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ABSTRACT

Background. Milk is an important dietary source for a healthy and balanced diet,
owing to its rich content of proteins, fats, sugars, vitamins, and minerals. Due to the
importance of milk macronutrient content for consumers’ preferences, a multiplex
metabolomics-based approach using Fourier-transform infrared spectroscopy (FTIR)
and gas chromatography-mass spectrometry (GC-MS) fingerprinting platforms was
employed for the characterization of metabolites in different types of buffalo (BM),
cow (CM), goat (GM), and camel (LM) milk.

Methods. GC-MS and FTIR coupled to chemometric tools (multivariate data analysis)
were employed for the discriminative qualitative and quantitative analysis of BM, LM,
CM, and GM milk, targeting their primary metabolites. A side-by-side comparative
assessment of the performance of both the FTIR and GC-MS methods was implemented
in the light of green analytical chemistry principle (GAC) and white analytical chemistry

Submitted 23 April 2025 principles (WAC) using the 12 green analytical chemistry principles (12 GAC),
Accepted 24 July 2025 analytical greenness metric approach (AGREE), national environmental methods index
Published 17 September 2025 (NEMI), eco-scale assessment (ESA) and complementary green analytical procedure
Corresponding author index (ComplexGAPI), and the red green blue (RGB) 12 algorithms.

Mohamed A. Farag, Results. The milk types were qualitatively identified by visual inspection of their
mohamed farag@pharma.cu.cdu.cg characteristic FTIR spectra as a fingerprint for each milk type. Quantitatively, GC-
Academic editor MS revealed the presence of 87 peaks belonging to alcohols, amino acids/nitrogenous
Eder Lenardao compounds, fatty acids, organic acids, sterols, sugars, and vitamins. Sugars, mainly
Additional Information and lactose, appeared as the major component in all milk types. The highest lactose content

Declarations can be found on

page 21 was detected in CM 1.07-fold higher than LM making LM a potential alternative

for lactose intolerance. Both BM and CM were found to contain the highest organic

DOI'10.7717/peerj.19921 acid content 5.2-fold higher than that in LM, accounting for their acidity (sourness),

© Copyright while the lowest level was found in LM. On the other hand, LM had the highest
2025 Farag et al. vitamins content compared to other milks. Lastly, FTIR outperformed GC-MS in terms
Distributed under of greenness and whiteness, suggesting its utilization as an alternative to traditional

Creative Commons CC-BY 4.0 chromatographic techniques such as GC-MS.

OPEN ACCESS

How to cite this article Farag MA, Eid SM, El-Shamy S. 2025. Gas chromatography-mass spectrometry and Fourier-transform infrared
spectroscopy coupled to chemometrics for metabolome analysis of different milk types in the light of green analytical chemistry. Peer]
13:19921 http://doi.org/10.7717/peerj.19921


https://peerj.com
mailto:mohamed.farag@pharma.cu.edu.eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.19921
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.19921

Peer

Subjects Food Science and Technology, Green Chemistry

Keywords GC-MS, FTIR, Milk analysis, White analytical chemistry, Green analytical chemistry,
Chemometrics

INTRODUCTION

Milk is considered an important dietary source for a healthy and balanced diet, owing to
its richness in proteins, fats, sugars, vitamins, and minerals (Farag et al., 2021). Global milk
production is dominated by cow milk (CM) (81%), followed by buffalo milk (BM) (15%)
as reported by the Food and Agriculture Organization (FAO) and the Organization for
Economic Cooperation (OECD), in addition to goat milk (GM) (2.3%) and camel milk
(LM) (0.37%), which can be transformed into a variety of dairy products (Konuspayeva,
Faye & Duteurtre, 2022; Lund & Ahmad, 2021; Mejares, Huppertz ¢& Chandrapala, 2022).
Milk exhibits a pleasant, slightly sweet taste, accompanied by a faint aroma and a pleasant
aftertaste. Milk components and flavours are affected by several factors, such as the dairy
animal’s physiological condition, animal feed type, biological, and enzymatic changes in
milk, in addition to the environment surrounding the milking area (Al-Attabi, D’arcy &
Deeth, 2008).

In Western culture, CM is the most commonly used milk, described to have a mild
flavor and creamy sweet note. On the other hand, BM is more commonly used in human
nutrition in the developing countries such as India and Egypt (El-Salam, Mohamed &
El-Shibiny, 2011). It was found that milk components such as fats (7-9), lactose (5), and
proteins (3-5) (g/100 g milk) are more abundant in BM compared to CM (Coolbear et al.,
2022). Furthermore, milk products such as mozzarella cheese and ghee are considered to
be BM specialties (El-Salam, Mohamed ¢ El-Shibiny, 2011). GM contains the least lactose
content compared to both CM and BM, indicating its possible suitability for patients
suffering from lactose intolerance (Kapadiya et al., 2016; Meena, Rajput ¢ Sharma, 2014).
However, due to its peculiar distinctive unpleasant odour (Jia et al., 2020), GM might
discourage customers’ preferences.

LM is regarded as a vital nutritional resource in the deserts of Asia and Africa, and it
is increasingly recognized as a promising alternative for feeding both infants and adults,
as well as for the development of various dairy-based products. Despite its nutritive value
and several health benefits, it has not gained as much attention as CM (Bakry et al., 2021;
Ho, Zou & Bansal, 2022). LM has a dark white colour, sweet odour, and a sharp salty taste
that varies according to the drinking water abundance for camels as well as the feed type,
as typical in most milk types (Hammam, 2019). Compared to CM, LM is characterized by
a higher content of moisture, iron, vitamin C, and proteins, alongside a reduced lactose
concentration (Farag, El Hawary ¢ Elmassry, 2020). Furthermore, LM content of odd and
branched chain fatty acids alongside the low ratios of polyunsaturated fatty acids (n-6 to
n-3), potentiate LM to be considered a promising functional food (Wang et al., 2022). LM
shows high fat digestibility compared with BM and CM (Meena, Rajput ¢ Sharma, 2014).
Moreover, LM has been associated with a range of health benefits in individuals affected by
autoimmune diseases, tuberculosis, metabolic disorders, hepatitis, liver cirrhosis, cancer,
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Crohn’s disease, diabetes, autism, rickets, and rotavirus-induced diarrhea (Hammam,
2019).

Being a non-destructive simple technique, covering a wide spectral range (Attia et al.,
2023), several infrared (IR) spectroscopic-based methods have been developed for the
qualitative and quantitative analysis of milk (Balan et al., 2020; Conceicao et al., 2018; Eid,
el Shamy & Farag, 2022; Gomes Marques De Freitas et al., 2021; Goulden, 2009; Pralle ¢
White, 2020). Fourier-transform infrared spectroscopy (FTIR) coupled to chemometric
tools facilitated the quantitative determination of major milk components (Bahadi,
Ismail & Vasseur, 2021; Martel, Paquin & Bertrand, 2009). FTIR was used for identifying
adulterants in milk with high accuracy such as extraneous water, urea (Saji ef al., 2024),
foreign proteins (Souhassou et al., 2018), melamine, starch, vegetable or animal fats (Poonia
et al., 2016). Subsequently, FTIR was adopted as the standard analytical approach for milk
assessment using MilkoScan instruments, offering both quantitative and qualitative
molecular fingerprints through the identification of characteristic functional groups (Milk,
2000; Sanchez et al., 2007).

Gas chromatography-mass spectrometry (GC-MS) is considered an essential
metabolomics technique for the qualitative and quantitative analysis of primary metabolites,
with increased sensitivity for detecting compounds at lower concentrations (Baky et
al., 2022). Currently, GC-MS remains one of the most widely employed and effective
analytical techniques in metabolomics, owing to its robustness, high separation efficiency,
selectivity, and sensitivity (Beale et al., 2018). In addition, chemometric techniques were
applied to enhance the interpretation of GC-MS metabolite datasets, facilitating the
exploration of sample heterogeneity, marker identification, and classification. Among
these, unsupervised and supervised multivariate data analysis methods—such as principal
component analysis (PCA), hierarchical cluster analysis (HCA), and orthogonal partial
least squares discriminant analysis (OPLS-DA)—are commonly utilized for effective data
visualization and pattern recognition (Fahmy, EI-Shamy & Farag, 2023).

Due to the importance of milk macronutrient content for consumers’ preferences,
in addition to milk flavor, FTIR and GC-MS coupled to multivariate data analysis were
utilized for the qualitative and quantitative analysis of BM, CM, GM, and LM. The aim
of this study was to profile primary metabolites in milk from different types as presented
herein for the first time aided by multivariate data analysis for samples’ classification.

Consequently, the present study has two primary objectives. Firstly, GC-MS and
FTIR were introduced as complementary analytical techniques for the identification and
quantification of milk constituents in BM, LM, CM, and GM samples, with the added
capability of distinguishing among the different milk types. Secondly, the development
of a comparative evaluation of the greenness and whiteness of the employed methods
FTIR and GC-MS, utilizing the 12 principles of Green Analytical Chemistry (GAC),
Analytical GREEnness metric approach (AGREE), Eco-Scale Assessment (ESA), National
Environmental Methods Index (NEMI), Complementary Green Analytical Procedure
Index (ComplexGAPI), and the Red Green Blue (RGB) twelve algorithms. The analytical
methods (FTIR and GC-MS) greenness assessments aim to provide insights into their
relative environmental impact and suitability for analytical applications by assessing their
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safety, automation, cost, energy and solvent consumption, and wastes production. With
the aim to introduce a cost-effective, sensitive, eco-friendly, and economical alternative to
the traditional methods known for their non-green nature and high costs, particularly in
the field of food analysis.

Furthermore, the developed FTIR method can be used as complementary to the
developed GC-MS method to enhance quality control and ensure the authenticity of
milk products, particularly in distinguishing poorly labeled consumer products, such as
detecting mislabeled milk types. Additionally, the study provides insights that can support
compliance with regulatory guidelines of food quality control and its safety. Lastly, it
contributes to metabolites profiling, which could have potential implications for human
or animal health. Evaluating the greenness of analytical methods is essential, as it aligns
with the principles of sustainable development by reducing environmental impact and
conserving resources. Greener methods ensure safer practices for both operators and the
environment, while also reducing waste and costs, making them highly suitable for routine
applications in food analysis, particularly in economically constrained regions.

MATERIALS & METHODS

Milk samples

Milk samples were obtained at the farm level, where individual farmers provided fresh milk
collected from cows, buffaloes, goats, and camels across various farms. Prior to sampling,
the milk was thoroughly stirred in its container for 10 min to ensure homogeneity. Aliquots
were then drawn from the surface of the container using a sterilized dipper and transferred
into sterile test tubes. The collected samples were immediately stored at —20 °C until
further analysis. A total of 32 milk samples were collected in total, eight milk specimens
from each milk type different sources (BM 1-8, CM 1-8, GM 1-8, and LM 1-8) were used
in this study, their codes are listed in Table S1.

Instruments

GC-MS analysis was carried out using a Shimadzu GC-17A gas chromatograph coupled
with a Shimadzu QP5050A quadrupole mass spectrometer. Separation was achieved on
an Rtx-5MS capillary column (30 m length, 0.25 mm internal diameter, 0.25 um film
thickness). Samples were injected in splitless mode for 30 s, with the injector temperature
maintained at 220 °C. The column oven temperature was initially set at 38 °C. Helium
was used as the carrier gas. Mass spectra were recorded using electron ionization (EI) at 70
eV over a mass range of m/z 35-500. FTIR device model IRAffinity-1 (Shimadzu, Kyoto,
Japan) in the range of 4,600 to 400 cm™!. The ATR Unit was purged using nitrogen gas to
remove any interference from CO, or air humidity.

GC-MS analysis of silylated primary metabolites

The analysis of the primary metabolites (alcohols, amino acids/ nitrogenous compounds,
fatty acids, organic acids, sterols, sugars, sugar acids, sugar alcohol, and vitamins) was
performed following the procedure cited in Baky et al. (2022). 2.5 mL of each milk sample
was extracted using five mL pure methanol to precipitate proteins and sonicated for 30

Farag et al. (2025), PeerdJ, DOI 10.7717/peerj.19921 4/27


https://peerj.com
http://dx.doi.org/10.7717/peerj.19921#supp-2
http://dx.doi.org/10.7717/peerj.19921

Peer

min with continuous vortex shaking. An aliquot of 100 pL of the methanolic extract was
transferred into a screw-cap vial and evaporated to complete dryness under a gentle stream
of nitrogen gas. For derivatization, the dried residue was reconstituted in 150 pL of N-
methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), previously diluted with anhydrous
pyridine, and incubated at 60 °C for 45 min. Chromatographic separation was carried
out using a Shimadzu GC-17A gas chromatograph coupled to a Shimadzu QP5050A
quadrupole mass spectrometer. An Rtx-5MS capillary column (30 m length, 0.25, mm
inner diameter, 0.25, pm film thickness) was employed for the analysis. Sample injections
were performed in splitless mode with a purge time of 30 s. The injector temperature was
set to 220 °C. The column oven was held at 40 °C for 3 min. The temperature was then
increased at a rate of 12 °C/min to 180 °C, held for 5 min, and then increased at a rate of
40 °C/min to 220 °C, held for 2 min. Helium carrier gas flow rate was at one mL/min. Mass
spectra were obtained by electron ionization at 70 eV, using a spectral range (35-500) m/z
(El-Shabasy et al., 2024). Three different specimens from each milk sample were analysed
under similar conditions for biological replicates assessment.

Identification of primary metabolites and multivariate data analysis
Identification of primary silylated metabolites was performed by comparing their retention
indices (RI), calculated relative to a series of co-injected n-alkanes (Cs—C3) under identical
chromatographic conditions. Compound identification was further supported by mass
spectral matching against the WILEY and NIST library databases, and confirmed using
authentic standards when available. Prior to spectral matching, peak deconvolution
was conducted using the Automated Mass Spectral Deconvolution and Identification
System (AMDIS; http:/www.amdis.net/). Peak abundances (peak area of the total ion
chromatogram) were expressed as fold differences. Peak abundance mass lists generated
using the MS dial program version 4.0 (Saied et al., 2023) with GC-MS analysis software,
were exported to multivariate data analysis using SIMCA-P software. All variables were
mean-centered and scaled to Pareto variance before modelling. The unsupervised principal
component analysis (PCA) was performed initially to provide a general overview of the
variance among metabolites in milk specimens.

To further validate the findings from PCA and facilitate biomarker identification,
supervised orthogonal partial least squares discriminant analysis (OPLS-DA) was applied.
The performance of the chemometric models was assessed using the R? and Q? parameters,
where R? indicates the goodness-of-fit and Q? reflects the predictive ability of the model.
Outlier detection was carried out using the distance to the model in X-space (DModX).
Additionally, an iterative permutation test was performed to evaluate the statistical
significance of group separation and to rule out the possibility of random discrimination
(Baky et al., 2022).

Water activity and moisture content of milk samples

The water activity (a,,) of milk samples was determined at 25 °C using Aqualab 4TE
Aqualab, Pullman, CA, USA). The moisture content (MC) of the milk samples was
determined gravimetrically. The samples were transferred to an air oven (Thermo Electron
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Corporation, Waltham, MA, USA) and dried at 100 °C to constant weight for 2 h (Schuck
et al., 2008).

FTIR Spectral data recording and Multivariate data analysis

The infrared measurements were performed using an FTIR device (IRAffinity-1; Shimadzu)
in the range of 4,600 to 400 cm™!. The ATR unit was purged with nitrogen gas to eliminate
potential interference from atmospheric CO, and moisture. Subsequently, 20 wL of each

milk sample was applied directly onto the surface of the ATR crystal and analyzed against
a background spectrum recorded from a clean, empty prism. Exactly 45 FTIR scans were

recorded for each sample in one min to get a representative FTIR spectrum. The ATR unit
was cleaned using deionized water in between measurements.

For multivariate data analysis, baseline correction was performed (Fig. S1) for removing
background noise and instrument artifacts. Then the region between 4,600 and 400 cm™!
was selected, and each spectrum was mean-centered, and standardized. FTIR data were
exported to multivariate data analysis using SIMCA-P version 14.1 software package
(Umetrics, Umed, Sweden).

RESULTS & DISCUSSION

Water activity and moisture content

Water activity (a,,) and moisture content were initially determined for milk samples with
a,, values and found to be not significantly different (p > 0.05, one way ANOVA test), while
the moisture content scores varied from 84% in BM2 to 89% in BM1, (Table S2). The a,,
reflects the water availability; the greater the a,, value, the higher the water availability in

milk sample, which facilitates microbial and biochemical changes in the milk. There was

also a strong correlation between a,, and moisture content as previously reported (Schuck
et al., 2008).

FTIR fingerprinting of milk samples

FTIR spectral analysis (Fig. 52) revealed similarities between milk samples in context to the
main components, such as fats, proteins, polysaccharides, and water. However, differences
in the intensities of the FTIR bands were observed, corresponding to varying concentrations
of these components. FTIR spectral analysis revealed distinct molecular fingerprints
for buffalo (BM), cow (CM), goat (GM), and camel (LM) milk, with characteristic
absorption bands reflecting quantitative and qualitative differences in their fat, protein,
sugar, and water content, consistent with prior studies. FTIR bands at 2,870-1,464 cm™!
corresponded to -CH groups of the fat component detected in IR spectra of all milk
samples at different intensities, which is attributed to differences in fat levels in each milk
sample. Integration of FTIR spectral peaks from each milk sample further substantiated
the structural identification of key milk components within the mid-infrared (mid-IR)
region (Eid, el Shamy ¢ Farag, 2022). Several factors, including experimental settings,
preprocessing techniques, and the inherent variability in milk composition influenced by
diet, breed, lactation stage, and environment may affect FTIR spectrum in addition to
adulteration (Souhassou et al., 2018).
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The ATR-FTIR spectra revealed characteristic functional groups corresponding to
key milk constituents. A broad and intense absorption band observed between 3,700—
3,000 cm™~ ! was attributed to O—H stretching vibrations, indicative of water content (Santos,
Pereira-Filho ¢ Rodriguez-Saona, 2013). Sharp absorption bands in the region of 2,870—
1,464 cm™! corresponded to C—H stretching vibrations, primarily arising from lipid
components (Nicolaou, Xu & Goodacre, 2010). Protein content was evident from the
presence of amide I and amide II vibrational bands, detected at approximately 1,600—
1,548 cm ™! (Aernouts et al., 2011b), along with a distinctive O = P-O stretching band
near 1,100 cm™!, attributed to casein—the predominant milk protein (Etzion et al., 2004).
Lactose levels were reflected by absorption bands between 1,159-1,076 cm™ !, consistent
with sugar-related vibrations (Aernouts et al., 2011a; Al Otaibi, Bakir & Afkar, 2019;
Nicolaou, Xu & Goodacre, 2010; Yaman, 2020). Additionally, spectral features observed
within the 1,200-400 cm™! range corresponded to various functional groups, including
C-H bending, C = O stretching, and in-plane bending of C-O—H, which were associated
with a range of milk constituents such as carbohydrates, lipids, amino acids, and organic
acids (Santos, Pereira-Filho ¢ Rodriguez-Saona, 2013).

FTIR-based multivariate data analysis of milk samples
Unsupervised PCA and HCA of milk samples using FTIR

The integrated FTIR dataset was subjected to unsupervised PCA and supervised OPLS-DA
multivariate data analysis of the four milk types: buffalo (BM), cow (CM), goat (GM), and
camel (LM) milk. PCA was used for initial sample segregation and variance exploration,
while OPLS-DA enhanced discrimination and identified key markers from score, loading
and contribution plots. The analysis covered the fingerprint region (1,499-400 cm™!) and
the remaining spectral regions (4,600-1,500 cm™ ).

PCA score plots (Fig. 1A) encompassed by the first two components explaining 85.9%
and 8.28% of the variance, with LM and GM exhibiting distinct separation from BM
and CM, which clustered more closely. LM and GM milks have generally positive scores
for PC1, whereas BM and CM milks have negative scores. For the PC2 scores, milks of
CM and GM had positive scores, while those of BM and LM milks had negative scores.
An unsupervised PCA model (Fig. 1A) for BM, CM, GM and LM across the whole
FTIR spectra (4,600-400 cm™!) revealed a score plot where the first two components
highlighted GM separation in the upper right quadrant, while LM separated in the lower
right quadrant. While BM and CM remained slightly intermixed, another PCA model
(Fig. 1B) was developed using the fingerprint region (1,499-400 cm™!) and another PCA
model (Fig. 1C) using the remaining spectral regions (4,600—1,500 cm™ 1), but these models
failed to separate BM and CM completely, indicating the need for OPLS-DA for improved
resolution.

The 3D PCA plot (Fig. 1D) further confirmed this separation across four components.
This prompted a separate PCA analysis with clustering focusing on BM and CM for better
discrimination. HCA was used for samples clustering in an improved graphical manner and
to be further compared to results derived from the GC-MS analysis of the same samples.
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Figure 1 FTIR-based PCA score plot and HCA of all analyzed milk samples using FTIR for its finger-
print region 1,499-400 cm™"' and region from 4,600-1,500 cm™~'. FTIR-based PCA score plot and HCA
of all analyzed milk samples using FTIR for the whole IR region 4,600-400 cm~" (A), the fingerprint re-
gion 1,499-400 cm ™! (B) and region from 4,600-1,500 cm™! (C). 3D scores plot of the whole FTIR region
showing separated milk types. HCA of the whole IR region confirmed the ability of the model for differen-
tiation of 4 milk types (D).

Full-size & DOI: 10.7717/peer;j.19921/fig-1

HCA was applied to the FTIR spectra of milk types using the whole region of their FTIR
spectra, showing good ability of PCA model for separation of the four milk types.

Supervised OPLS-DA of all milk samples using FTIR

The OPLS-DA model, applied to all milk samples, produced a score plot (Fig. 2A) showing
clear segregation of LM and GM, with a complete separation of BM and CM confirmed
by appling the OPLS-DA model to BM and CM samples only, where they were completely
separated as shown in 3D scores plot (Fig. 2B).

The differentiation of buffalo (BM), cow (CM), goat (GM), and camel (LM) milk types,
as revealed by FTIR-based PCA and OPLS-DA analyses, is primarily driven by distinct
functional groups associated with their main components. LM appeared to be different
from other milk types as shown in the OPLS score plot (Fig. 2A) and in agreement with
PCA results (Fig. 1A).

Coefficient plots shown in Fig. 2C of all variables in milk types was used to visualize
the importance of variables in a model by showing the regression coefficients with their
corresponding confidence intervals. These plots help in understanding which variables
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Figure 2 (A) FTIR-based OPLS of all milk types (BM, CM, LM & GM) analyzed for the whole IR
region. (B) OPLS 3D scores plot of BM and CM types showing complete separation. (C) Coefficient
plots of all variables in milk types that visualize the importance of variables in a model by showing the
regression coefficients with their corresponding confidence intervals.

Full-size & DOI: 10.7717/peerj.19921/fig-2

significantly contribute to the model’s predictions and can be used to identify potential
outliers or influential variables. As shown in the coefficient plot (Fig. 2C), camel milk (LM)
is characterized by a high fat and protein content, as indicated by FTIR-based vibrational
absorption bands of the amide I (1,650-1,660 cm~ ') and amide IT (1,550 cm™ 1) groups,
which are associated with the protein secondary structure. Additionally, the fat content is
reflected by the C-H stretching vibrations of (-CH;) groups, observed as sharp absorption
bands in the region 2,846-2,964 cm™ L correlating with the higher fat levels in camel milk.
In contrast other milk types exhibited higher lactose content, evidenced by a sharp peak
at 1,076 cm™!, attributed to C-O stretching vibrations of lactose. Such difference in lactose
content may contribute to the better flavor profile of these milk types compared to camel
milk (Sun, 2009).

The OPLS-DA score plot (Fig. 2A) showed a good discrimination of GM from BM
and CM, which were later clustered together. Such segregation was attributed to the CH,
absorption band at ca. 2,927 cm ™! corresponding to fatty acids’ acyl chain and revealing the
higher fat composition in GM compared to other milk types as evidenced by the stronger
CH, stretching band. Goat milk stands out with a prominent CH2 band at 2,927 cm™!,
signifying higher fatty acid content, additional lipid-related bands at 1,747 cm™! (C=0
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stretching), and a unique C-O-C stretching band at 1,160 cm™! associated with glycolipids.
BM and CM were clustered together in a new OPLS model that shows complete separation
as shown in Fig. 2B. Buffalo and cow milk exhibit a significant lactose-related peak at
1,076 cm™! (C-O stretching), correlating with higher carbohydrate content, with CM also
showing a distinct N-H bending band at 1,540 cm ™! and BM featuring a P=0 stretching
band at 1,240 cm™! indicative of phospholipids, with CM showing slightly stronger
absorption, suggesting marginally higher component levels as shown in Fig. 2C. These
functional groups underscore the unique protein, fat, and lactose profiles that distinguish
each milk type, aligning with compositional variations reported in dairy science studies.

To evaluate the prediction performance of the FTIR-based chemometric models, a
prediction set was employed. A subset of milk samples (one replicate per milk type, n=4)
was reserved as an independent test set, separate from the training set used to build the PCA
and OPLS-DA models. The OPLS-DA models demonstrated strong predictive capability
indicating robust classification of milk types in the prediction set. The classification
accuracy for the test set was >95%, confirming the model’s ability to generalize to new
samples. This approach required no additional sample preparation or reagents, aligning
with the green analytical chemistry principles emphasized in the study.

Primary metabolites profiling of milk samples using GC-MS analysis
The six milk samples (BM1, BM2, CM1, CM2, GM, and LM) were further subjected

to GC-MS analysis post-silylation for primary metabolites profiling to aid in the exact
determination of low molecular weight metabolites heterogeneity in milk samples. Results
revealed quantitative and qualitative differences in peaks detected in all milk samples, with
a total of 87 identified peaks belonging to alcohols, amino acids/nitrogenous compounds,
fatty acids, organic acids, sterols, sugars, sugar acids, sugar alcohols, and vitamins (Table S3)
and (Fig. 3).

Sugars

Among low molecular weight metabolites, sugars represented the most abundant free
primary metabolite class in all milk samples. Sugars were represented by 23 peaks
contributing to milk’s sweet taste and flavor. The highest sugar level was detected in
CM, BM, and GM whereas LM contained the least sugar level. Lactose (milk sugar) was the
major sugar detected in all milk samples, with the highest lactose level accounted for CM2
representing 1.07-fold higher than that in LM which constituted the least lactose level, and
in accordance with FTIR results revealing that LM is most suited for lactose intolerance
(Cardoso et al., 2010). Variations in milk lactose levels could be attributed to the type of
feed (Zou et al., 2022) as well as several biological and physiological factors including dairy
animals’ health, energy balance, and metabolism (Costa et al., 2019).

Sugar alcohols

The highest sugar alcohol level was detected in LM with 2.2-fold higher than CM1. Myo-
inositol was the major identified sugar alcohol. LM encompassed the highest myo-inositol
level at 4-fold than that in CM1. Myo-inositol contributes to the sweet taste of LM posing
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Figure 3 Representative GC-MS chromatograms of primary metabolites in BM, CM, GM, and LM (A)
and relative percentile levels in analyzed milk specimens (B).
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it as a low-calorie source of milk compared to other milk types (Li et al., 2022; Fukuda,
2013).

Sugar acids
Sugar acids constituted a minor class in all milk samples, represented by glucuronic acid
derived from glycans hydrolysis through S-glucuronidase (Sunds et al., 2021).

Organic acids

Organic acids comprised the second major class of primary metabolites in milk. Organic
acids provide an acidic sour characteristic taste in addition to its natural preservative effect
(Zhu et al., 2020). Organic acids also aid in protein digestion and enhance its utilization
(Farag, Mohsen ¢ Abd El Nasser, 2018). The highest organic acids level was detected in
BM1 and CM2, whereas the lowest level was detected in LM. The organic acid level in BM1
was 5.2-fold higher than that in LM, accounting for the higher acidity (sourness) of other
milk types compared to LM. Citric acid and its isomer were the major forms detected in BM
and CM, compared with much lower level in LM. Citric acid level in CM2 was at 9.8-fold
level than in LM. Citric acid is formed as an intermediate product in the tricarboxylic acid
cycle or from the dairy animal’s diet and aids in carbohydrate metabolism (Li ¢ Jiang,
2019).

Fatty acids

Free fatty acids constituted the third major class of primary metabolites in all milk types.
CM1 showed the highest level of fatty acids versus lowest level in LM. The fatty acids
content in CM1 was at 1.13- fold higher than LM. Furthermore, an unidentified fatty
acid was found to be the predominant fatty acid across all milk samples, with particularly
high abundance in GM, consistent with the FTIR findings (Fig. S2). This was followed by
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the detection of long-chain saturated fatty acids—palmitic and stearic acids—which are
typically transferred from the animal’s diet to the mammary glands (Zhang et al., 2011).
Dietary enrichment with palmitic and stearic acids has been shown to enhance milk fat
yield and overall production (Loften et al., 2014). n-Decanoic acid (capric acid) detected
in all milk samples imparts a buttery and milky odour and flavour (Farag et al., 2020).
The medium-chained fatty acids and free fatty acids are produced via lipolysis of milk
triglycerides (Khattab et al., 2019).

Amino acids and nitrogenous compounds

Proteolysis or casein milk degradation by milk endogenous proteinases and proteolytic
enzymes leads to the formation of small and intermediate peptides and free amino acids.
These free amino acids serve as precursors of various aroma compounds (Khattab et al.,
2019). Amino acids and nitrogenous compounds were detected at highest levels in BM and
CM versus GM and LM. Valine, the major amino acid in all milk specimens, is involved
in metabolic pathways for the production of branched-chain fatty acids that contribute
to the flavor of dairy products (Caboni et al., 2019). Urea, the most abundant nitrogenous
compound, was found at elevated levels in BM1 and LM; 1.5-fold higher than that in GM.
An increase in proteins in dairy animals’ diets led to an increase in urea content in milk,
which impairs milk characteristics (Scano et al., 2020).

Vitamins
LM vitamins’ content was the highest compared to other milk samples. Major vitamins
included water-soluble ribonic acids (folic or vitamin B9) and ascorbic acid.

Alcohols and sterols

Alcohols constituted a minor class in milk, with glycerol as the major alcohol component
in all milk samples. Glycerol is released upon hydrolysis of triglycerides by lipases (De
Moura Aguiar et al., 2019) and likely contributes to the sweet note in milk (Kholif, 2019).
Cholesterol was the only detected sterol in milk at trace levels in all specimens. Moreover,
LM fat globules are small, which explains their rapid digestion. Meanwhile, LM plays a
significant role in lowering cholesterol levels, and human intake of LM is beneficial to
human health in the long term (Bakry et al., 2021).

Miscellaneous

Phosphoric acid was the only inorganic acid detected in all milk samples, detected at high
levels in BM and CM compared to lower levels in GM and LM. Phosphoric acid level in

BM2 was at 3.7-fold compared to GM. Phosphoric acid is characterized by its tangy taste
(Hulsebus-Colvin, 2015). The inorganic phosphorus is generated during lactose formation
in the mammary gland and subsequently detected in milk (Scano et al., 2020).

GC-MS based multivariate data analysis of milk samples

Although differences in low molecular weight primary metabolites composition could be
revealed from simple visual inspection of GC-MS chromatograms (Fig. 3), the dataset
was analysed using multivariate data analysis to assist in samples discrimination, markers
identification, and to further be compared with FTIR spectra derived models (Fig. S2).
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Unsupervised PCA and HCA data analysis of milk samples using
GC-MS

PCA and HCA were applied to assess variance within milk samples in an unsupervised
manner. PCA was employed for samples segregation (discrimination) and markers
identification. The PCA score plot (Fig. 4B) was set by two orthogonal PCs with PC1
accounting for 49% of the total variance versus PC2 accounting for 18% variance. The PCA
score plot succeeded in segregating milk samples into three main clusters in accordance
with FTIR dataset modelling (Figs. 1 & 2). The GM and LM were well segregated, whereas
BM and CM were clustered together. The markers appeared in the PCA loading plot
(Fig. 4C) responsible for such segregation included myo-inositol which was found to be
abundant in LM contributing to its sweet taste, in addition to the unknown fatty acid
that was high in GM contributing to its goaty odour, compared to the richness of lactose,
phosphoric acid and citric acid in BM and CM accounting for their sweet slightly sour
taste.

Supervised OPLS-DA of milk samples using GC-MS

Two supervised OPLS-DA models were further constructed as another attempt to identify
better markers and to improve the classification potential of milk samples. The first
OPLS-DA model constituted of LM versus CM and BM together in one class group. The
OPLS-DA score plot (Fig. 5A) showed better discrimination as LM was segregated from
CM and BM, which appeared to cluster together with high prediction power of Q2 = 0.91
(Fig. 5A), and in accordance with FTIR results. The S-loading plot identifies compounds
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(markers) responsible for samples segregation. The S-loading plot (Fig. 5B) revealed that
lactose and citric acid could be identified as the most discriminatory variables for both BM
and CM that could contribute to BM and CM sweet slightly sour taste, though it failed
to identify a clear marker for LM. Additionally, a second supervised OPLS-DA model
was constructed to improve the classification potential of GM versus CM and BM. The
OPLS-DA score plot (Fig. 5C) showed better separation of GM from clustered BM and
CM specimens with prediction power of Q2 = 0.66 (Fig. 5C) confirming FTIR results.
The S-loading plot (Fig. 5D) revealed that citric acid was more enriched in BM and CM
contributing to their slightly sour taste, but still failed to identify a clear marker for GM. The
OPLS-DA score plots of both FTIR and GC-MS datasets succeeded in the discrimination
of LM and GM from each other and other milk types (BM and CM).

Lastly, a supervised OPLS model constructed to discriminate between CM versus BM
showed values for Q2 = 0.22, and p value = 0.26, indicating a non-significant model
due to its large p-value and low prediction power (Fig. 54). The FTIR-based model
identified lactose and proteins as markers for BM and CM, while GC-MS identified lactose,
phosphoric and citric acids as markers for BM and CM. Phosphoric and citric acids were not
detected in FTIR, highlighting the benefit of complementing the two different spectroscopic
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techniques in milk types’ classification. Likewise, FTIR-based models identified proteins
and fats as markers for LM versus the myo-inositol revealed when using GC-MS.

Greenness profiles assessment

Analytical methods’ greenness assessment such as the 12 GAC, AGREE, NEMI, ESA, and
ComplexGAPI algorithms (Attia et al., 20245 Gatuszka et al., 2012; Keith, Gron ¢ Young,
2007; Nowak et al., 2020; Pena-Pereira, Wojnowski ¢ Tobiszewski, 2020; Plotka-Wasylka &
Wojnowski, 2021), were employed for the comparative assessment of FTIR and GC-MS
analytical methods. The analytical methods’ greenness assessment aims to provide insights
into the relative environmental impact and suitability for analytical applications of both
the FTIR and GC-MS in terms of their safety, automation, cost, energy and solvent
consumption, and wastes production. The analytical methods’ greenness assessment
seeks safe, fully automated, cost-effective, fewer sampling steps, and both the least waste
production and solvents consumption, in addition to eliminating the use of hazardous
substances. The analytical methods’ greenness assessment aims to introduce a cost-effective,
sensitive, eco-friendly, and economical alternative to the traditional methods known for
their non-green nature and high costs, particularly in the field of quality control and food
analysis.

Challenges and opportunities according to the 12 GAC principles
The FTIR coupling to chemometric tools showed comparable performance relative to
GC-MS for milk components and analysis used, as revealed from the derived score plot.
GC-MS is one of the most useful techniques for the analysis of volatile and primary
metabolites, and pharmaceutical ingredients, and extends herein to include milk analysis
targeting its low molecular weight components for the first time. Nevertheless, from
the GAC (Gatuszka, Migaszewski ¢ Namiesnik, 2013) point of view, GC-MS sufferS many
obstacles such as several experimental trials leading to the increase in time of analysis, waste
generation, risk of exposure to hazardous gases, energy consumption, and cost (Armenta ¢
de la Guardia, 2016; Korany et al., 2017; Lehotay et al., 2001). In contrast, FTIR was found
to reduce such constraints being a greener vibrational spectroscopic technique that better
meets the 12 principles of (GAC) (Gatuszka, Migaszewski ¢» Namiesnik, 2013) as follows:

Direct analytical technique: FTIR is considered as a straightforward technique used
for the qualitative and quantitative analysis of solid, liquid, and gas samples without
pretreatment (derivatization and lyophilization). The active functional groups exhibit
unique bands in the FTIR fingerprint region (1,500-400 cm™!), permitting metabolites
rapid identification. In the current study, milk samples were analysed by placing samples
directly on the ATR unit of the FTIR device, while in case of GC-MS, milk samples were
lyophilized and derivatized before analysis (additionally needing several steps). However, it
is not possible to conduct metabolite identification for all metabolites by FTIR, since major
functional groups are common to diverse biomolecules. Furthermore, the quantitative
analysis also implies calibration process, at sensitivity and specificity usually much lower
than that of GC-MS technique.

Minimal sample size and number: FTIR spectra provide valuable insights into the
chemical structure and concentration of metabolites by identifying functional groups
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through characteristic absorption bands and their relative intensities. In contrast, GC—-
MS is a chromatographic technique that requires extensive method development and
optimization such as temperature programming, sample derivatization, and adjustment
of retention gaps to achieve effective separation. These requirements can limit its
throughput when analyzing large sample sets, especially compared to the more rapid
and straightforward IR-based methods. As a result, multiple experimental trials and
considerable sample volumes are often necessary to establish a reliable calibration model
for GC-MS. In contrast, FTIR spectra were obtained rapidly using a single scan as each
spectrum is considered a fingerprint. Finally, the samples size required to get representative
results is reduced compared to GC-MS.

In situ measurements: The presence of handheld FTIR instruments permits the
continuous measurement of samples in a cost-efficient manner. Thus, enabling the transfer
from the benchtop laboratory experiments to onsite measurements, while GC-MS is a
benchtop device that requires samples transfer to the laboratory.

Integration of analytical processes: FTIR and GC-MS integration with chemometric
tools permits multiple component determination in one sample, reducing the number of
samples required for full analysis and consequently minimizing energy consumption and
waste generation.

Automated and miniaturized methods: The benchtop FTIR and GC-MS devices are
equipped with an autosampler permitting the automated analysis of several milk samples
on a large scale. Also, FTIR can be miniaturized by being coupled to nanotechnology in
surface-enhanced infrared spectroscopy that is considered as lab on a chip device (Eid, el
Shamy & Farag, 2022).

No derivatization step: The compound intermolecular chemical bonds and functional
groups have unique IR vibrational frequencies depending on their structures (Moore,
2016). Consequently, the compound (metabolite) IR spectrum is considered a characteristic
fingerprint, allowing its instant analysis without derivatization. However, the derivatization
step is needed in GC-MS analysis to ensure the volatilization of primary metabolites and
to increase their thermal stability to improve their identification and detection.

Minimal analytical waste: FTIR analysis is a straightforward technique conducted for
samples without any additional solvents in either solid, liquid, or gas conditions. In the
current FTIR method, only 20 pL from each milk sample was used to obtain the results.
Each sample was measured for less than one minute permitting short operation time, less
energy consumption, and less waste generation compared to a longer time for analysis (30
min) in the case of GC-MS.

Multi-analyte or multi-parameter methods: In FTIR analysis, compounds can be
identified through their unique absorption patterns, particularly within the fingerprint
region. When combined with chemometric tools, FTIR enables resolution of overlapping
bands and allows efficient extraction of detailed chemical information from each sample.
In contrast, GC-MS offers highly accurate identification and quantification of multiple
metabolites; however, the development of robust methods for multi-component analysis
is often time-consuming, technically complex, and associated with greater solvent usage
and waste generation.
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Minimal energy usage: In the current milk analysis, FTIR device can perform more
than 45 scans for each sample in 1 min and provide the result permitting short operation
time along with less energy consumption. Also, the portable FTIR instruments are battery-
powered, while GC-MS instruments are laboratory benchtop device that need a longer
time for the method development and conditions optimization consuming much more
energy.

Reagents obtained from a renewable source: Helium and hydrogen are utilized in
GC-MS analysis as carrier gases, most of which are expensive and subjected to availability
problems. In addition, the use of derivatizing agents (pyridine) solvent is not favored due
to its health hazards. In contrast, FTIR can be used for the analysis of samples without
pretreatments (derivatization) in their solid, gas, or liquid condition. Moreover, many
samples do not need solvents and can be measured using the FTIR devices by direct mixing
with KBr for qualitative purposes as in milk samples analysis.

Elimination of toxic reagents: FTIR device has the advantage of samples analysis
without derivatization, whether in solid, gas, or liquid state, permitting the elimination of
toxic solvents. Milk samples were placed directly on the ATR cell and measured without
pretreatment. However, in the GC-MS analysis, the derivatization step and its toxic reagents
(pyridine) could not be eliminated.

Operator safety: FTIR analysis is a safe analytical method with advantages for the
operators (analysts) in terms of rapid analysis, multicomponent determination in a single
run, small volumes of samples, minimal solvents, and minimal waste generation, although
the mobile phase (carrier gas) in GC-MS analysis requires special handling along with
samples derivatization as in primary metabolites profiling. Most of these gases and solvents
as pyridine are health-hazardous volatiles, obligating the analysts to wear face masks with
filters.

While LC-MS is indeed a powerful technique for analyzing polar and semi-polar
compounds and avoids the need for derivatization, the availability of GC-MS in our
laboratory, along with its simpler sample preparation and less stringent operational
requirements made it the preferred choice for this large scale metabolomic study.

Greenness evaluation according to AGREE

AGREE is a simple and flexible assessment approach concerned with the 12 principles of
GAC. It expresses the 12 principles of GAC through numerical weights, each is given a score
(0-1), the final score is obtained by calculating the average of all the 12 principles scores,
which also could be performed using Analytical GREEnness calculator (free software)
(Pena-Pereira, Wojnowski & Tobiszewski, 2020). The results are represented as clock-like
coloured pictogram. Results range from zero (dusky red) to one (dusky green), and results
that are closer to 1 are greener (better). The results in Table 1 indicate that the FTIR method
is greener than GC-MS, as the FTIR attains 0.89 while the GC-MS attains 0.46.

Greenness evaluation according to NEMI
NEMI is one of the earliest methods used for greenness evaluation concerned with four
different perspectives (Keith, Gron ¢ Young, 2007). It is represented in the form of a circle
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Table 1 Comparative study between the FTIR and GC-MS methods based on AGREE, NEMI, ESA, ComplexGAPI, and RGB 12 algorithms.

Parameters FTIR method GC-MS
Application Buffalo, Cow, Goat, and Camel milk Buffalo, Cow, Goat, and Camel milk
AGREE metric*

NEMI tool
PBT Hazardous
Corrosive  Waste
ESA Score” 98 60
ComplexGAPI tool®

e

AR

(continued on next page)
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Table 1 (continued)

Parameters

FTIR method GC-MS

RGB 12Algorithm

Method: FTIR

G1: Toxicity of}
reagents

Method: GC-MS

R1: Scope of G1: Toxicity of
-effici
application L reagents 20.0 B1: Cost-efficiency 50,0

R1: Scope of
application

100.0

B1: Cost-efficiency 80,0

R2: LOD and G2: Amount of B2: Time.

o 90.0 R 1100.0 e 110.0

G2: Amount of
R2: LOD and. B2: Time-
*100.0 reagentsand 30,0 i

Loq .
waste

efficiency 40-0

waste:

G3: Energyand
other media

G3: Energy and

R3: Precision 90,0 83: Requirements 100.0 R3: Precision 90.0 25.0 83: Requirements 17.5

other media

G4: Direct’ B4: Operational 96.7
impacts o simplicity 29"

94.8 96.7
97.1

B4: Operational

G4: Direct 46.7

impacts * 9 simplicity

9L 30.4 36.7

Ra: Accuracy 99,0 39.3

Ra: Accuracy 99,0

Notes.

*AGREE Assessment evaluated by using the Analytical GREEnness metric approach and software.

bPenalty points calculation according to the analytical Eco-Scale score.

¢ComplexGAPI Assessment evaluated by using the Analytical ComplexGAPI metric approach and software.
4RGB12 whiteness Assessment evaluated by using the Analytical RGB 12 algorithm.

divided into four quadrants (fields), labelled as hazardous, corrosive, waste, and PBT, each
field is coloured green on fulfilling these requirements. The first field requirements ensure
that the chemicals used are not classified as PBT, EPA’s TRI Agency. The requirements
of the second field ensures that the chemicals used in the analytical method are not
considered as hazardous chemicals according to RCRA’s U, P, F, D or TRI. The third
field is highlighted green if the method’s pH is not corrosive. The fourth field is marked
green if the waste generated is less than 50 g. The FTIR method pictogram showed four
green quadrants indicating a greener method, compared to GC-MS which showed only
one unfulfilled quadrant attributed to the use of hazardous solvents during method
development (Table 1).

Greenness evaluation according to ESA

ESA is a semiquantitative tool for the assessment of method greenness (Gatuszka et al.,
2012) based on deducing penalty points (analytical method parameters) that do not align
with the 12 GAC principles from a score of 100. The FTIR was found to be greener (98)
than GC-MS (60) as evidenced by ESA (Table 1).

Greenness evaluation according to ComplexGAPI

Recently, ComplexGAPI has gained trust and recognition as a semi-quantitative tool.
ComplexGAPI stands out for its simplicity and enhancement of the existing GAPI metric.
ComplexGAPI integrates an additional hexagonal field into the original GAPI graph,
following the CHEM21 parameters, representing the steps (procedures) of the analytical
method (Plotka-Wasylka ¢ Wojnowski, 2021). Therefore, ComplexGAPI parameters cover
all the steps of the analytical method, including sampling, sample preparation, analysis,
preservation, transportation, and storage. The FTIR method demonstrated superior
greenness compared to GC-MS, as evidenced by greener pictograms and low E-factor.
This indicates minimal waste generation, more positive environmental impact, and better
sustainability (Table 1).
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Whiteness profiles assessment

Nowak et al. (2020) introduced a straightforward quantitative method known as the Red
Green Blue (RGB) 12 algorithm for assessing the analytical method whiteness (WAC).
This tool simplifies the evaluation of the analytical methods’ whiteness according to
the 12 WAC considerations, providing a clear assessment of sustainability. The RGB 12
algorithms are arranged into three main groups: red, green, and blue, with each group
containing four algorithms. Specifically, the first group is the green group (G1-G4)
concerned with the critical GAC parameters, such as toxicity levels, reagent and waste
quantities, energy consumption, and direct impacts on human health, animal welfare, and
genetic modifications. The second group, known as the red group (R1-R4), is concerned
with the validation parameters such as the scope of application, limits of detection (LOD)
and quantification (LOQ), accuracy, and precision. The third group is the blue group
(B1-B4), concerned with aspects related to cost-effectiveness, time efficiency, and practical
or economic feasibility. The whiteness assessment indicates the degree of adherence to
the WAC principles, which is determined by aggregating the scores across all three areas
(colours) using the RGB algorithm. The FTIR method showed exceptional whiteness,
achieving 97.1, whereas the GC-MS method scored 54.8 (Table 1). These scores indicated
the superiority of the FTIR method over GC-MS not only in terms of greenness, whiteness,
sustainability, and analytical effectiveness but also in terms of economic and practical
feasibility.

Finally, this study introduced a novel approach to milk analysis by integrating Fourier-
transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry
(GC-MS) exemplified by buffalo (BM), cow (CM), goat (GM), and camel (LM) milk,
offering a more holistic analysis than single-method studies prevalent in the literature.
By leveraging FTIR’s rapid, non-destructive fingerprinting of functional groups (e.g., fats,
proteins, lactose) and GC-MS’s high-resolution detection of 87 primary metabolites (e.g.,
myo-inositol, citric acid, phosphoric acid), coupled with chemometric tools (PCA, OPLS-
DA), we achieved robust discrimination of milk types and identified unique markers,
such as myo-inositol for LM and lactose for BM/CM. A key contribution lies in the
systematic greenness and whiteness assessment using five metrics (12 GAC principles,
AGREE, NEMI, ESA, ComplexGAPI) and the RGB 12 algorithm, demonstrating FTIR’s
superior sustainability (e.g., AGREE score: 0.89 vs. 0.46 for GC-MS) and its potential as
an eco-friendly alternative for routine quality control, particularly in resource-constrained
settings—a dimension rarely explored in prior milk analysis studies. Additionally, our
focus on camel milk, which revealed its high myo-inositol content and low lactose
levels via GC-MS, complements FTIR’s findings of elevated fat and protein content,
supporting LM’s suitability for lactose-intolerant individuals and its therapeutic potential
for conditions like autoimmune diseases and diabetes. By addressing practical challenges
in milk authenticity and quality control, such as detecting mislabeled milk types, this dual
approach combines FTIR’s high-throughput screening capabilities with GC-MS’s in-depth
research applications, offering a sustainable and practical framework for dairy industries
that advances both food safety and nutritional research.
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CONCLUSIONS

This study presents a multiplex metabolomics-based approach using FTIR and GC-MS
fingerprinting platforms (coupled to chemometric tools) for the characterization of
metabolites in different types of milk (BM, CM, GM, and LM). Secondly, a side-by-side
comparative assessment of the performance of both the FTIR and GC-MS methods
was implemented in the light of green analytical chemistry principle (GAC) and white
analytical chemistry principles (WAC). Both FTIR and GC-MS-based multivariate data
analysis succeeded in discriminating LM and GM from other milk types, although they
failed to distinguish between BM and CM, confirming their similar chemical composition.
The FTIR-based analysis confirmed proteins and fats as major discriminators of LM,
while GC-MS revealed myo-inositol, a sugar alcohol, as the main discriminator in LM.
The FTIR-based analysis revealed that lactose and protein were the major components in
BM and CM, while the GC-MS-based model revealed markers such as lactose, citric, and
phosphoric acid as major components in BM and CM. Both citric and phosphoric acids
were not detected using IR warranting this complementary approach in milk analysis. LM
is considered one of the potential alternatives to feed infants, adults, and people allergic
to CM. Our results that LM contains the least lactose level presents further added value
for people suffering from lactose intolerance. In conclusion, both FTIR and GC-MS-based
multivariate data analysis models identified lactose, proteins, citric and phosphoric acids
as markers for BM and CM, while proteins, fats, and myo-inositol were identified as
markers for LM. We do admit the limitation of the sample size, which is crucial for more
robust conclusions, particularly to minimize the risk of bias due to the factors affecting
milk components such as the dairy animal’s physiological condition, animal feed type,
biological, and enzymatic changes in milk, and the environment surrounding the milking
area. This study serves as an initial exploration utilizing a comparative metabolomic
approach, and future research will involve a larger and more diverse sample from other
origins or to assess other variables related to milk quality.
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