Submitted 21 November 2024
Accepted 25 July 2025
Published 11 September 2025

Corresponding author
Jason R. Franz, jrfranz@email.unc.edu

Academic editor
Peter Federolf

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peer;j.19930

© Copyright
2025 Katugam-Dechene et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The effects of shoe structural features on
agility and stability tasks during walking

Kavya Katugam-Dechene, Ava Cook, Anh Nguyen, Ross Smith,
Andrew Shelton and Jason R. Franz

Lampe Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North
Carolina State University, Chapel Hill, NC, United States of America

ABSTRACT

Background. Footwear can accommodate foot pathologies, alleviate symptoms of
musculoskeletal injury, provide environmental protection and, for orthopedic or aging
consumers, enhance agility or stability to improve daily locomotion. Independent of
the specific characteristics underlying footwear selection, shoes are often called upon
to support the performance of many different types of activities.

Purpose. The purpose of this study was to investigate the extent to which shoe
design features intended for stability versus agility affect walking tasks that would
disproportionately depend on those features.

Methods. Fourteen adults completed two walking tasks intended to disproportionately
require greater agility or greater stability. Participants completed walking tasks while
wearing each of two footwear designs: a supportive hiking boot and a flexible sneaker.
Results. We found no significant performance differences between footwear designs
in either the agility task metrics or stability task metrics. Conversely, participant
perceptions reflected differences in footwear design features.

Conclusions. The results of this study suggest that shoe design features intended for
stability versus agility minimally bias walking performance towards either respective
benefit. Our results may improve consumer confidence in footwear selection, often
thereafter called upon to meet the needs of a variety of activities of daily living.

Subjects Kinesiology, Biomechanics
Keywords Footwear, Balance, Biomechanics, Gait, Perturbations

INTRODUCTION

Footwear is the interface between the body and the ground surface on which we walk,
influencing load transmission, sensory feedback, and joint kinematics. As such, a pivotal
and unavoidable relation exists between shoe structural features, agility, and stability during
locomotion. Independent of the specific characteristics underlying footwear selection,
shoes are often called upon to support the performance of many different types of everyday
activities, from steady-state walking to turns and reactive balance tasks in our communities.
Shoes are often marketed as being specialized for specific functions due to their unique
combination of design characteristics, e.g., stability shoes for individuals with balance
impairments or at greater risk of falling, or agility-focused features for those who are more
active. However, little is known about the generalizability of specialized shoe designs across
activities with varying performance demands.
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As the first focus area of this manuscript, specific footwear design characteristics can
affect stability as a measure of locomotor performance. For example, design features
such as ankle collar height, heel closure design, shoe width, sole firmness, and midsole
thickness have been shown to influence balance control and stability (Edelstein, 1987; Lord
et al., 1999; Menz, Morris ¢ Lord, 2006; Menant et al., 2008; Aboutorabi et al., 2016; Menz,
Auhl & Munteanu, 2016). Thus, selection of appropriate footwear can be important in
augmenting stability during locomotor tasks.

As the second focus area of this manuscript, also important to locomotor performance
and potentially footwear selection is agility—the ability to quickly initiate movements,
change directions, and/or change speed (Sheppard ¢» Young, 2006). Inherently, the design
and structure of footwear, as the interface between the body and the ground, can influence
the user’s ability to successfully navigate agility-dependent tasks. Both shoe sole stiffness and
outsole traction have been shown to influence user performance during athletic movements
such as cutting and vertical jumping (Stefanyshyn ¢ Nigg, 20005 Tinoco, Bourgit & Morin,
20105 Worobets & Wannop, 2015; Alirezaei Noghondar ¢ Bressel, 2017). These data support
the notion that selection of appropriate footwear for a given movement task can be
important in ensuring agility.

The use of “inappropriate” footwear, e.g., slippers, backless shoes, or high heels
(Lord et al., 1999; Menz, Morris ¢ Lord, 2006), is indicated as a risk factor for falls in
several populations, including older adults and hospital workers (Gabell, Simons e
Nayak, 1985; World Health Organization, 2021b). Intuitively, footwear geared towards
an aging demographic and/or orthopedic consumers may opt to consider characteristics
designed to enhance walking agility and/or stability to improve locomotor performance
during activities of daily living (McPoil, 1988; Maki ¢ Mcllroy, 1997; Koepsell et al., 2004).
However, it remains possible that specialized footwear designs disproportionately improve
performance during target activities, while simultaneously hindering performance in
others. For example, large, “bulky” shoes with stiffer outsoles designed to aid stability
could hinder user agility. Despite extensive research on footwear and postural control, few
studies have directly tested how stability-enhancing features affect dynamic agility tasks,
or whether agility-oriented designs compromise balance under perturbation. The notion
of an agility-stability tradeoff during posture and locomotion is well established (Hasan,
2005; Jindrich & Qiao, 2009; Huang & Ahmed, 2011; Ting et al., 2015; Acasio et al., 2017),
though few if any studies have aimed to quantify this tradeoff with regard to the interaction
with footwear.

The purpose of this study was to investigate the extent to which shoe design features
intended for stability versus agility affect walking tasks that would disproportionately
depend on those features. Compared to those in the opposing shoe, we hypothesized that:
(1) shoe features intended for stability would decrease the vulnerability to treadmill-induced
slip perturbations, while (2) shoe features intended for agility would improve performance
on a figure-8 walking task. Data in support of these hypotheses would indicate differences
in agility and stability metrics dependent on the shoe design being worn, justifying the need
for specialized, task-specific footwear features. Alternatively, rejecting these hypotheses
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Table 1 Participant demographics (n = 14). Values are reported as group mean =+ group standard devi-

ation.

Demographic outcome

Sex 7 males, 7 females

Age 45 =+ 20 years old (range: 24 to 75 years old)
Height 1.71 £ 0.10 m

Mass 69.6 £11.0 kg

Preferred walking speed 1.32 £ 0.20 m/s

would instead indicate that a generalized shoe design is sufficient to meet the needs of a
variety of daily living activities.

MATERIALS & METHODS

We conducted a laboratory-based, within-subjects experimental study using a repeated-
measures design to evaluate how two consumer-relevant footwear types, one designed
for stability and one for agility, affect locomotor performance and perceived performance
during walking tasks that disproportionally challenge agility or stability.

Participants

Fourteen healthy adults (seven female, age: 55.1 &£ 22.1 yrs., height: 1.61 £ 0.05 m, mass:
63.9 + 7.7 kg; seven male, age: 29.3 £ 5.8 yrs., height: 1.80 £ 0.05 m, mass: 74.5 £ 12.8 kg)
participated in this study. Participant demographics are summarized in Table 1.

An a priori power analysis indicated that a sample size of n = 14 would provide 90%
power to detect a minimum effect size (Cohen’s d) of 0.81 at an alpha level of 0.05 in a
within-subjects design. Following exclusions due to marker occlusions, the final sample
size (n = 12) retained sufficient power to detect a slightly larger minimum effect size, with
the threshold increasing to Cohen’s d = 0.89. Additional information can be found in
Article S2.

We included participants over 18 years old with no recent bone breaks or injury
requiring surgical intervention (i.e., 6 months), no use of prostheses, without neurological,
musculoskeletal, or cardiopulmonary disease, and who could walk without the use of an
assistive device.

In collaboration with the study sponsor, we intentionally developed an enrollment
strategy to reflect the diversity of the orthopaedic consumer population, which varies
widely in age, sex, demographic background, and underlying conditions. Although this
approach is somewhat unconventional for a study of this scale, it was designed to enhance
the relevance and real-world applicability of our findings. We recruited subjects via flyer,
email, and word of mouth. Subjects that showed interest in participating were directed
towards an online screening survey. Eligible participants were then invited to participate
in the remainder of the study while ineligible participants were informed of their results.
Participation in this study comprised of a single laboratory visit to the Applied Biomechanics
Lab in the Lampe Joint Department of Biomedical Engineering at the University of North
Carolina at Chapel Hill. The study protocol was approved by the University of North
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(A) Stability-Focused Design (B) Agility-Focused Design

High Ankle Collar Low Ankle Collar

Protective Upper Lightweight Upper

Stabilizing Outsole Flexible Sole

Figure 1 Two footwear designs worn by participants. (A) The hiking boot (Orthofeet© Women’s
Dakota Boot or Orthofeet© Men’s Ridgewood Boot) was designed to improve stability during movement,
including features such as a thick upper material to protect the foot, a high ankle collar to decrease
potential for excess ankle mobility, and a stabilizing outsole design. Photo credit: Orthofeet, Inc. (B) The
sneaker (Orthofeet© Women’s Coral Sneaker or Orthofeet© Men’s Lava Sneaker) was designed to allow
for agility and maneuverability, including features such as a flexible sole, lightweight and flexible upper
material, and a low ankle collar, all to reduce impedance to movement. Photo credit: Orthofeet, Inc.
Full-size Gal DOI: 10.7717/peerj.19930/fig-1

Carolina Chapel Hill Biomedical Sciences Institutional Review Board (IRB Number:
22-2295), and all subjects provided written informed consent prior to participating.

Equipment

A 16-camera motion capture system (Motion Analysis Corporation, Santa Rosa, CA, USA)
recorded kinematic data at 100 Hz. Participants walked on a dual-belt, instrumented
treadmill (Bertec, Columbus, OH, USA). We fitted participants with 40 retroreflective
markers placed as follows: 26 markers on the anterior and posterior iliac spines, medial
and lateral femoral condyles, medial and lateral malleoli, posterior calcanei, 1st and 5th
metatarsal heads, acromials, sacrum, 7th cervical spine, 10th thoracic spine, sternum,
sternal notch, an arbitrary location on the right scapula for asymmetry; and an additional
14 tracking markers placed in clusters on the lateral thighs and shanks. These data were
collected as part of a larger study on aging, gait, and balance, and only the posterior sacrum
and distal leg markers were used for analyses in this study.

Footwear
The shoes used in this study were provided by Orthofeet, Inc., a company that designs
footwear, insoles, and socks for consumers with mobility issues and/or foot conditions. We
focused our experimental comparisons in this study on two footwear types: a supportive
hiking boot and a flexible sneaker-type shoe (Fig. 1). Mechanical characteristics for each
footwear model used in this study are summarized in Table 2. For each of the footwear
types, we measured heel height and heel-to-toe drop using digital calipers. We measured
the stiffness of the insole and outsole using standard durometers, reported in Shore O and
Shore A units, respectively.

First, we selected a hiking boot with a more supportive midsole, a stiffer outsole, a
higher ankle collar, and a lesser heel-to-toe drop (Orthofeet© Women’s Dakota Boot
or Orthofeet© Men’s Ridgewood Boot; Fig. 1A). These characteristics are intended to
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Table 2 Mechanical properties of the footwear used in the study. Values are shown for heel height,
heel-to-toe drop, and insole and outsole stiffness for the “agility” and “stability” shoes, respectively.

“Agility” Shoe “Stability” Shoe
Heel height 24.4 mm 25.6 mm
Heel-to-toe drop 14.1 mm 9.8 mm
Insole stiffness 30 Shore O 30 Shore O
Outsole stiffness 40 Shore A 70 Shore A

promote stability by ensuring a stable center of pressure progression, enhancing traction
to prevent slipping, and reducing ankle motion, respectively.

Second, we selected a sneaker with lightweight construction, less stiff outsole, a lower
ankle collar, and a greater heel-to-toe drop (Orthofeet© Women’s Coral Sneaker or
Orthofeet© Men’s Lava Sneaker; Fig. 1B). These features are presumed to promote agility
via reducing energy requirement for foot progression, supporting natural foot motion, and
increasing ankle mobility, respectively.

There is great value in investigating the isolated effects of distinct shoe features that may
be intended to promote locomotor agility and/or stability. However, from a consumer
perspective, footwear designs rarely differ in singular modifications to their construction
and often benefit collectively from many design features. This is most certainly the case for
the shoes tested and compared in this study, with robust consumer-relevant differences not
isolated to single design features, thereby mimicking the actual product landscape. Thus,
we view the extent of these differences to be a strength and not a limitation of our study.

Procedures

We first computed the preferred walking speed (PWS) for each participant as the average of
four 30-meter overground walking trials timed using photocells (Bower Timing Systems,
Draper, UT, USA). Participants then completed a three-minute warm-up walk at their
PWS before data collection to acclimate to treadmill walking.

Participants completed two walking tasks in each shoe type, with shoe conditions
chosen in block-randomized order. First, participants completed a task that we considered
representative of demands on locomotor agility. Specifically, participants performed a
“figure 8” walking task (Fig. 2) five times with instruction to walk at a “comfortable” pace,
starting from and ending at still-standing, navigating around two cones placed 5 ft apart, in
a figure 8 motion. Second, participants completed a task known to precipitate locomotor
instability (Crenshaw & Grabiner, 2014; Lee, Bhatt ¢ Pai, 2016; Liu, Bhatt ¢ Pai, 2016;
Shelton et al., 2024). Specifically, participants walked on a dual-belt, instrumented treadmill
at their PWS while responding to a series of treadmill-induced slip perturbations (Fig. 3).
Participants experienced sudden treadmill belt decelerations at 6 m/s* lasting 200 ms in
duration, applied to five randomly-selected heel strikes per leg. Each deceleration event
was separated by at least 10 steps. Following each 200 ms perturbation, the treadmill belt
returned to the preferred walking speed at six m/s>. A MATLAB script (MathWorks, Natick,
MA, USA) used in previously-published studies controlled the treadmill belts during the
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Figure 2 Figure-8 walking task. The figure-8 walking task involved both turning and straight walking
and was used to assess performance during agility-intensive movements. Participants started from still
standing, positioned between two cones placed 5 ft apart. They were then instructed to walk at a “com-
fortable” pace, navigating a figure-8 pattern around the two cones before coming to a full stop at the start-
ing point. Each participant repeated this task five times in each shoe condition.

Full-size Gal DOI: 10.7717/peerj.19930/fig-2

stability task (Crenshaw ¢ Grabiner, 2014; Lee, Bhatt ¢ Pai, 2016; Liu, Bhatt & Pai, 2016;
Shelton et al., 2024).

It has been shown that specific footwear design characteristics can affect both user
performance (Edelstein, 1987; Lord et al., 1999; Stefanyshyn ¢ Nigg, 2000; Menz, Morris ¢
Lord, 2006; Menant et al., 2008; Tinoco, Bourgit ¢ Morin, 2010; Worobets & Wannop, 2015;
Aboutorabi et al., 2016; Menz, Auhl & Munteanu, 2016; Alirezaei Noghondar & Bressel,
2017) and user perception (Amiez et al., 2021). Further, the interaction between objective
locomotor performance and self-perceptions is well-established (Luo et al., 2009; Li ¢
Huang, 2022; Shelton et al., 2024). Thus, we also measured participants’ perceptions of their

performance during each task in each footwear condition using a custom questionnaire
(Article S1).

Data analysis

Primary outcome measurements from agility trials were average cycle completion speed,
length along the major longitudinal axis, width along the minor transverse axis, and
steps per cycle. Primary outcome measurements from stability trials were step width,
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Figure3 Treadmill-induced slip perturbation walking task. The stability-intensive walking task con-
sisted of walking while responding to unanticipated treadmill-induced slip perturbations. Participants
walked on a dual-belt, instrumented treadmill at their preferred walking speed. Slip perturbations were
applied to five randomly-selected heel strikes per leg and were induced via sudden treadmill belt deceler-
ations (6 m/s?, 200 ms in duration). Each deceleration event was separated by at least 10 steps. Following
each 200 ms perturbation, the treadmill belt returned to the preferred walking speed at an acceleration of
6 m/s’.

Full-size Gl DOI: 10.7717/peerj.19930/fig-3

step length, and margin of stability (MoS) both in the anteroposterior (MoSap) and the
mediolateral (MoSy.) directions. We analyzed marker data as previously described by our
group (Shelton, 2024; Shelton et al., 2024). We calculated MoS using published guidelines
(Hof, Gazendam & Sinke, 2005; McAndrew Young, Wilken ¢ Dingwell, 2012; Richards et al.,
2019). First, we filtered marker position data using a 4th order low-pass Butterworth filter
with a cutoff frequency of 12 Hz. We calculated the approximate location for the center
of mass (x) as the center of the polygon created by the anterior and posterior iliac spine
marker positions (Rosenblatt ¢» Grabiner, 2010; Hak et al., 2013; Peebles et al., 2017; de Jong
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et al., 2020). We next calculated extrapolated center of mass (xCoM) using:

X+ Vtreudmill
(O]

xCoM =x+

where x is the CoM position, x is the CoM velocity, Vieadmin is the treadmill belt velocity,
and wy is the natural frequency of an inverted pendulum model of the stance phase. We
calculated wy as:

g

where g is acceleration due to gravity and L is participant leg length. We estimated leg
length as the mean distance between the sacral marker and the heel marker at heel-strike.
We calculated MoS as the distance between the boundary of the base of support (BoS),
defined as the 1st metatarsal marker for anteroposterior MoS or as the 5th metatarsal
marker for mediolateral MoS, and the xCoM projected to the treadmill belt.

We extracted the MoS at heel strike of the left and right legs. For the normal walking
trials, mediolateral (MoSy) and anteroposterior (MoSap) MoS were averaged across
all strides. MoS outcomes were calculated at the instant of heel strike directly following
perturbation onset (i.e., the recovery step) and then averaged across all perturbation
occurrences within the trial (Martelli et al., 20165 Golyski et al., 2022) following published
guidelines for discrete perturbations.

Statistical analysis

Statistical analyses were conducted using R (R Core Team, 2024). One-way analysis of
variance (ANOVA) was used to assess differences between footwear conditions for primary
outcome measures from agility trials (steps per cycle, average cycle completion speed,
length along the major longitudinal axis, and width along the minor transverse axis) and
stability trials (step width, step length, MoSap, and MoSy1). Prior to conducting ANOVA,
the normality of residuals was evaluated using the Shapiro—Wilk test, and homogeneity of
variances was assessed using Levene’s test. If assumptions were violated, a non-parametric
Kruskal-Wallis test was applied instead. Effect size (ES) between footwear conditions was
computed as Cohen’s d, where values of 0.2, 0.5, and 0.8 indicated small, medium, and
large effects, respectively. An alpha level of 0.05 was used for all tests.

RESULTS

Primary outcome measures categorized by footwear condition for the fourteen adult
participants are summarized in Tables 3 (agility task) and 4 (stability task). These results
are also shown in Fig. 4 (agility task) and Fig. 5 (stability task).

Data on primary outcome measures from the agility task are reported for all 14 subjects
(Table 3 and Fig. 4). All primary outcome measures from the agility task (steps per cycle,
average cycle completion speed, length along the major longitudinal axis, and width along
the minor transverse axis) met the assumption of normality, as assessed by Shapiro—Wilk
tests (p > 0.05 for all variables). We found no significant differences between footwear
designs in average number of steps taken, average figure-8 speed, minor axis width, or
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Table 3 Primary outcome measures for the agility task (figure-8, n = 14). Values are reported as group
mean = group standard deviation. Effect size (ES) computed as Cohen’s d.

“Agility” Shoe “Stability” Shoe P ES
Step count 14.8 £2.3 15.0 £2.0 0.45 0.09
Walking speed (m/s) 0.79 £ 0.09 0.78 £ 0.08 0.27 0.12
Minor axis width (m) 1.12 £0.22 1.12 £0.22 0.78 0.03
Major axis length (m) 2.50 +0.35 2.53 +0.34 0.51 0.07

Table 4 Primary outcome measures for the stability task (treadmill-induced slip perturbations,
n = 12). Values are reported as group mean =+ group standard deviation. Effect size (ES) computed as

Cohen’s d.
“Agility” Shoe “Stability” Shoe P ES

Step width (m) 0.17 £+ 0.03 0.17 £ 0.04 0.43 0.12

Step length (m) 0.69 + 0.08 0.66 + 0.15 0.33 0.27

MoS,p (cm) at heel strike —0.48 + 10.62 —1.80+£ 11.32 0.51 0.12

MoSy (cm) at heel strike 15.65+ 1.86 16.01 & 1.66 0.38 0.20
A. B. C. D.
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Figure 4 Primary outcome measures for the agility task (figure-8, n = 14). Each data point indicates
the average performance of 5 runs. Grey lines connect data between footwear conditions within a given

participant. (A) Steps per cycle. (B) Walking speed (m/s). (C) Length along the major longitudinal axis

(m). (D) Width along the minor transverse axis (m).

Full-size Gl DOI: 10.7717/peer;j.19930/fig-4

major axis length. Six subjects took more steps when wearing the sneaker, six subjects took
more steps when wearing the hiking boot, and two subjects had an equal average step count
between footwear conditions. When wearing the sneaker, nine subjects walked faster, eight
subjects had a greater minor axis width, and five subjects had a greater major axis length.
Data on primary outcome measures from the stability task, due to marker occlusions,
are reported for 12 of the 14 subjects (Table 4 and Fig. 5). All primary outcome measures
from the stability task (step width, step length, MoSap, and MoSyr) met the assumption
of normality, as assessed by Shapiro—Wilk tests (p > 0.05 for all variables). We found no
significant differences between footwear designs for step width, step length, MoSap, or
MoSwmr. When wearing the sneaker, four subjects took wider steps, seven subjects took
longer steps, eight subjects had a greater MoSyp, and five subjects had a greater MoSyy.
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Figure 5 Primary outcome measures for the stability task (treadmill-induced slip perturbations, n =
12). Grey lines connect data between footwear conditions within a given participant. (A) Step width (m).
(B) Step length (m). (C) MoSap (cm). (D) MoSyy, (cm).
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DISCUSSION

Contrary to our hypothesis, the results of this study suggest that shoe design features
intended for stability versus agility minimally influence subject performance when faced
with various walking challenges. These minimal differences in performance may reflect the
relatively modest differences in mechanical properties between the two footwear conditions.
For instance, while the outsole stiffness of the stability shoe was substantially higher (70
Shore A vs. 40 Shore A), other mechanical differences, such as heel height and heel-to-toe
drop, were relatively small and may not have been sufficient to elicit marked performance
changes during the walking tasks evaluated. More specifically, design features intended for
agility or stability seemed to convey generalized performance characteristics on walking
tasks we would presume to disproportionately depend on those features. As we discuss
in more detail below, we suggest that our results may improve consumer confidence in
footwear selection—often thereafter called upon to meet the needs of a variety of activities
of daily living.

Differences in footwear design features minimally influenced objective subject
performance—at least that characterized by our selection of outcomes and specific tasks.
Conversely, subjects expressed differences in perception of performance that were task-
specific and reflected differences in the design features of these two shoes. Perceptions of
the hiking boot were mixed: some felt the shoe to be supportive, making them perceive
increased stability in their movements. However, others disliked the design features
intended for support, such as the “bulky” protective upper material or the high ankle collar
design which serve as prerequisites for ankle support. These design features, along with the
increased outsole stiffness (70 Shore A), may have contributed to the perception of rigidity
and reduced freedom of movement. These latter participants reported the impedance
to movement more noticeable than the structural benefits to stability. Conversely, for
the sneaker, participants reflected positively on the lightweight design and flexibility,
perceiving a greater ability to quickly react to and correct for perturbations. Further, only
one subject preferred the hiking boot over the sneaker, with most subjects preferring the
“maneuverability” afforded by the sneaker over the “stability”” afforded by the hiking boot.

Katugam-Dechene et al. (2025), PeerdJ, DOI 10.7717/peerj.19930 10/18


https://peerj.com
https://doi.org/10.7717/peerj.19930/fig-5
http://dx.doi.org/10.7717/peerj.19930

Peer

In summary thus far, despite a clear dichotomy of perception between the two shoe
designs, there were no significant differences in metrics of agility or stability between shoe
conditions. Studies have shown that specific footwear design characteristics can affect
user perception of stability and balance control. Amiez et al. (2021) found that specifically
designed balance shoes improved user-perceived stability and safety compared to personal
footwear. The consistency between our findings and those of Amiiez et al. (2021), suggests
that perceptual and mechanical features of footwear—such as outsole width and stability-
enhancing design—may influence not just objective measures of sway, but also perceived
safety and balance confidence. This dual effect has important implications for adherence
to fall-prevention footwear interventions in community settings.

A study by Park et al. (2017) found that increased sole stiffness significantly increased
user comfort but not performance or lower extremity kinematics during an agility-
dependent task. These findings parallel ours, showing that shoe characteristics intended
to influence stability and/or agility, such as differences in outsole stiffness, may instead
have greater impact on both comfort and perception of performance. Our shoes differed
most substantially in outsole stiffness, which likely influenced perception more than actual
performance, supporting Park et al’s (2017) conclusion that increased stiffness can alter
subjective comfort without measurable biomechanical changes. These findings imply that
when optimizing outsole stiffness in performance footwear, designers should consider
user-specific comfort thresholds, as perceived comfort may indirectly influence movement
quality, fatigue, or willingness to wear the shoe during extended play.

In a cohort of older adults, Azhar, Munteanu ¢» Menz (2023) found that differences in
footwear design (i.e., minimalistic vs. supportive) did not affect balance performance or
walking stability, but did affect perceived stability and reported comfort. Like Azhar,
Munteanu ¢ Menz (2023), we observed no significant difference in balance metrics
across footwear conditions, suggesting that postural stability in older adults may be
more resilient to modifications in footwear design than previously assumed. This may
indicate a reliance on compensatory sensorimotor strategies that override subtle footwear-
induced perturbations. These shared results also may suggest that for older adults without
significant mobility impairments, footwear choice can prioritize comfort and aesthetics
without compromising balance—a consideration that may improve long-term adherence
to fall-prevention footwear recommendations.

In a study on footwear and balance, Burke (2012) found a clear association between
perceived footwear comfort and neuromuscular control of balance in both healthy adults
and adults with musculoskeletal disorders. Another study found that in older adults, life
history, such as having experienced a fall, affects the perception of footwear comfort in
relation to the control of balance (Puszczalowska-Lizis et al., 2022). These findings point
to a complex interdependency between how users perceive footwear (i.e., perception of
comfort) and their performance in said footwear.

We suggest that when selecting shoes, user perception and comfort should be a greater
priority. Psychological factors such as balance confidence and self-efficacy, particularly in
older consumers, have been shown to influence inclination towards and participation in
physical activity (Talkowski et al., 2008; Cheval ¢ Boisgontier, 2021). Self-efficacy is defined
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as the belief that one can successfully achieve a specific outcome (Bandura, 1977). Further,
individuals with lower balance confidence show a greater prevalence of developing gait,
balance, and cognitive disorders over time, ultimately resulting in decreased mobility
(Vellas et al., 1997). Reduced physical activity has been identified as a behavioral risk factor
for many health ailments across all ages, including but not limited to heart disease, type
2 diabetes, and some cancers (Blair, 2009; World Health Organization, 2009); bone loss
(Kos et al., 2014), decreased motor control ability (Canu et al., 2019), weakened muscle
properties (Canu et al., 2019), and increased falls risk (World Health Organization, 2021b;
World Health Organization, 2021a). Thus, shoe design features that improve perceived
ability may improve locomotor health by increasing engagement in physical activity.
Importantly, even subtle mechanical differences, such as a higher heel-to-toe drop or stiffer
outsole, may influence user preference and perceived competence, which in turn could
shape long-term adherence to footwear use in real-world settings.

There are several limitations of this study. First and perhaps most influential, the two
tasks we interpreted to disproportionately rely on the stability versus agility characteristics
of footwear likely have significant overlap. For example, an agility-focused design may
also convey important benefits for locomotor stability, while a stability-focused design
may enhance confidence in performing agility tasks. Thus, it is difficult to isolate the two
locomotor phenomena being evaluated. Additionally, the specific range of mechanical
differences engineered into our footwear models may not have been sufficient to amplify
distinct effects across tasks. Future work could systematically vary design parameters, such
as stiffness, weight, and collar height, to better delineate the thresholds at which design
influences performance. Given our findings at the interface of objective performance and
perception, future experiments are warranted that continue to disassociate agility and
stability requirements across a wider range of locomotor tasks.

In addition, it is possible that significant differences could be identified between footwear
conditions in performance metrics using alternate outcome measures not included in this
study. These may include numerous alternative balance and agility outcomes or measures
of muscle excitation.

Lastly, our relatively small and heterogeneous sample may limit the generalizability of
our findings. Orthopaedic consumers represent a diverse population, varying widely in
age, demographic characteristics, underlying conditions, sex, and other factors. In close
collaboration with our study sponsor, we intentionally designed the enrollment strategy
to reflect this diversity. While we acknowledge that this approach is unconventional, we
believe it enhances the relevance and applicability of our findings.

Future work could more precisely tease apart agility and stability demands, potentially
by incorporating more diverse locomotor tasks, muscle activation metrics, or perturbation
types. Additionally, investigating how specific shoe features (e.g., sole stiffness, ankle collar
height) individually contribute to perceived versus actual performance may inform more
targeted footwear innovations. Longitudinal studies examining how changes in self-efficacy
or comfort perception influence physical activity levels and fall risk, especially in older
adults, could also extend the impact of this work into preventative and/or community
health.
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CONCLUSIONS

The results of this study suggest that shoe design features intended for agility or stability
offer minimal bias in walking performance towards either benefit, even on walking tasks
presumed to depend on those specific features. These results have the potential to guide
other footwear researchers to explore the interaction between subjective perception and
objective locomotor performance across broader populations and locomotor task types.

We suggest that our results may enhance consumer confidence in their selection of
footwear, which is thereafter called upon to meet the needs of a variety of activities of
daily living. Moreover, psychological factors like balance confidence and self-efficacy,
particularly in older consumers, can impact the inclination toward and participation
in physical activities. Footwear designs that enhance confidence and perceived capability
could potentially enhance locomotor health by encouraging greater engagement in physical
activities.
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