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ABSTRACT
Background. Oral squamous cell carcinoma (OSCC) is one of the most frequent types
of head and neck tumor. Keratinocytes play a crucial part in tumor cell growth but their
role in OSCC remains unknown.
Methods. We obtained single-cell RNA sequencing (scRNA-seq) data and bulk RNA
sequencing data of OSCC from the Gene Expression Omnibus (GEO) database and
utilized the Seurat package for quality control, downscaling, and clustering of the
scRNA-seq data. The CellChat package was utilized to develop a ligand-receptor
network of keratinocytes. Subsequently, high-dimensional weighted gene co-expression
network analysis (hdWGCNA) and differential expression analysis were employed to
identify keratinocyte-related gene modules and obtain hub genes. The predictive value
of the hub genes was assessed by constructing a diagnostic model, and the CIBERSORT
and ESTIMATE algorithms were utilized to analyze the correlation between immune
infiltration and the diagnostic model. Finally, the mRNA expressions of the screened
genes were measured, and their effects on the proliferation, migration, and invasion
ability of OSCC cells were explored using in vitro models.
Results. We identified eight major cellular subpopulations including T cells and
keratinocytes. Cellular communication revealed that keratinocytes may have close
mutual communication with macrophages, fibroblasts, and endothelial cells. The
hdWGCNA screening classified nine keratinocyte-related modules and 50 hub genes
were extracted, among them KRT6B, KRT16, CSTB, and CSTA were identified as
differentially expressed keratinocyte-related genes. A nomogram was developed, and
KRT16, CSTA, and CSTB were determined as highly effective genes for the diagnosis
of OSCC. Immune infiltration analysis revealed that StromalScore, ImmuneScore and
ESTIMATEScore, were negatively linked to CSTA and CSTB but positively correlated
with KRT16. Finally, in vitro experiments showed that the viability, migration, and
invasion of OSCC cells were markedly suppressed after knockdown of KRT16.
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Conclusion. Our study provided novel biomarkers targeting keratinocytes for the
treatment of OSCC.

Subjects Biochemistry, Cell Biology, Genetics
Keywords High-dimensional weighted correlation network analysis, Oral squamous cell
carcinoma, Keratinocyte, Immune characterization, Biomarkers

INTRODUCTION
Oral squamous cell carcinoma (OSCC) is a frequently detected malignancy in the oral
and maxillofacial region (Mu et al., 2023; Ru & Zheng, 2024; Zhang et al., 2024). The 5-year
overall survival (OS) rate for OSCC patients remains below 50% in the past 20 years
(Warnakulasuriya, 2009; Panzarella et al., 2014). Study showed that a poor prognosis
of OSCC is largely caused by the aggressive metastatic potential of the cancer, which
encourages OSCC cells to move to distant organs such as the lungs (SHahinas & Hysi,
2018; Dong, Zhang & Chang, 2023). Though current therapeutic strategies, for instance,
surgery, radiation therapy, and chemotherapy are the main treatments for OSCC, patients
still face unfavorable survival and a high risk of recurrence (Scully & Bagan, 2009). While
recent studies have provided several diagnostic markers for OSCC (Qi & Tang, 2024; Yue
& Yao, 2023; Liu, Wang & Li, 2022), the identification of more effective markers is still of
critical importance for the diagnosis and prognostic improvement of OSCC.

Abnormal keratinization, nuclear division, and cell multinucleation are morphological
abnormalities that enable the malignant transformation of epithelial cells during the
development of OSCC (Foki et al., 2020; Luo et al., 2018). Typical keratinization process
of keratinocytes is different from these aberrant alterations. For example, OSCC is
characterized by poor keratinization, heterogeneous proliferation, large nuclei, and
increased chromatin. These pathohistological features can be observed under a microscope
because cancer cells show irregular shapes, size variations, and abnormal nucleoplasm
proportion (Liu et al., 2024). A study has reported that aberrant keratinocyte proliferation
and differentiation are closely linked to OSCC progression (Nguyen et al., 2022). Abnormal
proliferation and differentiation of cells not only alter the shape and function of the cells, but
also confer tumor cells with malignant features. Thus, discovering keratinocyte biomarkers
in OSCC is crucial for understanding the tumor pathophysiology, development of specific
treatment plans, and prognostic prediction. The technique of single-cell RNA sequencing
(scRNA-seq) has allowed researchers to clarify tumor complexity and heterogeneity at
the single-cell level (Kurten et al., 2021), in particularly, OSCC has been widely studied
with scRNA-seq analysis (Wang et al., 2024). The intricate interactions between stromal
cells, epithelial cells, and immune cells in the tumor microenvironment (TME) can also
be thoroughly investigated by the scRNA-seq analysis (Li et al., 2023; Wang et al., 2021b).
Moreover, scRNA-seq analysis also contribute to developmental biology by enabling
comprehensive characterization of cellular heterogeneity and their corresponding gene
expression.
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In this research, we defined distinct keratinocyte subpopulations in OSCC using scRNA-
seq data and performed comprehensive characterization of keratinocytes by computational
analysis. Our goal was to reveal the molecular features of keratinocytes in OSCC, identify
potential prognostic markers and therapeutic targets for OSCC, hoping to improve the
clinical treatment of OSCC.

METHODS
Data sources
The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) dataset was
accessed to obtain the scRNA-seq data, clinical information, and survival information
of 12 OSCC samples (GSE215403). In addition, the dataset of OSCC microarray data
(GSE30784) was also downloaded and screened to obtain bulk RNA-seq data of 45 normal
oral tissue samples and 167 OSCC tissue samples.

Processing and analysis of the scRNA-seq data of OSCC
Quality control and cell filtering of the scRNA-seq data of OSCC were conducted using
the ‘‘Seurat’’ package (Butler et al., 2018). A total of 31,776 cells were retained after
eliminating those with 200 to 6,000 expressed genes and more than 10% mitochondrial
content. After normalizing and scaling the raw data using the SCTransform function,
principal component analysis (PCA) was performed (Bahudian & Valdovinos, 2025). The
‘‘harmony’’ package (Korsunsky et al., 2019) was employed to remove the batch effect
amongst various samples, followed by conducting uniform manifold approximation and
projection (UMAP) for dimensionality reduction using the RunUMAP function. Next,
we built a K nearest neighbors (KNN) network based on the Euclidean distance with the
top 50 principal components employing the FindNeighbors function. The cells were then
clustered into subpopulations by the FindCluster function at the resolution of 0.05. The
intercellular communication of keratinocyte subpopulations mediated by ligand–receptor
pairs was analyzed using the R package ‘‘CellChat’’(Efremova et al., 2020), with ‘‘Cell-Cell
Contact’’ as the interaction type. Finally, the results were visualized into bubble plots.

Analysis of specific high-expressed genes and functional annotation
between cellular subpopulations
The FindAllMarkers tool (parameters: ‘‘logfc.threshold = 0.30, min.pct = 0.30, only.pos
= T’’) was applied to screen specifically high-expressed genes (significance threshold
of p< 0.05) from various subpopulations as cellular markers. Functional annotation of
differentially expressed genes (DEGs) was performed using the package ‘‘CusterProfiler’’
(Yu et al., 2012).

High-dimensional weighted gene co-expression network analysis
screening of keratinocyte-related genes
According to the characteristics in scRNA-seq data, high-dimensional weighted gene
co-expression network analysis (hdWGCNA) can be employed to explore particular gene
expression patterns involved in various biological processes (Langfelder & Horvath, 2008)
and build co-expression networks across several cellular and spatial hierarchical scales
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(Morabito et al., 2023). Here, we used the hdWGCNA to read single-cell transcriptome
rds data to develop the co-expression network of keratinocytes under the optimal soft
threshold of eight. The modules related to keratinocytes were sectioned by calculating the
connectivity of the modules, and the key genes within each module were selected based on
their connectivity to the modules for further study.

Identification of DEGs
DEGs between the normal and OSCC tissue samples in the GSE30784 dataset were filtered
using the ‘‘limma’’ package (Ritchie et al., 2015) under the criteria of |log2FC| ≥ 1 and
padj < 0.01. Then, genes present in intersection between the selected modular genes and
the DEGs were considered as differentially expressed keratinocyte-related hub genes.

Construction of a gene diagnostic model
We first tested the diagnostic potential of the hub genes using the R package ‘‘multipleROC’’
(Cook, 2008). Subsequently, the R package ‘‘rms’’ was used to construct a diagnostic model
for predicting the risk of OSCC, and a nomogram was drawn (Iasonos et al., 2008). The
discriminative performance of the model was compared based on the receiver operating
characteristic (ROC) and area under the ROC curve (AUC). The accuracy and efficiency
of the model were validated by plotting calibration curves with the ‘‘caret’’ package, and
decision curve analysis (DCA) (Gerds, Andersen & Kattan, 2014) was conducted utilizing
the ‘‘rmda’’ R package.

Immune infiltration analysis
The official CIBERSORT website (https://cibersortx.stanford.edu/) was accessed to source
the expression data of 22 types of common immune infiltrating cells (LM22), and the level
of immune cell infiltration between OSCC samples and control samples in the GSE30784
dataset was calculated using the ‘‘CIBERSORT’’ R package (Newman et al., 2015). Rank-
sum test was applied to determine significant immune infiltration differences (p< 0.05)
between the two types of samples, while Spearman’s correlation coefficient (p< 0.05)
was used to calculate the relationship between immune cell infiltration and crucial genes.
Using the R language’s ‘‘estimate’’ package (Yoshihara et al., 2013), immune infiltration
in the GSE30784 dataset was examined and the results were displayed as corresponding
scores. The correlation between the pivotal genes and ESTIMATEScore, StromalScore, and
ImmuneScore was analyzed according to the Spearman’s correlation coefficient, and the
rank-sum test was employed to determine whether the immune scores were significantly
different between the two types of samples (p< 0.05).

Cell culture and plasmid transfection
Human normal oral keratinocytes (HOK; CP2610) were ordered from ScienCell Research
Laboratories (Carlsbad, CA,USA). HumanOSCC cells (HSC-3; JCRB0623) were purchased
from the Japanese Collection of Research Bioresources (JCRB, Osaka, Japan). Human oral
squamous carcinoma cells (WSU-HN30; STM-CL-5612) were purchased from Stemmer
Biotechnology Co (Shanghai, China). DMEM medium (Gibco, Thermo Fisher Scientific
Inc., Waltham, MA, USA) supplemented with 1% penicillin-streptomycin (15140122;
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Table 1 Primer sequences applied in this study.

Gene Forward primer Revers primer

KRT16 5′CTACCTGAGGAAGAACCACGAG 3′ 5′CTCGTACTGGTCACGCATCTCA 3′

CSTA 5′AAACTCAAGTTGTTGCTGGAACAAA 3′ 5′TTTGTCAACCTGGTATCCAGTAAG 3′

CSTB 5′CGTGTCATTCAAGAGCCAGGTG 3′ 5′GCTTGGCTTTGTTGGTCTGGTAG 3′

GAPDH 5′GTCTCCTCTGACTTCAACAGCG 3′ 5′ACCACCCTGTTGCTGTAGCCAA 3′

Gibco) and 10% fetal bovine serum (FBS; 10099141C, Gibco) was utilized for cell culture
in an incubator with 5% CO2 at 37 ◦C. The cells were identified by Short Tandem Repeat
(STR) analysis, and the results of mycoplasma detection for these cells were negative.

According to the instruction of Lipo3000 Liposome Transfection Reagent (L3000-001;
Thermo Fisher Scientific Inc.), WSU-HN30 and HSC-3 cells (2 × 104 cells/well) in the
logarithmic growth phase were transfected with KRT16 knockdown plasmid (si-KRT16,
sequence: 5’AACAGCGAACTGGTACAGAGC 3’) and control plasmid (si-NC), which
were purchased from GenePharma (Shanghai, China).

RNA extraction and quantitative real-time polymerase chain reaction
Total RNA was extracted from HOK, WSU-HN30, and HSC-3 cells using the RNA
Extraction Kit (TRIzol, 15596026; Invitrogen, Carlsbad, CA, USA), following the protocols.
The purity and concentration of the total RNA were determined, and cDNA template was
generated using theHiScript II First-strand cDNASynthesis kit (R211-01; Vazyme,Nanjing,
China) (Zhang et al., 2023). The quantitative real-time polymerase chain reaction (qRT-
PCR) was conducted using specific primers and the KAPA SYBR® FAST kit (KK4600;
Sigma Aldrich, Burlington, MA, USA). The data were calculated using the 2−11CT method
with GAPDH as the internal control. See Table 1 for the primer sequences of the specific
genes.

Cell viability
According to the protocol, CCK-8 (CK04; Dojindo, Tokyo, Japan) was performed to
assess the effect of KRT16 on the viability of WSU-HN30 and HSC-3 cells. Briefly, the
cells (5 × 103 cells/well) were grown in 96-well microtiter plates for 24, 48, and 72 hours
(h). After washing the cells twice with phosphate-buffered saline (PBS), 100 µL of fresh
medium and CCK-8 solution (10 µL) was added to each well for 3-h incubation at 37 ◦C
with 5% CO2. Absorbance (at 450 nm) was measured in a SPECTROstar® Nano (BMG
LABTECH GmbH, Ortenberg, Germany) (Ma et al., 2023).

Cell migration assay
For wound healing assay, the transfected cells were inoculated into 6-well plates
(5 × 105 cells/well) and 2 ml of cell suspension was added for incubation in an incubator
at 37 ◦C with 5% CO2. When the cells adhered to the wall, the monolayer was wounded
with a 10 µL plastic pipette tip to form a uniform scratch. PBS was used for washing
the monolayers, which were then incubated in medium without FBS. The wound edge
distances between the two edges of the migrating cell sheet were photographed at 0 h and
48 h. All the experiments were conducted in triplicate.
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Cell invasion assay
WSU-HN30 and HSC-3 cell suspensions (5 × 105 cells/well) were prepared in serum-free
medium. Then, 100 µL of cell suspension was supplemented to the upper Transwell
chamber (Corning, Corning, NY, USA) pre-coated with Martigel (30 µg/well; BD, San
Jose, CA, USA), while the lower chamber contained 600 µL of DMEM medium and
10% FBS. The migrated cells were fixed by 4% paraformaldehyde and colored by crystal
violet solution. The cells in the lower chamber were counted under a microscope from six
different fields of view.

Cell apoptosis assay
For the flow cytometry assay, the cells were rinsed in phosphate buffered saline and
suspended using 1× binding buffer provided by the assay kit (C1062S, Beyotime, China)
to adjust to the concentration of 1 × 106 cells/mL. 100 µL cell suspension was then taken
and added with the working solution of Annexin V-FITC and propidium iodide (5 µL)
for a 10-minute mixture reaction in the dark at ambient temperature. The apoptosis was
finally tested in a flow cytometer (BD, USA).

Statistical analysis
GraphPad Prism 8 (GraphPad Software, San Diego, CA, USA) and R software version
3.6.0 (R Foundation, Vienna, Austria) were utilized in all statistical analyses. Data were
presented as mean ± standard deviation and analyzed using the Student t -test or two-way
ANOVA followed by Bonferroni correction for post hoc multiple comparisons. A p< 0.05
stood for statistically significant difference.

RESULT
Identification of cell subtypes in OSCC
We obtained a total of 12 cell clusters after processing the scRNA-seq data of OSCC
using the ‘‘Seurat’’ package (Fig. 1A), and eight major cell subpopulations were identified,
namely, T cells, keratinocytes, macrophages, B cells, fibroblasts, plasma cells, endothelial
cells, and mast cells (Fig. 1B). Subsequently, cell type annotation was performed using
the CellMarker2.0 database to identify representative markers for T cells (CCL5, GNLY,
and GZMA), keratinocytes (KRT17, KRT14, and S100A8), macrophages (LYZ, C1QB,
and C1QA), B cells (CD37, CD79A, and MS4A1), fibroblasts (DCN and LUM ), plasma
cells (IGHG1 and IGHG4), endothelial cells (VWF and PECAM1), and mast cells (TPSB2
and CPA3). The normalized expression levels of these marker genes were displayed as
bubble plots (Fig. 1C). Keratinization of the oral mucosal epithelium has been reported to
affect the immune response, and immune checkpoint-associated factors are low-expressed
in OSCC of keratinized epithelial origin (Kitsukawa et al., 2024). To further explore
the potential impact of keratinocytes on OSCC, we performed enrichment analysis on
specifically high-expressed genes of the keratinocyte subpopulation. It was found that these
genes were significantly enriched in establishment of protein localization to endoplasmic
reticulum entries, translational initiation, signal-recognition particle (SRP)-dependent
cotranslational protein targeting to membrane, and endoplasmic reticulum-targeted
protein (Fig. 1D, p< 0.05).
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Figure 1 Annotation and identification of key cell subtypes in OSCC. (A) Distribution of different sam-
ples after de-batching. (B) UMAP visualization of the distribution of different cell types. (C) Expression
levels of different cell marker genes. (D) Functional enrichment analysis of keratinocyte-specific highly ex-
pressed genes.

Full-size DOI: 10.7717/peerj.19953/fig-1

Cellular communication between keratinocytes and other cells
in OSCC
The reciprocal receptor–ligand pair communication network between keratinocytes and
other cell subtypes in OSCC was explored employing CellChat analysis, which showed that
keratinocytes communicated with other cellular subtypes. The ligand–receptor information
for each cluster was extracted, andwe discovered that endothelial cells affected keratinocytes
through SELE-CD44 and APP-CD74, fibroblasts affected keratinocytes through APP-
CD74, and macrophages affected keratinocytes through HLA-DRB5-CD4 (Fig. 2). These
results indicated that keratinocytes and cell subpopulations had a high level of reciprocal
communication.
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Figure 2 Bubble plot demonstrating the ligand-receptor pairs of cellular regulation of keratinocyte.
Full-size DOI: 10.7717/peerj.19953/fig-2

Keratinocyte-related modules screened by hdWGCNA
To develop a co-expression network, a soft threshold power of β = 8 was found to achieve
an optimal network connectivity when the scale-free topology fit reached 0.90 (Fig. 3A).
Additionally, ninemodules (Keratinocyte-M1 toKeratinocyte-M9)were identified (Fig. 3B)
by calculating the expression of module eigengenes and module connectivity. The top 10
core genes of each module were selected based on the connectivity of the characterized
genes (Fig. 3C).
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Figure 3 HdWGCNA analysis of OSCC-associated keratinocytes. (A) Soft threshold screening to obtain
the optimal soft threshold value of 10. (B) In a co-expression network tree, the upper half is the gene tree,
each branch refers to a gene, and the lower half is the module corresponding to the gene. (C) In module
division, the vertical coordinate is the kME value, which represents the connectivity of each gene based on
the feature gene, and the right side is the hub gene of the module.

Full-size DOI: 10.7717/peerj.19953/fig-3

Subsequently, we calculated the expression of genes in each module in different cells.
Notably, the genes in the M3 and M5 modules showed high levels of activation mainly in
keratinocytes (Fig. 4A), therefore these two modules were regarded as the key modules.
Then, correlation analysis that M6 was negatively correlated with the M3 and M5, while
strong positive correlations were observed between the M3, M4, M7, and M9 as well as
between the M1, M6, and M8 (Fig. 4B). Then, co-expression network for the two modules
weremapped using their top 25 hub genes (Figs. 4C–4D), with the 10most highly connected
genes in the inner circle as key genes and 15 genes in the outer circle as secondary key
genes.

DEG analysis and screening of signature genes between OSCC and
control samples
The ‘‘limma’’ package screened 1573 DEGs (789 upregulated genes and 784 downregulated
genes) between OSCC and control samples (Fig. 5A). Next, the intersection of the hub
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Figure 4 HdWGCNAmarks the construction of a keratinocyte co-expression network associated with
OSCC. (A) Expression of genes within the module on different cells, red color represents high expression,
blue color represents low expression, and the size of the circle indicates the proportion of cells. (B) Mod-
ule correlation matrix. Where green color indicates a negative correlation, while purple color reflects a
positive relation between gene modules. The circle size reflects the strength of the correlation. (C) Mod-
ule Keratinocyte-M3 hub gene co-expression network. (D) In the module Keratinocyte-M5 hub gene co-
expression network, the inner circle is the key gene and the outer circle is the minor key gene.

Full-size DOI: 10.7717/peerj.19953/fig-4

genes of the two key modules and the DEGs contained four genes (KRT6B, KRT16, CSTB,
and CSTA), which were considered as differentially expressed keratinocyte-related genes
(Fig. 5B). The expression heatmap of the four genes showed that KRT6B and KRT16
were high-expressed in OSCC samples, while CSTB and CSTA genes were low-expressed
(Fig. 5C). A diagnostic model for OSCC was developed using the four genes, and the model
reliability was assessed according to the ROC curves and AUC. It was found that the AUC
of KRT6B, KRT16, CSTB, and CSTA reached an AUC of 0.791, 0.917, 0.95, and 0.902,
respectively (Fig. 5D), with KRT16, CSTA, and CSTB showing an AUC greater than 0.9.
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Figure 5 Screening of OSCC-characterized genes. (A) Volcano plot demonstrating the differentially ex-
pressed genes; gray represents non-differentially regulated genes, blue represents differentially downregu-
lated genes, and red represents differentially upregulated genes. (B) Upset plot for differentially expressed
genes as well as hdWGCNA module hub gene; the left bar is the number of each subset of genes, and the
top bar is the number of each intersecting gene. (C) Heatmap of the expression of the four intersecting
genes; blue color represents low expression and red color represents high expression. (D) ROC curves of
the four genes.

Full-size DOI: 10.7717/peerj.19953/fig-5

This indicated a strong diagnostic value of the three genes in OSCC, and these genes were
employed in subsequent analysis.

Diagnostic model construction
To further improve the risk prediction forOSCCpatients, we build a nomogram combining
the expression of the three genes (Fig. 6A). The model showed that CSTB had the greatest
impact on OSCC prognosis, followed by KRT16, while CSTA had limited impact on the
prediction of the OS. Next, the ROC curve showed that the AUC of the model was 0.996
(Fig. 6B), implying that the diagnostic model was highly reliable. The calibration curve
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Figure 6 Nomogram construction for predicting the prognosis of OSCC patients. (A) Nomogram with
three biomarker expressions in the center the score corresponding to the expression at the top, and the
risk probability at the bottom by calculating the total score ratio. (B) ROC curve of the nomogram. (C)
The correction curve of the nomogram. (D) Decision curve of the nomogram.

Full-size DOI: 10.7717/peerj.19953/fig-6

demonstrated that the calibration curve was close to the standard one, which suggested that
the nomogram had strong prediction performance (Fig. 6C). In addition, the reliability of
the model was tested utilizing the DCA decision curve. It can be observed that the gain of
the nomogram was notably higher than the gain of other individual genes, suggesting a
strong predictive ability of our model (Fig. 6D).

Correlation of the three characterized genes with immune infiltration
Immune cell infiltration differences between OSCC samples and control samples in the
GSE30784 dataset were compared. The results of CIBERSORT showed that the infiltration
of most immune cell types was notably different between the two types of samples. In
particular, cells such as macrophages M1 (M1), macrophages M0 (M0), and mast cells
activated had higher levels of infiltration in OSCC patients than in control samples, while
B cells memory, T cells CD8, immune cells such as macrophages M2 (M2), and mast cells
resting had lower levels of infiltration (Fig. 7A). Subsequently, we calculated the correlation
between the expression of the characterized genes and the immune cell infiltration scores.
As shown in Fig. 7B, the expressions of the characterized genes were linked to the infiltration
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of a majority of immune cells. Specifically, the expression of CSTA and CSTBwas positively
linked to the infiltration scores of B cells memory, T cells CD8, M2, dendritic cells resting,
and mast cells resting (p< 0.01) but negatively correlated (p< 0.001) with the infiltration
of cells such as M0, M1, and mast cells activated. In contrast, the expression of KRT16
was positively associated with the infiltration scores of mast cells activated, M0, and M1
(p< 0.01) but negatively associated with the infiltration scores of B cells memory and T
cells CD8 (p< 0.001). Immune microenvironment differences between OSCC samples
and control samples were also compared. ESTIMATE analysis revealed that StromalScore,
ImmuneScore, and ESTIMATEScore were all significantly higher in OSCC samples than
in control samples (p< 0.001), indicating a higher level of immune cell infiltration in
the OSCC samples (Fig. 7C). We also found that the expression of CSTA and CSTB
was negatively correlated with StromalScore, ImmuneScore, and ESTIMATEScore in
OSCC (p< 0.001), while KRT16 expression was positively linked to ESTIMATEScore and
StromalScore (Fig. 7D, p< 0.05). These results indicated that the characterized genes may
be closely associated with immune cell infiltration in OSCC.

Downregulation of KRT16 suppressed the migratory and invasive
abilities of OSCC cells
The mRNA expressions of three key genes in HOK, WSU-HN30 and HSC-3 cells were
detected by performing qRT-PCR. The results demonstrated that the expression of KRT16
was significantly upregulated in WSU-HN30 and HSC-3 cells than in HOK cells, while
the expression of CSTA and CSTB was significantly lower in WSU-HN30 and HSC-3 cells
than in HOK cells (Fig. 8A). As we have confirmed a high diagnostic value of KRT16
and the potential role of its overexpression in the malignant progression of OSCC, we
prioritized KRT16 for functional validation. After the knockdown of KRT16 gene in
OSCC cells (Fig. 8B), it was observed that KRT16 knockdown significantly inhibited the
survival of WSU-HN30 and HSC-3 cells (Fig. 8C). Subsequently, wound healing and
transwell assays showed that KRT16 knockdown markedly suppressed the migration and
metastasis of WSU-HN30 and HSC-3 cells (Figs. 8D–8G) but notably increased apoptosis
inWSU-HN30 and HSC-3 cells (Fig. 8H). These results indicated a potential role of KRT16
in the occurrence of OSCC and its development.

DISCUSSION
OSCC is characterized by high aggressiveness, molecular heterogeneity, and varied
treatment responses. Though recent research in the discovery of distinct tumor cell
subpopulations has greatly improved our understanding of OSCC (Puram et al., 2017),
the clinical significance of these subpopulations and the underlying mechanism of their
behaviors in OSCC still remain mostly unknown. Emerging evidence has shown crucial
functions of keratinocytes in OSCC (Foki et al., 2020; Hakelius et al., 2013). According
to recent research, keratinocyte genes are linked to the development and spread of
hepatocellular carcinoma (Zhao et al., 2022) and prostate cancer, showing the potential to
serve as biomarkers for tumor prognosis (Liang et al., 2018). In addition, tumor-adjacent
keratin-forming cells produce injury-related pro-inflammatory factors, contributing to the
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Figure 7 Immunological characterization between OSCC samples and control samples. (A) Box line
plot of infiltration status of 22 types of immune cells CIBERSORT. (B) SPEARMAN correlation analysis
of the expression of three characterized genes with 22 immune cell infiltration profiles. (C) ESTIMATE
assessment of differences in immune infiltration scores between OSCC samples and control samples. (D)
The Spearman correlation analysis of three characterized genes with immune infiltration status. ***, p <
0.001; **, p< 0.01; *, p< 0.05.

Full-size DOI: 10.7717/peerj.19953/fig-7
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Figure 8 Exploring the biological role ofKRT16 in OSCC. (A) The expression levels of KRT16, CSTA,
and CSTB in HOK, WSU-HN30 and HSC-3 cells detected by qPCR. (B) Verification of the knockdown ef-
ficiency of KRT16 by qPCR in WSU-HN30 and HSC-3 cells. (C) Validation of the effect of knockdown of
KRT16 on the viability of WSU-HN30 and HSC-3 cells. (D–G) Statistical analysis of representative images
and invasive cell counts in wound healing assay and transwell assay of WSU-HN30 and HSC-3 cells after
KRT16 knockdown. (H) The apoptosis level of WSU-HN30 and HSC-3 cells after KRT16 knockdown.
The data are expressed as mean± standard deviation, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p <
0.0001.

Full-size DOI: 10.7717/peerj.19953/fig-8
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growth, migration, invasion, and metastasis in melanoma (Dainese-Marque et al., 2024).
According to recent research, keratinocyteswith high gene expressions are considered as risk
factors for OSCC (Wang et al., 2021a). These findings suggested that keratinocytesmay play
a crucial part in the onset and spread of OSCC, and that identifying keratinocyte-associated
indicators in OSCC may help understand the invasive mechanisms in OSCC.

This identified the keratinocyte subpopulation as a distinctive cellular subpopulation
of OSCC based on the single-cell data of OSCC. It was found that keratinocytes closely
interacted with endothelial cells, fibroblasts and macrophages through specific ligand–
receptor pairs, suggesting their central regulatory role in the microenvironment of OSCC.
Specifically, endothelial cell-derived SELE-CD44 signaling may promote the migration
and invasion of keratinocytes, which was consistent with previous studies that CD44
(a hyaluronan receptor) enhances tumor cell metastasis through activating PI3K/AKT
pathway (Zöller, 2011). APP-CD74 interactions may be involved in immune regulation,
and studies have shown that CD74 plays a key role in antigen presentation and its aberrant
expression may promote tumor immune escape through the NF-κB pathway (Zhou et al.,
2024; Kershner et al., 2022). These indicated that the interaction network was a potential
mechanism through which keratinocytes mediated the malignant progression of OSCC via
immunomodulatory or paracrine signaling.

We then used the hdWGCNA technique to identify gene modules linked to keratinocyte
subpopulations in OSCC, and then three hub genes (KRT16, CSTA, and CSTB) were
selected to develop a diagnostic model for OSCC and validated. The expression of keratin
16 (KRT16) is closely positively related to highly differentiated OSCC (Kengkarn et al.,
2020). OSCC patients with higher KRT16 expression often present poor pathologic
differentiation, advanced stage, lymph node metastases, and poor survival. Inhibition
of KRT16 expression could suppress the chemoresistance, invasion, migration, and
metastasis of OSCC cells (Huang et al., 2019). Cysteine protease inhibitor A (CSTA) is
an abundant component secreted by keratinocytes. According to in vitro simulations,
human keratinocytes display impaired cell–cell adhesion in the absence of CSTA protein
(Blaydon et al., 2011). Cryptogenic skin fragility is caused by a loss-of-function mutation
in squamous cell carcinoma (Gupta et al., 2015). According to recent research, CSTB
expression is downregulated in OSCC than in normal controls, and patients with lower
expression of CSTB have worse clinicopathologic characteristics and a shorter disease-free
survival. The migration, invasion, and proliferation of OSCC cells are all inhibited by
overexpression of CSTB, and CSTB is associated with epidermal cell differentiation and
keratinization (Xu et al., 2021). Though these results suggested that the characterized genes
in keratinocytes may influence the proliferation, invasion, and metastasis of OSCC, their
roles inOSCC keratinocytes and relatedmechanisms remained to be validated and explored
by experimental studies.

The complex TME of OSCC facilitates the process of tumorigenesis and metastasis
through the interaction betweenmalignant cells and stromal cells. The TME is an ecosystem
that comprises a complex system of immune cells such as T cells, dendritic cells, B cells,
macrophages, and subpopulations of NK cells, which all actively participate in each stage
of tumorigenesis and cancer progression (Fridman et al., 2012; Tian et al., 2017). In head
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and neck squamous carcinoma, stimulating local immunity may help suppress OSCC
progression and enhance treatment efficacy as the head and neck region has abundant
lymph nodes and blood arteries (Liang, Tao & Wang, 2020). A study reported a better
prognosis for OSCC patients with higher infiltration level of T and B lymphocytes,
indicating a correlation between immune cell infiltration and prognosis (Jung et al., 2020).
Immature initial B cells, T cells CD8, follicular helper T cells, and Tregs are all markedly
reduced in high-risk OSCC group (Liu et al., 2024). Malignant migration of OSCC cells
can be promoted by the activation of M1-like tumor-associated macrophages (Xiao et al.,
2018). This study found that OSCC patients had higher infiltration of cells including T
cells follicular helper, M1, M0, and mast cells activated, while B cells memory, T cells CD8,
and immune cells such as mast cells resting, and M2 had lower infiltration. The expression
of KRT16, CSTA, and CSTB was associated with the infiltration of the vast majority of
immune cells. These results suggested that the signature genes may be closely linked to
immune cell infiltration in OSCC. However, the potential mechanisms of the immune
landscape and characterized genes still required further exploration and validation.

The present study contained several limitations. First, the relatively small sample size
in our scRNA-seq analysis may affect the generalizability of the findings, necessitating
validation in larger sample size with more clinical data for confirmation. Further in
vivo and in vitro studies are demanded to validate the biological functions and potential
mechanisms of the three genes in OSCC keratinocytes as well as their associations with
immune infiltration and chemotherapeutic agents.

CONCLUSION
Based on the scRNA-seq data, this study discovered KRT16, CSTA, and CSTB as the
potential keratinocyte-related biomarkers for OSCC using a variety of computational
techniques. These three indicators may have a significant impact on OSCC by altering
keratinocyte-mediated immune cell infiltration. Further investigation of these molecular
targets and their associated pathways may facilitate the development of novel targeted
immunotherapy for OSCC.

Abbreviations

OSCC Oral squamous cell carcinoma
scRNA-seq Single-cell RNA sequencing
hdWGCNA High-dimensional weighted gene co-expression network analysis
WGCNA Weighted gene co-expression network analysis
GEO Gene expression omnibus
TME Tumor microenvironment
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PCA Principal component analysis
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