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ABSTRACT

The introduction of Trichonephila clavata (L. Koch, 1878) (Araneae: Araneidae:
subfamily Nephilinae) in the United States was first recorded in Georgia in 2014. Since
its introduction, T. clavata has become a prominent feature of the arthropod fauna
in several southeastern US states. Many questions regarding the introduction event(s)
remain unanswered; for instance, was the introduction a single discrete event followed
by rapid spread, or were there multiple introductions? The mitochondrial cytochrome
c oxidase subunit one gene region (COI), which was used to characterize the initial
T. clavata observation in the US, has also been used to characterize within- and between-
population genetic variation. One confounding factor for COI as a population genetic
molecular marker, though, is the presence of cytoplasmic agents of selection such as
intracellular bacteria in the genus Wolbachia. Given that Wolbachia infections have
been detected in potential source populations of T. clavata, the present study sought to
characterize mitochondrial genetic diversity and the status of Wolbachia infection in the
North American population(s) closest to the originally proposed introduction site in
Georgia. DNA sequencing revealed no mitochondrial genetic variation in the T. clavata
population sampled in North America, and an exact sequence match to the previously
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reported T. clavata in Georgia and a sequence sample from Yunnan, China. Wolbachia
was detected in the North American samples. However, phylogenetic analysis on a
concatenated multi-locus type sequence suggested two distinct Wolbachia clades, one
represented by samples collected in Georgia and another represented by a single sample
collected in South Carolina. Sequence analyses of the multi-locus gene regions suggested
that the Georgia T. clavata may be infected with two strains of Wolbachia (super-
infection), and the South Carolina sample represented a separate single infection. The
study’s results emphasize the need for further research, including expanded sampling
in the introduced and potential source population regions, as well as a more detailed
molecular characterization of the populations.
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INTRODUCTION

Trichonephila clavata (L. Koch, 1878) (Araneae: Araneidae: subfamily Nephilinae) is an
orbweaver spider native to eastern Asia, including Japan, Korea, and China (Hoebeke,
Huffmaster & Freeman, 2015). The phylogenetic placement of the genus Trichonephila
and other nephiline spiders relative to other Orbipurae orbweavers is a current topic of
debate, with alternative placements in either their own family, Nephilidae (see Kuntner,
2006; Kuntner et al., 2019; Kuntner et al., 2023 and arguments within) or as a subfamily,
Nephilinae, synonymized within the extremely large family of Araneidae (see Dimitrov &
Hormiga, 2009; Dimitrov et al., 2017; Scharff et al., 2020; Kallal et al., 2020; Hormiga et al.,
2023).

In late 2014, the first T. clavata were collected in Georgia, US (Hoebeke, Huffmaster
¢ Freeman, 2015). This species, a congener of the native T. clavipes (Linnaeus, 1767;
the golden silk orb weaver), quickly spread across the southern US in the years after its
introduction, with one main population spanning Georgia, Tennessee, South Carolina,
and North Carolina (Chuang et al., 2023), as well as recent observations which may
represent new populations in Maryland, Pennsylvania, Virginia, and Massachusetts
(https:/john-deitsch.shinyapps.ioforoshiny/). Surveys on local orbweaver communities
suggest there are fewer native orbweavers where T. clavata has been established the longest
(Nelsen et al., 2023). As such, T. clavata requires further close observation and research
in the North American habitats to determine its impacts. With overall research still in
the early stages and a dearth of population genetic information despite the potential
distribution of T. clavata across much of North America (Davis ¢» Frick, 2022; Nelsen et
al., 2023), questions remain about the introduction of this highly visible invasive species.
Was T. clavata introduced to North America through a single introduction event? Could
multiple introduction events be partially responsible for the species’ already large range in
North America?

Population genetic tools can provide a better understanding of the past and future
of T. clavata in North America. For example, when founded by a few closely related
individuals, little or no genetic diversity is expected in a population, which restricts that
population’s adaptive potential (Booy et al., 2000)—a condition that could be particularly
pertinent for an introduced species in a novel environment. In 2014, the mitochondrial
gene cytochrome c oxidase subunit I (COI) from these new North American samples was
compared to the recorded literature and confirmed the species identification of T. clavata
(Hoebeke, Huffmaster & Freeman, 2015). COI is useful as a “barcoding” gene, serving
as a common identifier of species, and often has several distinct alleles in a population
(Hebert et al., 2003), making this gene region particularly useful for both within- and
between-population studies. Though COI has been used in many population-level studies
of animals (Tavares et al., 2011; Karthika et al., 2017; Beebe, 2018), the use of any genetic
marker is limited by the extent of prior study and the authenticity of previous sequences,
often limiting its usefulness outside of already extensively-studied species (Dawnay et
al., 2007). Additionally, mitochondrial population genetics can be confounded by many
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factors (Galtier et al., 2009), including highly oxidative environments, complex mutation
processes, and other cytoplasmic agents of selection.

Bacteria in the genus Wolbachia (Alphaproteobacteria, Rickettsiales) can function as
agents of selection. Wolbachia are cytoplasmic bacterial symbionts well represented across
arthropod taxa, with one estimate suggesting that up to 66% of all insects may be infected
(Hilgenboecker et al., 2008). In arthropods, Wolbachia exhibits several forms of genetic drive
that selectively favor infected hosts through reproductive manipulations that either create
reproductive barriers between infected and uninfected individuals or distort sex ratios in a
manner that promotes the spread of Wolbachia within populations (Stouthamer, Breeuwer
& Hurst, 1999). Given that cytoplasmic genetic elements are typically co-inherited, the
result of Wolbachia infection in many arthropod populations is indirect selection on
mtDNA (Turelli, Hoffimann ¢ McKechnie, 1992; Jiggins, 2003; Narita et al., 2006). This can
result in selective sweeps of Wolbachia and co-inherited mtDNA that reduce mitochondrial
genetic diversity, as has been characterized in Drosophila simulans (Turelli, Hoffmann ¢
McKechnie, 1992), Acraea encedon (Jiggins, 2003), and many other insect species (Cariou,
Duret & Charlat, 2017). However, Baldo et al. (2008) found that strict cytoplasmic co-
inheritance among Agelenopsis spiders was disrupted by apparent horizontal transfer
among and within species, with some mitotypes associating with divergent Wolbachia
strains, and individual Wolbachia strains associating with divergent mitotypes.

Wolbachia have been detected in Chinese and Korean populations of T. clavata (Wang et
al., 20105 Yang et al., 2021; Oh et al., 2000). Using strain-specific primers for the Wolbachia
wsp gene region, Wang et al. (2010) discovered a double-infected T. clavata population
in Wuhan, Hubei Province, China. Furthermore, Yang et al. (2021) characterized a single
infection of T. clavata collected in Mangshan, Guangdong Province, China, using multi-
locus sequence typing of gene regions (Baldo et al., 2006). These studies were part of
large-scale Wolbachia prevalence investigations among spider species and did not sample
T. clavata populations to any substantial degree (fewer than ten samples in each study),
nor did they examine the potential impact of Wolbachia on host mitochondrial population
genetics.

Our study took a phylogenetic approach, using mitochondrial and Wolbachia molecular
markers, to investigate the founding population of T. clavata in the US. We addressed
three questions: (1) What is the mitochondrial genetic diversity of the southeastern
T. clavata population in North America? (2) Is the introduced population infected with
Wolbachia? and (3) If the introduced population is infected with Wolbachia, to what
extent is mitochondrial and Wolbachia genetic diversity linked? Given the recency of the
introduction event, we hypothesized low levels of genetic diversity among T. clavata and
associated low levels of Wolbachia diversity, assuming coinheritance between mitochondria
and Wolbachia.

MATERIALS & METHODS

Sample collection
Mature female T. clavata were collected between August and December 2022 from various
natural and managed locations (Table 1; Fig. 1) and mature female T. clavipes were collected
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Table 1 Trichonephila clavata sample names and locations. Data shown below depicts the abbrevia-
tions of samples used in the study, as well as city of origin, state of origin, and the specific sample designa-
tion of samples tested for Wolbachia detection if applicable.

Abbreviation City State Replicate # Wolb.
sample
AGA Athens GA 3 AGA1
APGA Buford GA 3 APGA1
APGB Buford GA 1 APGB
AUGA Auburn GA 3 AUGA3
BGA Braselton GA 4 BGA2
BUGA Buford GA 3 BUGA2
CCGB Jefferson GA 1 CCGB
CLSC Clemson SC 3 CLSC1
CPGB Athens GA 1 CPGB
DDGA Decatur GA 5 DDGA1
RGA Richland GA 3 RGA3
SGA Suwannee GA 3 SGA3
TGA Talmo GA 4 TGA4
WGA Watkinsville GA 4 WGA4
WIGA Winder GA 3 WIGA1
CTN Collegedale N 1 N/A
CGA Calhoun GA 3 N/A
WBGA Woodstock GA 4 N/A
JGA Jefferson GA 3 JGA1
GGA Gainesville GA 3 GGA3
GGGB Lawrenceville GA 1 GGGB
FMGA Lawrenceville GA 3 FMGA1
FMGB Lawrenceville GA 1 FMGB
HGA Hoschton GA 3 HGA2
LGA Loganville GA 3 LGA2
LMGB Auburn GA 1 LMGB
MGA Morrow GA 5 N/A
MGB Morrow GA 4 MGB1,2,4
HEGA Helen GA 3 HEGAL1
HPGA Dacula GA 4 HPGA4
SMGA Hoschton GA 4 N/A
SPGB Hoschton GA 1 SPGB
TMGB Lawrenceville GA 1 TMGB
FBGA Flowery Branch GA 4 N/A
MAGA Marietta GA 2 N/A
FNC Fayetteville NC 2 N/A

in North Carolina before T. clavata invaded the area. Spiders were collected individually

and stored separately by location and frozen at —20 °C. The collection of spider samples

was approved by a Georgia Gwinnett College STEC 4500 research agreement.
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Figure 1 Map of collection sites for Trichonephila species. The states from which Trichonephila spp.
were sampled is shown above. State outlines containing polygons indicating collection sites are clockwise
from top left: Tennessee, North Carolina, South Carolina, and Georgia. Red dot indicates the approximate

location where T. clavata were initially found in 2014.
Full-size &l DOL: 10.7717/peerj.19952/fig-1

Molecular methods

Single-leg tissue samples were used for DNA extraction using 5% Chelex (Bio-Rad
Laboratories, Hercules, CA, US) according to modified methods described in Walsh,
Metzger & Higuchi (1991). PCR reactions contained one microliter of template DNA,
12.5 microliters of Promega GoTaq® master mix, one microliter of each 10 uM primer,
and 9.5 pl of molecular-grade water. A portion of the cytochrome oxidase subunit one
(COI) gene region was amplified using primers LCO (5'-GGTCAACAAATCATAAAGAT
ATTGG-3") and HCO (5'-TAAACTTCAGGGTGACCAAAAAATCA-3') (Folmer et al.,
1994). Thermocycle conditions consisted of an initial denaturation at 95 °C for four
minutes, followed by 34 cycles of 94 °C for forty-five seconds, 55 °C for thirty seconds,
72 °C for one minute and thirty seconds, followed by a final extension at 72 °C for ten

minutes.
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Table 2 Sample names, sample locations, and source material for all (A) COI and (B) Wolbachia MLST sequences acquired as supplements to

phylogenetic reconstructions using T. clavata from samples collected in Georgia and South Carolina (NA = information not available).

Sample name Location Source
(A) Cytochrome oxidase subunit one (COI)

Georgia 1 Georgia, USA Hoebeke, Huffmaster ¢ Freeman (2015)
Georgia 2 Georgia, USA Hoebeke, Huffmaster & Freeman (2015)
Guangdong 1 Guangdong, China Yang et al. (2021)

Yunnan 1 Yunnan, China Hoebeke, Huffmaster & Freeman (2015)
Yunnan 2 Yunnan, China Hoebeke, Huffmaster & Freeman (2015)
Zhejiang 1 Zhejiang, China Hoebeke, Huffmaster & Freeman (2015)
Zhejiang 2 Zhejiang, China Hoebeke, Huffmaster & Freeman (2015)

South Korea 1

Taiwan 1

South Korea

Taiwan

Hoebeke, Huffmaster ¢ Freeman (2015)
Hoebeke, Huffmaster ¢ Freeman (2015)

(B) Wolbachia Multiple Locus Sequence Types (MLST)

Araneus ventricosus
Mesida yini

Pardosa mionebulosa
Trichonephila clavata
Agelenopsis aperta
Acraea encedon

Aedes albopictus
Armadillidium vulgare
Brugia malayi
Drosophila melanogaster
Nasonia giraulti

Rhagoletis cerasi

Guangdong, China
Guangdong, China
Guangdong, China
Guangdong, China
Oklahoma, USA
NA

Koh Samui, Thailand
NA

NA

NA

NA

Czech Republic

Yang et al. (2021)
Yang et al. (2021)
Yang et al. (2021)
Yang et al. (2021)
MLST database
MLST database
MLST database
MLST database
MLST database
MLST database
MLST database
MLST database

Wolbachia multi-locus sequence typing (MLST) primers for coxA, fbpA, gatB, and hcpA
identified by Baldo et al. (2006) were used to amplify the respective gene regions using

the previously established protocols. Wolbachia A and B supergroup-specific wsp primers
(Zhou, Rousset & O’Neill, 1998) were used to identify the spider’s superinfection status. All
PCR products were analyzed with 2% agarose gel electrophoresis, and successful amplicons

were prepared for sequence analysis with ExoSAP-IT® (Applied Biosystems, Waltham,
MA, US). Of the 94 T. clavata samples successfully amplified for COI, a subset of 31 were

used to amplify Wolbachia-specific gene regions, including the MLST gene regions.

Additional COI and MLST sequences were acquired from accession numbers provided
from Hoebeke, Huffmaster ¢ Freeman (2015), Yang et al. (2021), and the Wolbachia MLST
database (http:/www.pubmlst.orgiwolbachia/) (Tables 2A-2B).

Sequence analysis

All successfully cleaned amplicons were sent to Eurofins Genomics (Louisville, KY,

US) for Sanger sequencing. Received sequence reads were aligned in MUSCLE using

default parameters. Chromatograms (https:/technelysium.com.au/wp/chromas/) were

used to inspect sequence reads by eye and verify polymorphisms. Cytochrome oxidase
subunit one (COI), all MLST Wolbachia loci, and concatenation of MLST sequences
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were phylogenetically analyzed in BEAST (Suchard et al., 2018) using Bayesian inference
methods and in MEGA 11 (Tamura, Stecher ¢» Kumar, 2021) using maximum likelihood
methods with 1000 bootstrap replications (see Supplementary Materials). Appropriate
evolutionary models were determined using the model test function in MEGA 11 and
the Akaike information criterion scores. BEAST parameters for the COI analysis included
the Tamura-Nei substitution model (Tamura ¢ Nei, 1993), a chain length of 10,000,000
generations with log parameters saved every 1,000 generations and a burn-in of 3,000
samples. All T. clavata sequences were recovered in a monophyletic clade with a posterior
probability of 1.0. Parameters for the concatenated Wolbachia MLST analysis were identical
to the COI analysis with the exception of a Hasegawa-Kishino-Yano substitution model
(Hasegawa, Kishino & Yano, 1985). BEAST generated trees were visualized in FigTree v1.4.4
(http:/tree.bio.ed.ac.ukkoftwarefigtree/).

RESULTS
COl

Spider samples from one collection location, Tennessee, failed to successfully amplify and
were excluded from subsequent analyses. The North Carolina collection location produced
two T. clavipes samples, the only congener to T. clavata in North America. Three of the 94
T. clavata samples sent for sequencing were not readable and were excluded from analysis,
resulting in a final n = 91. No polymorphisms were observed among the 91 T. clavata COI
sequence samples from Georgia and South Carolina. The haplotype was identical across
the 620 sites analyzed to samples collected in Georgia (Hoebeke, Huffmaster ¢» Freeman,
2015) and to Yunnan 1 (HQ441928.1). The COI tree (Fig. 2) resolved two main T. clavata
clades with a posterior probability of 1.0, one of which included all US samples, Yunnan 1,
Guangdong, and Zhejiang 1, and a sister clade that included South Korea as an outgroup
to Yunnan 2, Zhejiang 2, and Taiwan. Maximum likelihood analysis returned a similar
topology with a T. clavata polytomy that included support for a US + Yunnan 1 clade and
a clade that included South Korea, Yunnan 2, Zhejiang 2, and Taiwan. Guangdong and
Zhejiang 1 were unassigned to either clade in the polytomy (see Material S1). Given the
limited sample size, taxonomic breadth, and estimated recent evolutionary time frame for
the taxa used in the COI analyses, low levels of support for some of these clades are not
unexpected.

Trichonephila clavipes samples FNC1 and FNC2 served as an outgroup for the T. clavata
clade and were used to root the tree. Due to the genetic monomorphism of sampled
T. clavata, only those samples that were also used in the Wolbachia analysis were reported
for COI phylogenetic analysis (see Material S2 table for accession numbers).

Wolbachia

Wolbachia supergroup A and B-specific wsp primers (Zhou, Rousset ¢~ O’Neill, 1998) were
used to detect superinfection among collected samples. Although the amplification success
of the two primer regions was limited, both primers successfully amplified some of the
Georgia samples, suggesting superinfection of A and B supergroup Wolbachia in those
samples (8/8 or 100% A-specific amplification, 22/31 or 71% B-specific amplification, with

Russell et al. (2025), PeerdJ, DOI 10.7717/peerj.19952 7
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Figure2 Cladogram of the cytochrome oxidase subunit one (COI) gene region of Trichonephila
clavata. Bayesian inference phylogenetic tree for the cytochrome oxidase subunit one (COI) gene region
of Trichonephila clavata obtained in Georgia (GA) and South Carolina (SC). Reference samples obtained
in Genbank are included with accession numbers. Trichonephila clavipes (FNC) was used to root the tree.
Posterior probabilities are indicated at nodes. T. clavata samples, within the collapsed clade with posterior
probability of 0.35, represent a subset of 91 samples sequenced that were identical.

Full-size ] DOT: 10.7717/peerj.19952/fig-2

all A-specific amplifications also amplifying the B-specific gene region). One sample used
in phylogenetic analysis, CLSCI, failed to amplify either wsp gene region.

Due to limited success at amplifying all MLST loci, a subset of T. clavata samples
and MLST loci (wsp and ftsZ sequences were omitted) were used for analysis. Wolbachia
supergroup A and B specific primers (Zhou, Rousset & O’Neill, 1998) successfully amplified
a further subset of T. clavata samples but were not used for sequencing. Concatenation
of MLST loci coxA, fbpA, gatB, and hcpA among 12 collected T. clavata samples was used
for phylogenetic analysis (see Material S2 table for accession numbers). The gene regions
chosen for concatenation were selected based on visual inspection of the chromatograms.

All observed polymorphisms in T. clavata were bimodal. Upon visual inspection of
polymorphisms, double peaks corresponding to the alternative allele were found for all
loci, a result that could be indicative of double infection. CLSC, the one sample from
South Carolina, was unique among the T. clavata samples with no observed double peaks
at polymorphic sites and an identical genotype to T. clavata from China (Yang et al., 2021)
for three of the four MLST loci (coxA, gatB, hcpA) used in this study (Fig. 3). The nearest
match allele profiles, based on the Wolbachia MLST database, for CLSC were unique among
the sampled T. clavata for all loci except hcpA. All other samples shared nearest match
allele profiles with other sampled T. clavata for three out of the four MLST loci.

Phylogenetic analysis of the concatenated Wolbachia MLST loci, with Brugia mayali
serving as an outgroup, returned two deeply branched clades, which can be attributed
to Wolbachia supergroups A and B (Fig. 4). All sampled T. clavata are recovered in the
Wolbachia A supergroup. The monophyletic Georgia T. clavata Wolbachia clade with
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Figure 3 Partial chromatogram results from the Wolbachia coxA gene region of Trichonephila clavata.
Examples of distinguishing features for South Carolina (CLSC1) and Georgia (BUGA2 and AGA1) Wol-
bachia MLST sequence results are shown in partial coxA chromatograms above. Polymorphic Wolbachia
MLST sequence sites were represented by single peaks in the South Carolina sample, and double peaks in

Georgia samples.
Full-size & DOI: 10.7717/peerj.19952/fig-3

Wolbachia from the spider species Agelenopsis aperta as sister, was phylogenetically distinct
from the clade containing the South Carolina sample, CLSC (posterior probability 1.0).
The South Carolina MLST profile was sister to T. clavata from Yang et al. (2021) and shared
a clade with Wolbachia MLST sequences derived from the parasitic wasp Nasonia giraulti.
Maximum likelihood analysis returned generally similar results regarding the disjunct

9/17

Russell et al. (2025), PeerdJ, DOI 10.7717/peerj.19952


https://peerj.com
https://doi.org/10.7717/peerj.19952/fig-3
http://dx.doi.org/10.7717/peerj.19952

Peer

Armadillidium vulgare
Acraea encedon
I— Pardosa mionebulosa

Drosophila melanogaster

o
©
©

Rhagoletis cerasi
06 cLsC1

0.95 Trichonephila clavata

0.52
Nasonia giraulti

Agelenopsis aperta

APGAT
e << BGA2
WIGA1

! SGA3
DDGA1
AGA1
1 0.98 46 TeA4
AUGA3
RGA3
BUGA2
WGA4

Aedes albopictus
[ 1 P!
Araneus verticosus

Mesida yini

Brugia malayi

Figure 4 Cladogram of a concatenation of Trichonephila clavata Wolbachia MLST gene regions.
Bayesian inference phylogenetic tree for concatenated Wolbachia gene regions coxA, gatG, fbpA, and hcpA
of Trichonephila clavata obtained in Georgia (GA) and South Carolina (SC), indicated with grey outline.
Reference samples indicated by genus species were obtained from the Wolbachia MLST database. Brugia
mayali was used as an outgroup to root the tree.

Full-size B8 DOIL: 10.7717/peerj.19952/fig-4

topology of the US T. clavata Wolbachia with a polytomy that included a Georgia clade
(75% bootstrap support) and a poorly supported clade (59%) that included South Carolina
and T. clavata from Yang et al. (2021) (Material S3).

DISCUSSION

Phylogenetic analysis of T. clavata from the US (focused on Georgia and South Carolina)
reveals contrasting patterns of cytoplasmic diversity for the mitochondrial (COI) and
Wolbachia MLST loci (coxA, fbpA, gatB, and hcpA) (Figs. 2 and 4). Like the previous limited
analysis by Hoebeke, Huffmaster ¢ Freeman (2015), which was primarily used to confirm
the species status of the recently discovered spider in the US, no mitochondrial genetic
diversity was observed in the larger sample size of the present study. These findings suggest
a population bottleneck, likely due to founder effects associated with the introduction of
T. clavata in the US. Subsequent introduction events in the same sample collection range
would appear to have come from the same mitochondrial population of the originally-
introduced T. clavata.

Yunnan 1 T. clavata represented the only identical non-US COI sequence that grouped
with the USA samples. The closely related Guangdong sample shared sequence similarity
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with one nucleotide polymorphism (A/G) at position 527 in the alignment. In addition to
the polymorphisms mentioned in Hoebeke, Huffmaster ¢ Freeman (2015), an additional
polymorphic site among the COI sequences was observed that distinguished the Yunnan
1/US clade from the other Asian sequences: a C/T polymorphism 339 bp further along
the alignment from the previously cited polymorphisms in which the US/Yunnan
1/Guangdong T. clavata share a cytosine at that position. Though our results are limited
by sample size, the observed mitochondrial haplotype match suggests the founding US
population is more closely related to T. clavata previously sampled from Yunnan than
other samples from Asia used in the current dataset (Fig. 2). It should be noted that the
clade representing the T. clavata outgroup contains sample Yunnan 2. Yunnan is the most
southwest province in China, bordering Myanmar, Laos, and Vietnam, and represents
one of the westernmost extents of the native range of T. clavata, excluding the Himalayas.
The observed phylogenetic discordance of COI within this province, and that observed for
COI samples from Zhejiang province, may simply result from limited sample size (only
two samples from each region) or an indication of mtDNA diversity within the regions.
Regional and population-level analyses of T. clavata in its native range are necessary to
address questions of genetic diversity and the potential source population for the US
founding of T. clavata.

The phylogenetic bifurcation observed for the concatenated Wolbachia MLST T. clavata
sequences from the US was unexpected, given the uniform COI sequence identities of
the samples (Fig. 4). The single South Carolina sample (CLSC1) grouped with T. clavata
Wolbachia, which was collected from Guangdong Province (also represented in the COI
tree as Guangdong) and was recovered in a clade that included Drosophila melanogaster,
Rhagoletis cerasi, and Nasonia giraulti MLST sequences. All Georgia T. clavata MLST
sequences formed a clade sister to Agelenopsis aperta and were recovered in a larger grouping
of other spider species, Mesida yini and Araneus ventricosus, as well as the mosquito Aedes
albopictus. The apparent phylogenetic discordance of the MLST data from the US suggests
T. clavata was introduced in the US more than once, with South Carolina and Georgia
representing distinct Wolbachia populations. The sequence similarities of the Guangdong
MLST data to the South Carolina sample and the exact COI sequence match for Yunnan
1 and all US samples may be the result of a source population in southern China, with a
relatively uniform mitochondrial background (one COI nucleotide polymorphism) and
distinctly different Wolbachia populations. Previous empirical and theoretical analyses
have established a selective sweep effect by Wolbachia on mitochondrial genetic variation,
whereby single or repeated waves of Wolbachia infection reduce mitochondrial genetic
variation (Turelli, Hoffimann ¢» McKechnie, 1992; Kriesner et al., 2013). Wolbachia selective
sweeps have also been associated with accelerated rates of molecular evolution for
both mitochondria and Wolbachia (Baldo et al., 2010; Russell, Saum ¢ Williams, 2022;
Schulenburg et al., 2000), potentially complicating conclusions drawn from phylogenetic
analyses (Hurst ¢ Jiggins, 2005).

Mitochondrial-Wolbachia phylogenetic discordance is common among spiders and
other arthropods (Yang et al., 2021; Baldo et al., 2008; Wendt et al., 2022; Russell, Saum e
Williams, 2022). Previous studies of Wolbachia infection among spiders in China have
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yielded conflicting phylogenetic placement of T. clavata Wolbachia, with some studies
placing T. clavata Wolbachia in the B supergroup (Wang et al., 2010) and others in the
A supergroup (Yang et al., 2021). Incongruent phylogenies among species have been
explained as a result of horizontal transfer between species (Baldo et al., 2008; Rowley,
Raven & McGraw, 2004), which appears to be a common inference for incongruent
Wolbachia phylogenies (Boyle et al., 1993; Heath et al., 1999; Vavre et al., 1999; Baldo et
al., 2008). Discordant mitochondrial-Wolbachia phylogenies, associated with a common
mitochondrial genetic background and divergent Wolbachia infections, were observed in
the spider Agelenopsis aperta (Baldo et al., 2008). Whether the divergent South Carolina
Wolbachia strain observed is a subset of a double-infected Georgia strain or is a unique
strain itself, horizontal transmission of Wolbachia within distinct source populations of
T. clavata could explain the phylogenetic discordance observed in the present study.
Amplification of the South Carolina sample and analysis of the chromatogram results
showed no double peaks characteristic of double infection. In contrast, the Georgia samples
all showed double peaks at specific locations corresponding to A and B supergroup reference
samples (Fig. 3). We cannot discount the possibility that the MLST alignments used,
particularly the Georgia samples, may be compromised by a mix of A and B supergroup
sequences. Regardless, the available data suggests a double infection for the Georgia
samples and a single infection for the South Carolina sample. Double infection status
is also supported by the observation of successful amplification of A- and B-specific
wsp sequences. Therefore, without molecular cloning, it was impossible to eliminate the
possibility of double-infected T. clavata samples from Georgia returning MLST sequences
that are not some mosaic of A- and B-supergroup Wolbachia. Further, we cannot assume
that the South Carolina A-supergroup Wolbachia sequence is not identical to an A-
supergroup Wolbachia sequence in a double-infected Georgia population. However, the
status of a single-infected South Carolina population and a double-infected Georgia
population appears to distinguish the two populations.

CONCLUSIONS

The introduction of T. clavata to the US, first reported in the state of Georgia (Hoebeke,
Huffmaster & Freeman, 2015), has resulted in a spreading, established population. Our
investigation found the mitochondrial genetic structure of the since-established population
in Georgia to be monomorphic for the COI gene region, the same gene region sequence used
to first identify the species in the US. Like T. clavata in native potential source populations
in Asia, the Georgia population was found to be infected with Wolbachia. Phylogenetic
constructions using COI and Wolbachia MLST gene regions found mitochondrial-
Wolbachia discordance associated with a divergent Wolbachia strain from a single sample
collected in South Carolina. The presence of evidence for super-infection among Georgia
T. clavata and a single infection in the South Carolina sample supports the contention that
distinct Wolbachia populations are present within a uniform mitochondrial background
in the area sampled. Future research should expand the sample area within the US and
beyond to include the native ranges in Asia. A more comprehensive sampling protocol
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would provide valuable population genetic information that could help identify potential
source populations for the introduced US population(s) and provide context for the
cytoplasmic population structure observed in the introduced population.
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