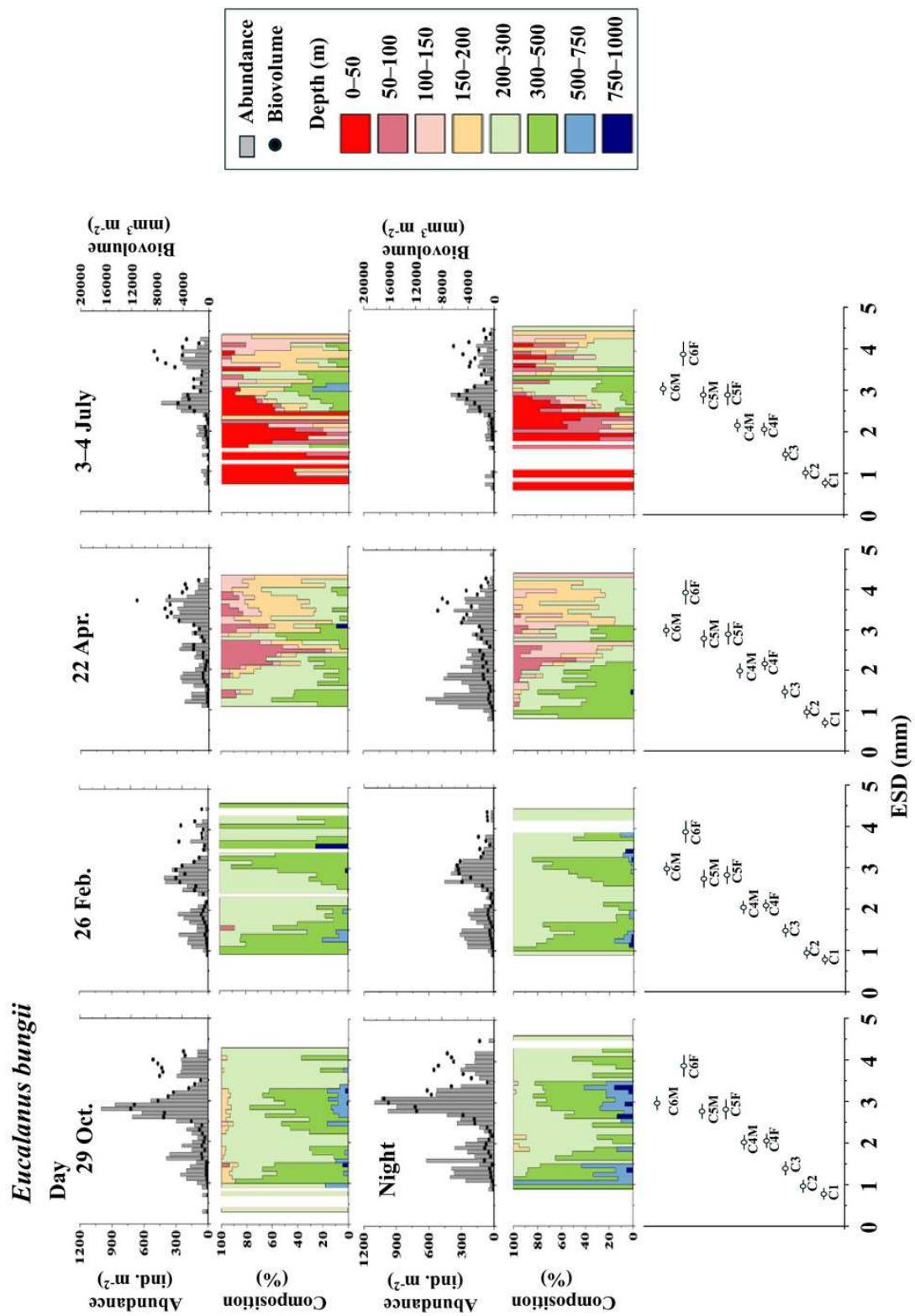


Figure 5. *Eucalanus bungii*: Abundance (ind. m⁻²), biovolume (mm³ m⁻²), and their vertical distribution composition (%) at eight discrete depths along with the equivalent spherical diameter (ESD) at station K2 in the western subarctic Pacific during day (upper) and night (lower) of the four sampling dates: 29 October 2010, 26 February, 22 April, and 3-4 July 2011. For the bottom panel, the mean (symbol) and standard deviation (bar) of the ESD of each copepodite stage of *E. bungii* are shown. F: female, M: male.

Figure 6

Figure 6. Molt increment in terms of the equivalent spherical diameter (ESD, mm) and biovolume (mm³ ind⁻¹) of *Metridia pacifica* (a) and *Eucalanus bungii* (b) at station K2 in the western subarctic Pacific.

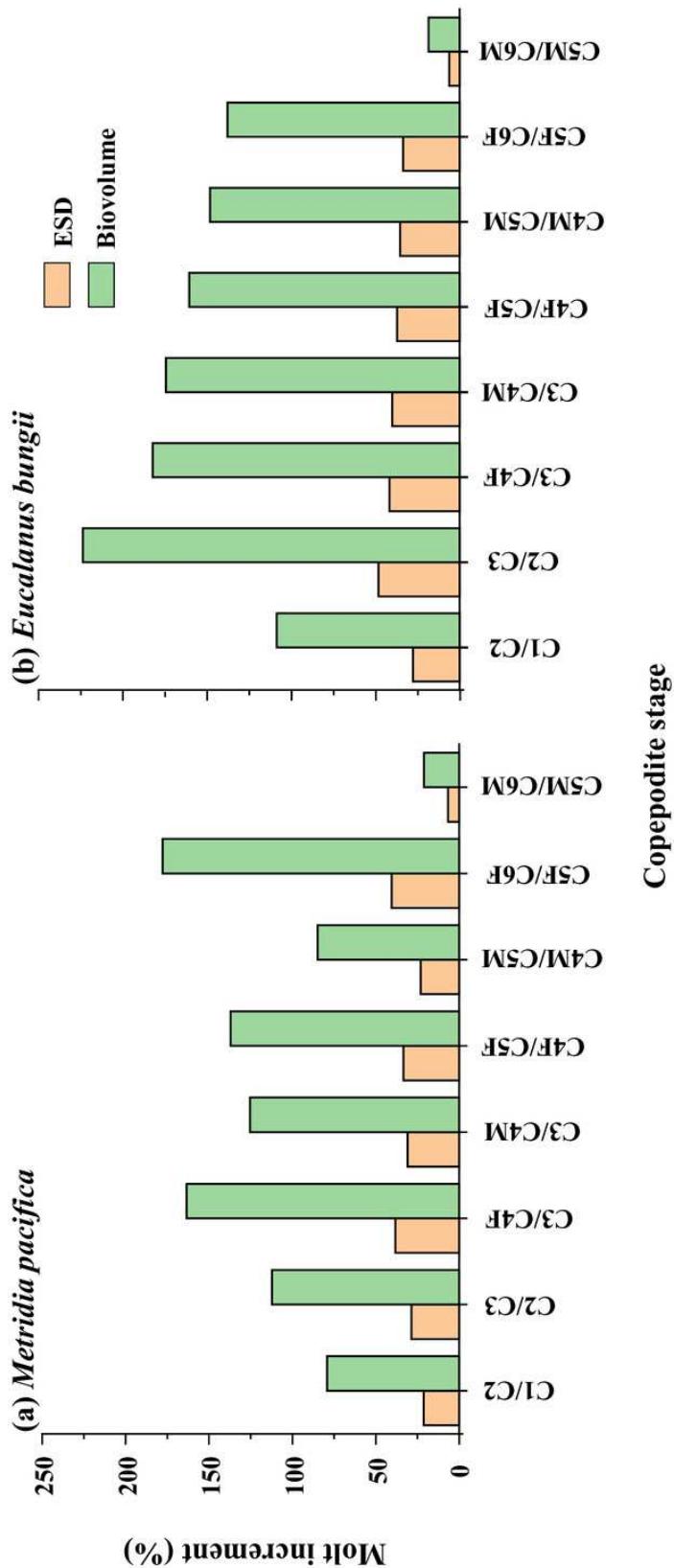


Figure 6. Molt increment in terms of the equivalent spherical diameter (ESD, mm) and biovolume ($\text{mm}^3 \text{ ind}^{-1}$) of *Metridia pacifica* (a) and *Eucalanus bungii* (b) at station K2 in the western subarctic Pacific.

Figure 7

Figure 7. Proportion of growth at each stage molt in terms of the equivalent spherical diameter (ESD, mm) and biovolume (mm³ ind. ⁻¹) of *Metridia pacifica* (a) and *Eucalanus bungii* (b) at station K2 in the western subarctic Pacif

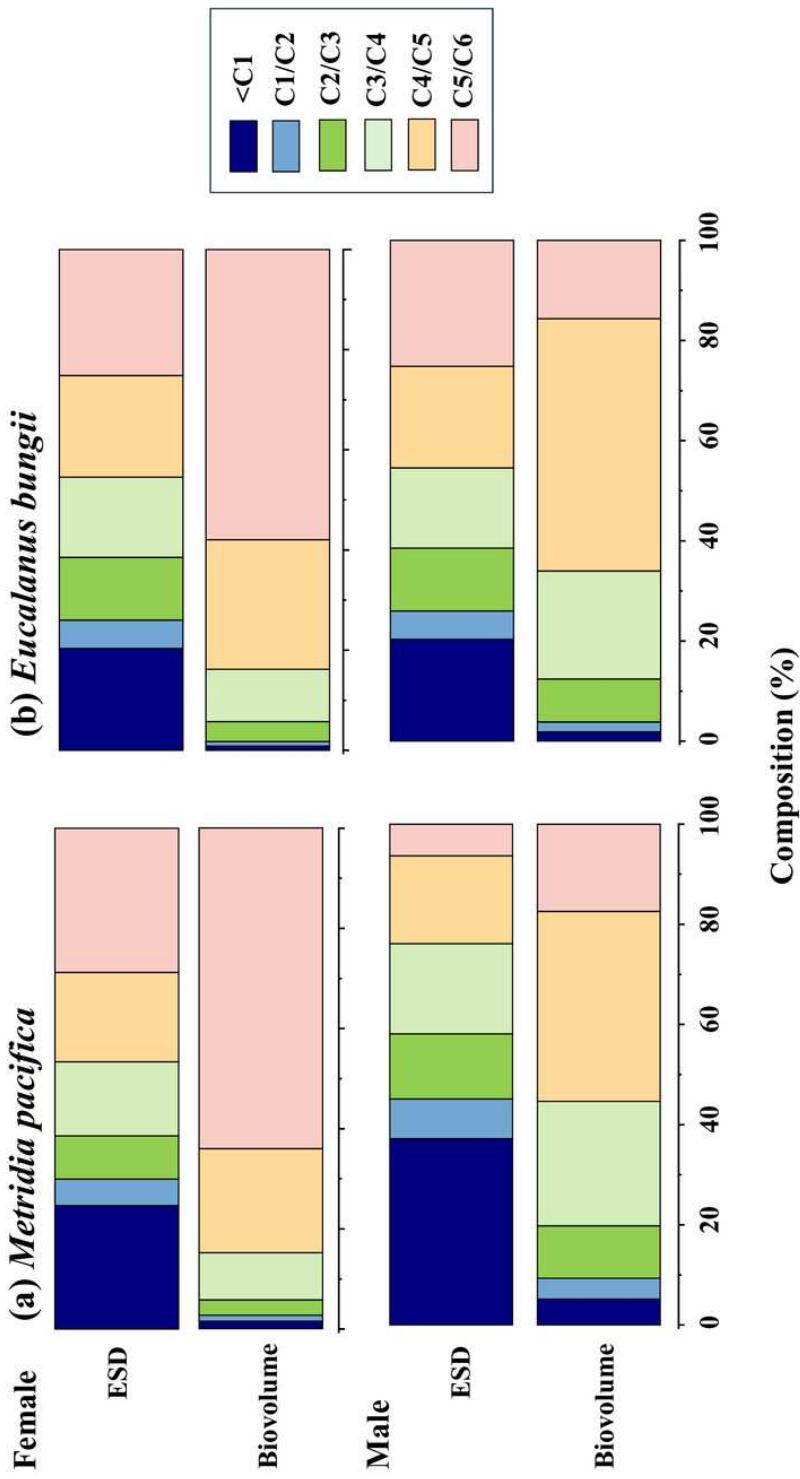


Figure 7. Proportion of growth at each stage molt in terms of the equivalent spherical diameter (ESD, mm) and biovolume (mm³ ind.⁻¹) of *Metridia pacifica* (a) and *Eucalanus bungii* (b) at station K2 in the western subarctic Pacific.