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ABSTRACT

Background. Tumor-associated macrophages (TAMs) are a type of tumor-infiltrating
immune cell that play a crucial role in tumor progression. However, the roles of TAMs
and their regulatory mechanisms in lung adenocarcinoma (LUAD) remain poorly
understood. Therefore, we aimed to develop a novel TAM-related prognostic signature
to predict survival outcomes and constructed a IncRNA-miRNA-mRNA network based
on these genes.

Methods. Transcriptomic data, clinical data, and single-cell RNA-sequencing (scRNA-
seq) data were obtained from LUAD patients were obtained from the Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differentially
expressed-IncRNAs (DE-IncRNAs), miRNAs (DE-miRNAs), and mRNAs (DEGs) were
identified in LUAD. Differentially expressed TAM-related genes (DE-TAMGs) were
selected and used to construct prognostic signatures. A TAM-related risk score was
calculated, and patients were stratified into high- and low-risk groups based on the
median risk score. Then, biological functions, immune characteristics, and responses
to immunotherapy and chemotherapy were assessed across the risk groups. A TAM-
related IncRNA-miRNA-mRNA network was constructed based on DE-IncRNAs, DE-
miRNAs, and TAM-related signatures. Quantitative polymerase chain reaction (QPCR)
was used to validate the expression of TAM-related genes, and scRNA-seq analysis was
used to examine cell-type-specific expression of these genes.

Results. A total of 316 DE-IncRNAs, 162 DE-miRNAs, and 2,601 DEGs were screened
in LUAD. Among these, 147 DE-TAMGs were selected. KLF4, GAPDH PDGEFB,
TIMP1, CD74, and CCL20 were identified as the key prognostic markers in LUAD.
Patients were divided into high- and low-risk groups based on the median risk score.
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Enrichment analysis revealed several cancer-related pathways associated with the high-
risk group, and significant differences in terms of immune cell infiltration, HLA-
related gene expression, immune checkpoints expression, and therapeutic responses
were observed between high- and low-risk groups. We also constructed a IncRNA-
miRNA-mRNA network, which included 36 DE-IncRNAs, 23 shared miRNA, and four
TAMGs (PDGFB, CD74, KLF4, and CCL20). The qPCR results indicated the increased
expression of PDGFB, CD74, and KLF4 but decreased expression of CCL20 in LUAD
tumor tissues compared with adjacent normal tissues. scCRNA-seq analysis revealed that
CD74, KLF4, CCL20, PDGFB were specifically expressed in macrophages.
Conclusions. In conclusion, we identify the TAM-related prognostic signature that
predicts the survival outcome in patients with LUAD. This signature may offer a novel
effective therapeutic strategy for LUAD patients.

Subjects Bioinformatics, Immunology, Oncology

Keywords Lung adenocarcinoma, Tumor-associated macrophage, LncRNAs, Prognosis, Immune
cell infiltration

INTRODUCTION

Lung cancer remains the second most commonly diagnosed cancer and the leading cause
of cancer-related death worldwide, with 2.2 million new cancer cases and 1.8 million
deaths in 2020 (Sung et al., 2021). Non-small cell lung carcinoma (NSCLC) is the most
common subtype of lung cancer, consisting of lung adenocarcinoma (LUAD), squamous
cell carcinoma (SCC), and large cell carcinoma (Herbst, Heymach ¢ Lippman, 2008). Over
the past two decades, advancements in targeted therapy and immunotherapy have led
to declines in lung cancer incidence (Jasper et al., 2022; Mithoowani ¢ Febbraro, 2022).
However, survival rates for patients with advanced NSCLC remain lower (Siegel ef al.,
2022; Siegel et al., 2023). Therefore, understanding of genetic alterations driving NSCLC
initiation and progression is important.

Lung cancer is a highly heterogeneous disease that closely links to the complex
tumor microenvironment (TME) (Alforki et al., 2019). The TME consists of cancer cells,
infiltrating immune cells, stromal cells, and other cell types together with noncellular
tissue components, all of which play an crucial roles in tumorigenesis, development,
aggression, metastasis, and drug resistance (De Visser ¢ Joyce, 2023; Xiao & Yu, 2021).
Tumor-associated macrophages (TAM) are a major population of tumor-infiltrating
immune cells, exhibiting dual-roles in tumor progression with two major phenotypes,
M1, the tumor-suppressing subtype, M2, the tumor-promoting type (Franklin et al., 2014;
Mantovani et al., 2017; Murray et al., 2014). Recent studies have shown that TAM can
remodel the tumor immune microenvironment, further influencing responses to targeted
therapies and immunotherapies (Boutilier ¢ Elsawa, 2021; Dai et al., 2020; Kumari ¢ Choi,
2022; Pan et al., 2020b). Therefore, exploring novel regulatory mechanisms of TAMs that
are linked to tumor initiation, development, and prognosis is essential.

Long non-coding RNAs (IncRNAs) are a class of non-coding RNAs (ncRNAs) longer
than 200 nucleotides (nt) that have little or no protein-coding capacity (Osielska ¢
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Jagodziriski, 2018; Yan ¢ Bu, 2021). Typically, IncRNAs act as competitive endogenous
RNAs (ceRNAs), binding to micro RNAs (miRNAs) and competing for their target
genes (Wang et al., 2019). Emerging evidence has indicated that IncRNAs play crucial
roles in tumorigenesis and metastasis (Cheng et al., 2022; Hua et al., 2019; Lu et al., 2017).
Specifically, M2 macrophage-derived exosomal IncRNAs contribute to resistance to
radiotherapy in NSCLC cells (Zhang et al., 2021). Additionally, LINC00273 and LINC00963
mediate the communication between LUAD cells and TAMs, promoting tumorigenesis
and progression (Chen et al., 2021; Wang et al., 2023), while IncRNA SNHG7 mediates M2
polarization in macrophages, enhancing docetaxel resistance in LUAD (Zhang et al., 2022).
Abundant evidence revealed that IncRNAs play important roles in lung cancer, particularly
in influencing the fate of TAMs in TME.

In the present study, we identified the TAM-related genes (TAMGs), IncRNAs, miRNAs,
and their regulated network associated with the prognosis of LUAD. We also explored
their prognostic impact, effects on tumor immune microenvironment, and therapeutic
sensitivity in LUAD.

MATERIALS AND METHODS

Data collection and processing

The RNA-seq data and miRNA-seq data of LUAD, along with the corresponding
clinical data, were downloaded from The Cancer Genome Atlas (TCGA, https:
[www.cancer.goviccgfresearch/genome-sequencing/tcga). After excluding the sample with
incomplete follow-up information, a total of 486 LUAD and 59 normal samples from the
RNA-seq data, as well as a total of 521 LUAD and 46 normal samples the miRNA-seq
data, were included for subsequent analysis in this study. The mRNAs and IncRNAs of
samples were annotated based on the gene transfer format (GTF) files containing the
gene symbol. Additionally, transcriptomic profiles and corresponding clinical information
in the GSE31210 dataset, which includes 226 tumor samples, were obtained from Gene
Expression Omnibus (GEO, https:/www.ncbi.nlm.nih.gov/geo/) and generated by GPL570
platforms. Moreover, scRNA-seq files from nine LUAD tumor specimens were obtained
from the GEO database (accession number GSE171145), generated by the GPL24676
platform (Illumina NovaSeq 6000). Finally, a total of 428 tumor-associated macrophage
(TAM)-related genes with a score greater than five were obtained from the GeneCards
database using keywords searches (Table S1).

Screening differentially expressed RNAs in LUAD

Limma R package was performed to identify the differentially expressed IncRNAs (DE-
IncRNAs), mRNAs (DEGs), and miRNAs (DE-miRNAs) according to the criteria of |log2
(fold change, FC)|> 1 and adjusted P value < 0.05. Volcano plots were drawn using the
ggplot2 R package to visualize the differentially expressed RNAs, and a heatmap was drawn
using the pheatmap R package to illustrate the top50 DE-IncRNAs, top50 DEGs, and all
DE-miRNAs.
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Construction and validation of a TAM-related gene signature

The differentially expressed TAMGs (DE-TAMGs) were identified by overlapping the
DEGs and 428 TAMGs. The 486 patients from the TCGA-LUAD cohort were randomly
split into training and testing sets at a 7:3 ratio using the caret R package. Afterward,
the DE-TAMGs that were associated with survival were identified using univariate Cox
analysis, these DE-TAMGs were incorporated into a least absolute shrinkage and selection
operator (LASSO) regression model to select the prognostic gene signature by glmnet R
package. A risk score was calculated as follows, risk score = Zil(CoefGenei * ExpGenei).
Coef represents the regression coefficient, and ExpGene represents the expression values
of the gene. All patients were stratified into high- and low-risk groups based on the median
risk score. The correlation between risk score and clinical characteristics (age, gender,
pathologic stage, and T/N/M stages) were analyzed using Pearson correlation analysis.
The Kaplan—Meier method and log-rank test were applied to compare the overall survival
(OS) of patients between high- and low-risk groups using the survival R package. The
time-dependent receiver operator characteristic (ROC) curve was conducted to evaluate
the predictive accuracy of the risk model using the survivalROC R package.

Gene Set Enrichment Analysis (GSEA)

The pathway enrichment between high- and low-risk groups was analyzed using GSEA.
The c2.cp.kegg.v7.4.symbols.gmt and h.all.v7.4.symbols.gmt were selected from the
Molecular Signatures Database (MSigDB, https:/www.gsea-msigdb.org/gsea/msigdb) for
the enrichment analysis, which was performed using the GSEA R package.

Tumor immune microenvironment analysis

The ESTIMATE algorithm was used to evaluate the immune score, stromal score, and
ESTIMATE score using the estimate R package. Differences in immune score, stromal
score, and ESTIMATE score between high- and low-risk groups were detected using
the Wilcoxon-test. Besides, the CIBERSORT algorithm was performed to evaluate the
abundance of 22 types of immune cells based on the gene signatures consisting of 547
genes. The significant differences in infiltrated immune cells between high- and low-risk
groups were detected using the Wilcoxon test.

Immunotherapeutic and chemotherapeutic effect analysis

Human leukocyte antigen (HLA) expression plays a key role in tumor immunogenicity
and responses to immunotherapies (Gong ¢ Karchin, 2022). Thus, the differences in HLA
genes and immune checkpoint levels between high- and low-risk groups were detected
using Wilcoxon test. The Tumor Immune Dysfunction and Exclusion (TIDE) (Lu et al.,
2019), Immunophenoscore (IPS) (Charoentong et al., 2017), and the submap algorithm
were used to predict the response to immune checkpoint blockade. A P value < 0.05 was
considered statistically significant. The pRRophetic algorithm was conducted to estimate
the therapeutic response of the samples with different risk scores based on the Genomics
of Drug Sensitivity in Cancer (GDSC).
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Construction of a IncRNA-miRNA-mRNA network

The miRNA-mRNA pairs were identified based on risk signatures and DE-miRNAs in the
online databases, including miRcode (https:/bio.tools/miRcode), miRDB (https:/mirdb.
org/), miRTarBase (https:/mirtarbase.cuhk.edu.cn/), Starbase (https:/starbase.sysu.edu.cn/),
and TargetScan (https:/iwww.targetscan.org/). Additionally, miRNA-IncRNA pairs were
screened out based on DE-IncRNA in Starbase (https:/starbase.sysu.edu.cn/). Finally, an
endogenous competitive network, IncRNA-miRNA-mRNA, was constructed based on the
DE-IncRNAs, shared-miRNA that IncRNA-miRNA and miRNA-mRNA pairs, and risk
gene signature. The network was visualized using Cytoscape Version 3.8.0.

Clinical specimen

Tumor tissues and paracancerous non-tumor tissue samples were collected from lung
cancer patients (n = 28) at Yueqing People’s Hospital. Histological examination was used
to confirm the diagnosis of LUAD. All procedures were approved by the Ethical Committee
of Yueqing People’s Hospital (YQYY202300221). Written informed consent was obtained
from all participants prior to their inclusion in the study. The tissue specimens were
immediately frozen in liquid nitrogen after collection and stored at —80 °C for further
RNA extraction.

Experimental validation of the TAM-related genes involved in ceRNAs
Total RNA was extracted and purified using TRIzol (TAKARA, Dalian, China) according
to the manufacturer’s instructions. cDNA synthesis was performed using a Bestar JPCR RT
Kit (DBI Bioscience, Shanghai, China) according to the manufacturer’s protocol. Data were
collected as previously described in He et al. (2016), Specifically the experimental validation
of the TAM-related genes involved in ceRNAs. Quantitative real-time PCR (RT-qPCR)
analyses were performed with a Bestar™ SybGreen qPCR Mastermix (DBI Bioscience,
Shanghai, China) following: 95 °C for 20 s, followed by 40 cycles of 95 °C for 1 s and
60 °C for 20 s. GAPDH was used as the reference gene for the normalization of all gene
expression results. The average of three independent analyses for each gene was calculated.
The fold changes were calculated through relative quantification (2~24), All reactions
were run in triplicate and repeated in three independent experiments. The primers used
were as follows: GAPDH forward, 5-TGTTCGTCATGGGTGTGAAC-3' and reverse 5'-
ATGGCATGGACTGTGGTCAT-3". PDGFB forward, 5-TTATCATGGGCCTCGGGGA-
3’ and reverse 5'-CAGACGGACGAGGGAAACAA-3'. CD74 forward, 5-GGCTACTGCTG
GTGTGTCTT and reverse,5-TCCAAGGGTGACGAAAGAGC-3'. KLF4 forward, 5'-
GTCCCGGGGATTTGTAGCTC-3" and reverse 5'-TGTAGTGCTTTCTGGCTGGG-3'.
CCL20 forward, 5'- TGTCAGTGCTGCTACTCCAC-3" and reverse 5-ACAAGTCCAGTGA
GGCACAA-3'.

Data processing and single cell analysis

The Serut R package was used for standard downstream processing for scRNA-seq data.
Gene expression was required in at least three cells, with a gene count more than 300
and less than 7,000, the mitochondria proportion less than 10%, and the erythrocyte
proportion less than 3%. Cells that did not meet these criteria were excluded from the
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analysis. Afterward, “NormalizeData” was used to perform the data normalization. PCA
(Principal Component Analysis) was used to reduce the dimensionality of the data, after
which gene expression value were converted to z-score using “ScaleData” function. Then,
Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) was
utilized for unsupervised clustering and unbiased visualization of cell populations on a
two-dimensional map. To account for cell cycle differences, “CellCycleScoring” was used
to detect cell cycle-related genes. “FindAllMarkers” was performed to identify marker genes
of each cluster with the threshold value of |log (fold change, FC)| > 0.025 and a minimum
cell population fraction of 0.25 in either of the two populations. The SingleR package
was utilized for cell-type annotation. The classical gene markers of LUAD were visualized
as bubble plots by ‘DotPlot’. The hub gene expression across different cell types, along
with significant cell types, was selected for biological function (GO and KEGG pathway
enrichment) analysis using clusterProfiler R package. Monocle2 R package was used for
cell trajectory and pseudo-time analysis with the DDRTree method.

RESULTS

Identification of the differential expression of RNAs in LUAD

The flowchart of this study are shown in Fig. S1. In the present study, the limma R package
was performed to identify the differential expression of RNAs in LUAD, resulting in a total
of 316 DE-IncRNAs (116 upregulated and 200 downregulated DE-IncRNAs, Figs. 1A, 1D),
162 DE-miRNAs (125 upregulated and 37 downregulated DE-miRNAs, Figs. 1B, 1E), and
2,601 DEGs (924 upregulated and 1,677 downregulated DEGs, Figs. 1C, 1F) were identified
in LUAD (Tables S2-54).

Construction of a TAM-related gene signature in LUAD
A total of 147 DE-TAMGs were identified from the 2,601 DEGs (Fig. 2A) and subsequently
incorporated into a univariate Cox regression model, which revealed 12 DE-TAMGs
with significant associations (p-value < 0.05) in the training set, including CAT, KLF4,
CLECI12A, GAPDH, PDGEFB, HSPD1, TIMP1, ITGAL, CA9, TNFSF11, CD74, CX3CL1,
FOLRI, CLEC10A, and CCL20 (Fig. 2B). LASSO regression analysis further narrowed down
the candidate genes to KLF4, GAPDH PDGEFB, TIMP1, CD74, and CCL20, which were
ultimately selected to form the prognostic signature for LUAD (Figs. 2C-2D, Table S5).
The risk score for each patient was calculated based on the expression levels and
corresponding regression coefficients of these six genes. Patients in the training set were
subsequently divided into high-risk (n = 179) and low-risk (n = 163) groups (Table S6). We
found that risk scores were associated with the ages and gender of patients (Figs. 2E-2G).
Additionally, a higher risk score correlated with tumorigenesis, lymph node metastasis,
and distant metastasis, and more aggressive progression (Figs. 2E, 2H-2K).

Validation of the TAM-related gene signature in LUAD

To validate the prognostic potential of the TAMG-related risk score, we applied it to
several datasets, including the training TCGA-LUAD set, the test TCGA-LUAD set, the
entire TCGA-LUAD set, and the external GSE31210 set. Based on the median risk score,
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Figure 1 Identification of the differential expression of RNAs in LUAD. (A—C) Volcano plots the DE-
IncRNAs, DE-miRNAs, and DEGs between LUAD and normal tissues with the criteria of |log2 FC| > 1
and adjusted P value < 0.05. (D-F) Heatmaps of the top 50 DE-IncRNAs, all DE-miRNAs, and top 50
DEGs in LUAD.

Full-size Gal DOI: 10.7717/peerj.19920/fig-1

patients were categorized into high- and low-risk groups. Patients in the high-risk group
showed worse survival status compared to those in the low-risk group (Figs. 3A-3D).
Kaplan—Meier OS survival curves indicated significantly poorer prognoses for patients
in the high-risk group compared to those in the low-risk group (Figs. 3E-3H). Time-
dependent ROC curves for those sets at 1-, 2-, 3-, 4-, and 5 years showed the risk model
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and TAM-related gene signature could predict the OS of LUAD patients with moderate
sensitivity and specificity (Figs. 31-3L).

TAM-related functional enrichment analysis

Based on previous analyses, we further conducted the enrichment analysis using GSEA to
explore the functional pathways associated with the TAM-related risk score. The results
indicated that several canonical cancer pathways were significantly enriched between
the high- and low-risk groups (Figs. 4A—4B). Specifically, we found that the cell cycle,
NOTCH signaling pathway, p53 signaling pathway, pathways in cancer, proteasome,
hypoxia, PI3K/AKT/mTOR signaling pathway, reactive oxygen species pathway, and
Wnt/beta-catenin signaling pathway were significantly enriched in the high-risk group
compared to the low-risk group (Figs. 4A—4B).
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score. Medium: The distribution of patients with survival status. Bottom: The heatmap of the differential
expression of the TAM-related signature between high- and low-risk groups. (E-H) Kaplan—Meier anal-
ysis of the OS of high- and low-risk groups in training-TCGA, test-TCGA, entire-TCGA, and GSE31210
datasets. (I-L) Time-dependent ROC curves of the 1-, 3-, 5-years OS of high- and low-risk groups in the
training-TCGA, test-TCGA, entire-TCGA, and GSE31210 datasets.

Full-size G4l DOI: 10.7717/peer;j.19920/fig-3

Correlation analysis between TAM risk score and tumor immune
microenvironment

We further investigated the immune characteristics within the tumor microenvironment
and observed that the low-risk group had higher immune and ESTIMATE scores compared
to the high-risk group (Figs. 5A-5C). In addition, we found significant differences s in the
proportions of various immune cell types (Fig. 5D). In the high-risk group, the proportions
of macrophages MO, T cells CD4 memory activated, neutrophils, NK cells resting, Mast
cells activated was upregulated, but the fraction of T cells CD4 memory resting, mast cells
resting, dendritic cells resting, T cells regulatory (Tregs), monocytes, and B cells memory
were downregulated compared to the low-risk group (Fig. 5E). Macrophages MO are
unactivated macrophages, typically considered to be in a “resting” or undifferentiated state.
They perform various immune surveillance and regulatory functions but usually require
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specific immune signals to differentiate into more immunologically active M1 or M2
macrophages. In the analysis of TAM-related high- and low-risk groups, MO macrophages
were significantly increased in the high-risk group, indicating a close association between
TAMs and high-risk status.

Correlation analysis between TAM risk score and immunotherapeutic
effect

We next compared the expression of HLA-related genes and immune checkpoint markers
between high- and low-risk groups. Most HLA-related genes, including HLA class I
(HLA-A/B/C/E/F) and HLA class II (HLA-DMA/B, HLA-DOA/B, HLA-DPA1/B1, HLA-
DPQ1/B1, HLA-DRA1/B1, and HLA-DRBS5), were downregulated in high-risk group than
low-risk group (Fig. 6A). Similarly, the expression of immune checkpoint genes, such as
CD80, CTLA4, and TIGIT was downregulated in a high-risk group than the low-risk group
(Fig. 6B).

As expected, the TIDE score was significantly higher in a high-risk group than in a
low-risk group (Fig. 6C), with a strongly positive correlation between risk score and TIDE
score (Fig. 6D). In contrast, the IPS score was lower in the high-risk group compared
to the low-risk group (Fig. 6E). These findings suggest that the low-risk group exhibits
more active immunological functions and greater sensitivity to immunotherapy. However,
the patients in the low-risk group did not show significant responses to anti-PD1 and
anti-CTLA4 therapies (Fig. 6F).

Correlation analysis between TAM risk score and chemotherapeutic
effect

We also identified the potential chemotherapeutic agents targeting the TAM-related
prognostic signature. A total of 13 compounds showed significantly different half-inhibitory
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groups. (E) The histogram of the different infiltrated immune cells between high- and low-risk groups.
Full-size & DOLI: 10.7717/peerj.19920/fig-5

concentrations (IC50) between the high- and low-risk groups (Table S7). Most of these
compounds exhibited higher IC50 values in the high-risk group than low-risk group

(Fig. 7).

Development of a TAM-associated IncRNA-miRNA-mRNA network in
LUAD

Using several online databases, including miRcode, miRDB, miRTarBase, Starbase, and
TargetScan, a total of 66,130 miRNA-mRNA pairs were identified (Table S8), From these,
24 miRNA-TAMG (PDGFB, CD74, KLF4, and CCL20) pairs were selected for further
analysis (Table 59). In addition, a total of 7,975 miRNA-IncRNA pairs were screened
(Table S10).

Subsequently, a IncRNA-miRNA-mRNA network was constructed, incorporating 36
DE-IncRNAs, 23 shared-miRNA, and four TAMGs (PDGFB, CD74, KLF4, and CCL20,
Fig. 8A). QPCR results confirmed that CCL20 expression was significantly upregulated
in tumor tissues (Fig. 8E), while the expression of PDGFB, CD74, and KLF4 was
downregulated in tumor tissues compared to adjacent normal tissues (Figs. 8B-8D).
Additionally, a similar trend was observed in the TCGA-LUAD cohort, where CCL20
expression was significantly upregulated in tumor tissues, whereas PDGFB, CD74, and
KLF4 were significantly downregulated compared to adjacent normal tissues (Figs. 8F—81).
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Validation of the key TAMG expression in monocyte/macrophage at
the single-cell level

After the quality control of scRNA-seq data, a total of 30,874 cells were selected for
subsequent analysis (Figs. S2A-S2B). After normalization and dimensionality reduction,
27 subpopulations were obtained (Figs. S2C—521). Then, the relative expression of marker
genes in each cluster was presented in the heatmap (Fig. 52J)). Afterward, 17 cell types
were annotated using a singleR package (Fig. 9A), including CD4 T cells, CD8 T cells,
monocytes, B cells, secretory club cells (Club), cancer cells, macrophages, alveolar cells,
NK cells, plasma, mast cells, smooth muscle cell, cycling cells, neutrophils, fibroblasts,
endothelial cells, and ciliated airway epithelial cells (Ciliated).

The marker genes for each cell type, along with the top three markers, are shown in Figs.
9B—9C. Furthermore, we examined the expression of PDGFB, CD74, KLF4, and CCL20 in
different cell types, with a focus on monocytes/macrophages. Our analysis indicated that
CD74, KLF4, and CCL20 were significantly expressed in these cells, whereas PDGFB was
downregulated (Fig. 9D, Figs. S3A-S3C).

GO enrichment analysis of macrophage marker genes indicated that significant
enrichment in protein-macromolecule adaptor activity, nucleoside-triphosphatase
regulator activity, GTPase regulator activity, and chaperone binding (Fig. 10A). For
monocytes, marker genes were enriched in kinase regulator activity, DNA-binding
transcription activator activity, and RNA polymerase II-specific functions (Fig. 10A).
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Figure 7 Violin plots of correlation of TAM risk score and chemotherapeutic effect.
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KEGG pathway enrichment analysis indicated that the macrophage marker genes were
mainly associated with calcium reabsorption regulation, galactose metabolism, and the
IL-17 signaling pathway (Fig. 10B). In contrast, monocyte marker genes were significantly
associated with serotonergic synapses, the Apelin signaling pathway, and non-small cell
lung cancer (Fig. 10B).

Finally, cell trajectory and pseudo-time analysis of monocyte and macrophages using
the monocle2 R package revealed a clear transition from monocytes to macrophages (Figs.
10C=10F). These results support the notion that tissue-resident macrophages originate
from hematopoietic stem cells and monocyte-derived macrophages (Lazarov et al., 2023).

DISCUSSION

Increasingly studies have shown that TAMs are a major component of TME and are
implicated in poor prognosis and therapy resistance across various cancers (Cassetfa

& Pollard, 2020, Xiang et al., 2021). Previous research demonstrated that TAMs drive
cancer malignancy by mediating angiogenesis, promoting tumor invasion and metastasis,
dysregulating metabolism, and promoting tumor hypoxia and immunosuppressive
microenvironment (Cheng et al., 2021; Jeong et al., 2019; Pu & Ji, 2022; Vitale et al., 2019).
Advances in therapeutic strategies have highlighted that targeting TAMs can synergize
tumor immunotherapy, thereby improving treatment efticacy (Bai et al., 2022; Binnewies
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et al., 2021; Modak et al., 2022). Targeting TAMs represents a promising therapeutic
approach, particularly for treating intractably cold tumors.

In the present study, we identified a total of 316 DE-IncRNAs, 162 DE-miRNAs, and
2,601 DEGs in LUAD. From these DEGs, we selected six prognostic tumor-associated
genes (TAMGs), including KLF4, GAPDH, PDGFB, TIMP1, CD74, and CCL20, for further
analysis. LUAD patients were classified into high- and low-risk groups based on the median
risk score, which was calculated using the expression levels of prognostic TAMGs and their
corresponding regression coefficients. High-risk scores were significantly associated with
poor survival, older age, male, aggressive tumor, and metastasis. Moreover, we found that
high-risk scores were linked to the activation of several canonical cancer pathways, including
the cell cycle, NOTCH, p53, pathways in cancer, proteasome, hypoxia, PI3K/AKT/mTOR,
reactive oxygen species, and Wnt/beta-catenin signaling pathways.

Kriippel-like factor 4 (KLF4), also named as epithelial zinc finger protein (EZF) and
gut-enriched Kriippel-like factor (GKLF), is a member of the evolutionarily conserved
family of zinc finger transcription factors (Garrett-Sinha et al., 1996; He, He & Xie, 2023;
Shields, Christy ¢ Yang, 1996). KLF4 may function as an oncogene in NSCLC that is
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involved in macrophage infiltration and polarization (Arora et al., 2021; Zhou et al., 2022).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an internal reference gene to
quantitate DNA, RNA, and proteins in usual biological experiments (Wisnieski et al.,
2013; Zhang et al., 2015). Recent studies have indicated that GAPDH is involved in aging
and cellular senescence (Guan, Crasta ¢» Maier, 2022; Yang et al., 2021), as well a its role
as an oncogene in various tumors, correlating with immune infiltration (Butera et al.,
2019; Shen, Li & Wang, 2023). Bioinformatics analyses have revealed that GAPDH plays a
senescence-related marker in LUAD, influencing cancer progression (Liu et al., 2023).

Overexpression of platelet-derived growth factor B (PDGFB) has been observed in
several solid tumors, including pancreatic cancer, gastric cancer, glioma, melanoma, renal
carcinoma, and breast cancer (Abuhamad et al., 2023; Du et al., 2021; Juliano et al., 2018;
Kadrmas, Beckerle ¢ Yoshigi, 2020; Wang et al., 2021). In this study, we identified high
PDGEFB expression as associated with TAM-related high-risk scores.

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is a member of the inhibitor
metalloproteinase (TIMP) family, traditionally considered a potential tumor suppressor.
However, overexpression of TIMP has been linked to poor survival in lung cancer (Duch et
al., 2022; Fong et al., 1996). In the present study, we also demonstrated that high expression
of TIMP involves poor survival of LUAD. CD74, a type II transmembrane protein, acts as
a receptor for the cytokine macrophage migration inhibitory factor (MIF). Upon binding
MIF, CD74 releases its cytosolic intracellular domain (CD74-ICD), which serves as a
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transcriptional regulator in normal B cells (David et al., 2022). CD74 is associated with
favorable prognosis in patients with HCC (Xiao et al., 2022). In contrast, we found that
high CD74 expression in LUAD was linked to favorable survival outcome.

Chemokine (C-C motif) ligand 20 (CCL20), also known as macrophage inflammatory
protein (MIP)-3a, liver activation-regulated chemokine (LARC), and Exodus-1, is a small
protein that binds to the specific receptor C-C chemokine receptor 6 (CCR6) (Kadomoto,
Tzumi & Mizokami, 2020). Elevated CCL20 expression has been associated with poor
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survival in patients with LUAD (Fan ef al., 2022). Additionally, CCL20 promotes lung
cancer cell migration and proliferation in an autocrine manner through the activation of
ERK and PI3K signal pathways (Wang et al., 2016).

In addition, we explored the correlation between risk score and tumor immunity.
We found high-risk scores were significantly associated with lower Immune score and
ESTIMATE score, as well as an increased faction of macrophages (MO0), T cells CD4
memory activated, neutrophils, NK cells resting, Mast cells activated. Conversely, high-risk
scores were associated with decreased the fraction of T cells CD4 memory resting, mast
cells resting, dendritic cells resting, Tregs, monocytes, and B cells memory.

Furthermore, high-risk scores were correlated with low expression of HLA-related
genes and immune checkpoints (CD80, CTLA4, and TIGIT), higher TIDE scores, and
lower IPS scores in LUAD. These findings suggest that high-risk scores may be linked to
immune evasion and therapeutic resistance. TAMs are recognized as potential therapeutic
targets due to their modifiable polarization states within the TME (Hu et al., 2022; Liang
et al., 20225 Xu et al., 2020y Zhang et al., 2020). Our finding highlights the role of TAMs in
modulating tumor progression by either promoting or inhibiting tumorigenesis within the
TME.

Finally, we explored the potential regulatory mechanisms of prognostic TAMGs in
LUAD. A IncRNA-miRNA-mRNA network was constructed, containing of DE-IncRNAs,
23 shared-miRNA, and four TAMGs (PDGFB, CD74, KLF4, and CCL20). In the present
study, several IncRNAs, such as IncRNA SNHG1 (Li & Zheng, 2020), IncRNA SNHG3 (Li
etal., 2021), IncRNA SNHG4 (Wang ¢» Quan, 2021), IncRNA CASC9 (Bing et al., 2021),
and IncRNA PVT1 (Pan et al., 2020a), were identified as oncogenes, showing significant
upregulation in lung cancer and involvement in tumorigenesis and development.

At the single-cell level, a total of 17 cell types were annotated in LUAD, with
CD74, KLF4, and CCL20 significantly upregulated, while PDGFB was downregulated
in monocyte/macrophages. Cell trajectory and pseudo-time analyses of monocyte and
macrophage cells revealed a transition from monocytes to macrophages, consistent with
the understanding that resident macrophages originate from hematopoietic stem cells and
monocyte-derived macrophages (Lazarov et al., 2023).

CONCLUSION

In conclusion, we conducted an integrative analysis of tumor-associated macrophages
(TAMs) in LUAD, highlighting their association with poor survival, immune cell
infiltration, and responses to immunotherapy and chemotherapy. Additionally, we
explored the regulatory mechanisms of TAMGs and IncRNAs. Our findings provide
potential therapeutic targets and biomarkers for patients with LUAD, offering valuable
insights for future clinical applications.
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