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ABSTRACT
Background: Osteoarthritis is characterized by cartilage wear or absence and is
usually initiated by inflammation and abnormal mechanical stimulation.
MicroRNAs have been identified as the main regulators of osteoarthritis, but the
influence of miR-145a-5p on osteoarthritis has not been elucidated. In this study, we
focused on the role of miR-145a-5p in cartilage.
Methods: Destabilization of the medial meniscus surgery (DMM) and RNA
fluorescence in situ hybridization (RNA FISH) were performed to detect the
expression level of miR-145a-5p in osteoarthritis. Interleukin-1β was used to
simulate the inflammatory environment in vitro. The Flexcell device was used for
mechanical stimulation. Agomir-145a-5p was injected intra-articularly into the
DMM-induced osteoarthritis mouse model. Histopathological examinations, and
molecular biology techniques were used to investigate the underlying mechanisms.
Results: The expression of miR-145a-5p was decreased in osteoarthritis mice,
whereas its expression increased with prolonged chondrogenesis. Then, studies in
vitro also confirmed the pro-chondrogenesis and interleukin-1β inhibitory ability of
miR-145a-5p. Additionally, miR-145a-5p can be regulated by cyclic stretch stress,
with physiological mechanical stimulation promotes, but excessive mechanical
stimulation suppresses its expression. In addition, miR-145a-5p rescues
DMM-induced osteoarthritis progression, which was observed through the
intra-articular injection of agomiR-145a-5p.
Conclusions: MiR-145a-5p, a mechanical responder, alleviates osteoarthritis
progression through promoting chondrogenesis and alleviating inflammation
response. And intra-articular injection of miR-145a-5p alleviates osteoarthritis
progression. These findings suggest that miR-145a-5p is a promising target for the
treatment of osteoarthritis.
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INTRODUCTION
Osteoarthritis (OA), characterized by pathological changes in all joint tissues (Wood et al.,
2023; Motta et al., 2023), including cartilage, subchondral bone, and synovial membrane,
has become the leading chronic orthopedic condition worldwide (DeJulius et al., 2024;
Messier et al., 2022). As a complex disease, OA pathogenesis includes initial injury and
frequent biomechanical damage to any of the joint tissues, which results in the release of
cytokines and leads to the activation of different signaling pathways that damage cartilage
(Sanchez-Lopez et al., 2022).

The inflammatory mediators that participate in the progression of OA mainly include
interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF), which are
highly expressed in OA synovial fluid (Chou et al., 2020; Lv et al., 2019). Research has
confirmed that the secretion of IL-1β downregulates the synthesis of type II collagen
(COL2) and aggrecan (ACAN), thereby inhibiting chondrogenesis (Liu et al., 2023; He
et al., 2022). In addition, IL-1β is commonly used in vitro to mimic pro-inflammatory and
pro-catabolic chondrocyte phenotypes (Defois et al., 2023). So, anti-inflammation is one of
the most essential methods in OA treatment. As one of the critical anti-inflammation
factors, microRNAs (miRNAs) have been reported to participate in the development and
progression of OA (Swingler et al., 2019). For example, Ji et al. (2021) constructed a
nanocarrier to target the miR-141/200c cluster in chondrocytes to attenuate osteoarthritis
development. Additionally, miR-204 has been identified as an ameliorator of OA pain by
inhibiting SP1-LRP1 signaling (Lu et al., 2023).

Furthermore, as another leading cause of OA, biomechanical stimulation cannot be
ignored in its initiation (Hodgkinson et al., 2022). In healthy cartilage, the mechanical
stimulation generated by movement is integral to maintaining the homeostatic balance of
chondrocytes. However, abnormal mechanical activity is harmful to the health of cartilage;
for example, joint non-use can lead to harmful cartilage atrophy (Vincent & Wann, 2019),
and excessive mechanical stimulation is a risk factor for the pathogenesis and progression
of OA (Chang et al., 2019). As the regulator of post-transcriptional gene expression
(Giordano et al., 2020), several miRs have been identified to participate in the mechanical
response, such as miR-21 and miR-325-3p (Li et al., 2017;Huang et al., 2012). Determining
the mechanism of how mechanical stimulation regulates joint homeostasis will help
develop new approaches to treating OA (Gargano et al., 2022).

MiR-145a-5p, encoded by the MIR145 gene located on chromosome 5: 149,430,646–
149,430,733 forward strands, has emerged as a key regulator in various diseases (Kadkhoda
& Ghafouri-Fard, 2022; Li et al., 2023). As a highly homologous form of miR-145, which
has been confirmed to modulate TNF-a-mediated signaling and cartilage matrix
degradation (Guo et al., 2024; Hu et al., 2017), miR-145a-5p has been shown to
influence the pathogenesis of many inflammatory diseases, such as chronic
obstructive pulmonary disease (COPD), aplastic anemia, and rheumatoid arthritis
(Kadkhoda & Ghafouri-Fard, 2022). Considering the role of miR-145a-5p in inflammatory
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diseases, it may be involved in the occurrence of OA and the mechanical response, which
deserves further study.

In this study, several experiments were conducted to reveal the function of miR-145a-5p
in cartilage both in vivo and in vitro, which aimed to illuminate the function of miR-145a-
5p in OA development and cartilage hemostasis.

MATERIALS AND METHODS
Animal experiments
After inducing anesthesia via intraperitoneal injection of sodium pentobarbital (50 mg/kg
body weight), followed by a stabilization period of ≥10 min to ensure surgical anesthesia,
destabilization of the medial meniscus (DMM) or sham surgery was performed on forty
8-week-old male C57BL/6J mice (obtained from the department of laboratory animal
science of Peking University Health Science Center) using standardized surgical protocols,
as previously described (Glasson, Blanchet & Morris, 2007). The protocol was complied
with the Guide for the Care and Use of Laboratory Animals published by the National
Academy Press (National Institutes of Health Publication No. 85–23, revised 1996), and
the procedures involving animal experiments were reviewed and approved by the Peking
University Biomedical Ethics Committee (Grant number: PUIRB-LA2022629). The mice
were placed separately (five mice per cage) and kept at ambient temperature (23 ± 3 �C)
with 12-h light/dark cycle and free access to a standard pellet diet and water. For agomir
delivery, eighteen mice in the DMM group were randomly assigned to experimental
groups (DMM+NC-agomir, DMM+agomir-145a-5p, OA) using a computer-generated
random number sequence, and intra-articular injection of 10 µg of agomir-NC (miR-NC,
GenePharma, Suzhou, China), or agomir-145a-5p (B06023; miR-145a-5p, GenePharma,
Suzhou, China) at 1-, 3-, 5-, and 7-weeks post-operation, the flowchart was shown in
Fig. S1. Nine weeks after DMM surgery, the mice were anesthetized with pentobarbital
sodium (50 mg/kg body weight) for at least 10 min, followed by humane euthanasia via
cervical dislocation to minimize suffering, and then their knee joints were collected. No
surviving animals remained at study conclusion.

Histological, immunofluorescence, and RNA FISH analyses
Mouse knee joints were collected and fixed immediately with 4% paraformaldehyde for
48 h, decalcified with 10% EDTA for 10 days, dehydrated for paraffin embedding, and
continuous sagittal cross-sections sequentially from medial to lateral orientations were
collected. These sections were cut to a thickness of 5 microns, dewaxed, and stained with
hematoxylin and eosin (HE), toluidine blue, safranin O and fast green. HE and safranin O
and fast green stained tissue sections were used for OARSI scoring. The OARSI scoring
system 50 was performed by two observers blinded to the experimental groups to evaluate
cartilage destruction in the medial joints (Arden et al., 2021). Immunofluorescence (IF)
staining was performed on paraffin-embedded joint sections or cultured cells. After
antigen retrieval (for tissues) or permeabilization (for cells), samples were blocked with 5%
BSA and 10% normal goat serum, followed by incubation with primary antibodies against
YAP (1:50, sc-101199), MMP13 (1:50, 18165-1-AP), and COL2A1 (1:100, ARG20787)
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overnight at 4 �C. Species-specific Alexa Fluor-conjugated secondary antibodies (1:500,
4408S/8889; Cell Signaling Technology, Danvers, MA, USA) were applied for 1 h at room
temperature, and nuclei were counterstained with DAPI (C0065; Solarbio, Beijing, China).
The RNA FISH assay was performed via an RNA FISH kit (GenePharma, Suzhou, China)
according to the manufacturer’s instructions. Images were acquired on a ZEISS LSM 880
with Airyscan (Carl Zeiss Microscopy GmbH, Jena, Germany). Fluorescence intensity was
measured in 3–5 microscopic fields per joint using ImageJ software, with all analyses
conducted by an operator blinded to the group identity. The median value for each mouse
was then calculated and reported (Zhang et al., 2022).

Cell culture and treatment
ATDC5 cells (American Type Culture Collection, ATCC, Manassas, VA, USA) were
maintained at 37 �C in a humidified incubator with 5% CO2 and were grown in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco, Waltham, MA, USA) supplemented with 10%
fetal bovine serum (FBS, SV30208.02; HyClone, Logan, UT, USA) before differentiation.
To induce chondrogenic differeclenium (NO. 41400045; Thermo Fisher, Waltham, MA,
USA), was added to the growth medium of ATDC5 cells, and alcian blue staining and
q-PCR were performed after 7 days. For the treatment of IL-1β, 10 ng/ml IL-1β (MCE,
HY-P7073A) was added to the chondrogenic differentiation induction medium of
ADTC5. The medium was changed every 2 days (Shen et al., 2017).

Primary human articular chondrocytes (HACs) were isolated from macroscopically
non-lesional cartilage fragments obtained during arthroscopic procedures, following
written informed consent under protocols approved by the Peking University Third
Hospital Medicine Science Research Ethics Committee (grant number: M2023779).
Tissues were processed within 4 h. After thorough washing and dissection to isolate the
chondral layer, fragments were minced and digested with 0.2% collagenase type II
(17101015; Gibco, Waltham, MA, USA) in DMEM overnight (37 �C, 5% CO2). The
resulting suspension was filtered (100 µm), washed extensively in PBS, and pelleted cells
were resuspended in DMEM supplemented with 15% fetal bovine serum (SV30208.02;
FBS, HyClone, Logan, Utah, USA) and 1% penicillin-streptomycin (C0222; Beyotime,
Shanghai, China). Cells were cultured at 37 �C, 5% CO2 and used at passage 1 (P1) or P2
for experiments to minimize dedifferentiation (Gan et al., 2024).

Cyclic stretch stress
ATDC5 cells in three groups (Ctrl, 10% Stretch and 20% Stretch) were cultured in BioFlex
6-well culture plates precoated with type I collagen for 24 h. When the ATDC5 cells
reached a density of 50–60%, they were stretched with a Flexcell-4000T vacuum stretching
device at an amplitude of 10% (normal mechanical stimulation, 10% stretch) or 20%
(Huang et al., 2025) (excessive mechanical stimulation, 20% stretch) elongation and a
frequency of 0.5 Hz for 4 h per day for 4 days (Na et al., 2024), ctrl group keep static in the
same incubator.
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Transfection of miR-145a-5p mimics, inhibitors, and negative controls
When ATDC5 cells in 12-well plates reached 30–40% confluence, 50 nMmmu-miR-145a-
5p mimics (miR-mimic), inhibitors (miR-inhibitor), or negative controls (miR-NC) (all
purchased from GenePharma) were transfected into ATDC5 cells via Lipofectamine 3000
(L3000008; Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions,
after which the medium was changed to chondrogenic differentiation induction medium
after 6 h.

RNA extraction and quantitative real-time PCR
Total RNA was extracted via TRIzol reagent (15596026CN; Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. The RNA concentration and purity
were assessed via a Nanodrop spectrophotometer (ND-1000; Thermo Scientific, Waltham,
MA, USA). The values of A260/A280 ratio between 1.8 and 2.0 indicating high purity.
Reverse transcription reactions were performed using two distinct protocols for mRNA
and miRNA synthesis. For mRNA cDNA synthesis, total RNA samples (2 mg) were reverse
transcribed with GoScriptTM Reverse Transcriptase (A2800; Promega, Madison, WI, USA)
following the manufacturer’s protocol. The reaction system (20 mL final volume) contained
2 mg of purified total RNA samples, 4 mL GoScriptTM Reaction Buffer (Random Primer), 2
mL GoScriptTM Enzyme Mix, and nuclease-free water. Thermal cycling conditions were
programmed as follows: primer annealing at 25 �C for 5 min, cDNA synthesis at 42 �C for
60 min, and enzyme inactivation at 70 �C for 15 min. For miRNA-specific cDNA
synthesis, the miRNA First Strand cDNA Synthesis Kit (B532451; Sangon Biotech,
Shanghai, China) was employed. A 20 mL reaction mixture containing 2 mg total RNA, 10
mL 2× miRNA P-RT Solution Mix, and 2 mL miRNA P-RT Enzyme Mix was subjected to
the following thermal profile: 37 �C for 60 min followed by enzyme denaturation at 85 �C
for 5 min. All cDNA products were stored at −20 �C for subsequent analysis. Quantitative
real-time PCR was performed using an ABI 7500 system (Applied Biosystems, Foster City,
CA, USA) with NovoStart� SYBR Green SuperMix Plus (E166-01B; Novoprotein, Suzhou,
China). Each 20 mL reaction contained 2 mL cDNA template, 10 mL SYBR Green Master
Mix, 1 µL (200 nM) forward/reverse primers (Sangon Biotech, Shanghai, China sequences
in Table S1), and 7 µL nuclease-free water. The thermal protocol consisted of an initial
denaturation at 95 �C for 1 min, followed by 40 cycles of 95 �C for 10 s and 60 �C for 30 s.
The expression values were normalized to those of Gapdh or U6 via the 2−ΔΔCt method
(Kan et al., 2022).

Dual-luciferase assay
ATDC5 cells were cultured at a density of 1 × 105 cells/well in 12-well culture plates and
transfected with 2 mg of dual-luciferase reporter pmirGLO-IL6-WT or pmirGLO-IL6-Mut
(all purchased from D-Nano Therapeutics), and co-transfected with 500 nM mmu-miR-
145a-5p mimics or miR-NC using Lipofectamine 3000 (L3000008; Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. Six hours post-transfection, the
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transfection medium was removed and replenished with growth medium. Forty-eight hours
post-transfection, luciferase activity was measured using the Dual Luciferase Reporter Assay
Kit (DL101-01; Vazyme, Nanjing, China). Firefly and renilla luciferase activity were
detected by a microplate reader (Varioskan Flash, Thermo, Waltham, MA, USA) Firefly
luciferase activity was normalized to renilla luciferase activity (Jiang et al., 2022).

Statistical analysis
All data were obtained from three independent biological replicates, each with technical
triplicates. The data are presented as the means ± standard deviations (SDs). One-way
ANOVA with Tukey’s post-hoc test was applied for multi-group comparisons when data
met normality (Shapiro-Wilk test) and homogeneity of variance (Levene’s test)
assumptions. Student’s t test was used to analyze the differences between two groups.
Statistical analyses were performed via GraphPad Prism 9 software. p < 0.05 was
considered statistically significant.

RESULTS
MiR-145a-5p is decreased in osteoarthritis
To investigate the function of miR-145a-5p, we design a series of experiments to confirm
its role in OA progression. The flow diagram is shown in Fig. 1A. Toluidine blue staining
reveals thinner and rougher articular cartilage in the OA group (Fig. 1B), confirming the
successful establishment of the osteoarthritis mouse model. Then, qRT-PCR is performed
to detect the expression level of miR-145a-5p in vivo; Fig. 1C shows that OA cartilage has a
lower miR-145a-5p level. As depicted in Fig. 1D, the fluorescence intensity of miR-145a-5p
in the cartilage of OA mice is faint, which is consistent with the statistical results presented
in Fig. 1E.

MiR-145a-5p promotes chondrogenic differentiation and regulates the
expression of Nrf2 and Il-6
MiR-145a-5p expression levels were detected at different time points of chondrogenesis
(Fig. 2A). With increasing differentiation time, the miR-145a-5p expression levels
gradually increased. Subsequently, miR-145a-5p mimic- and inhibitor-transfected cells
were used to detect the effect of miR-145a-5p on chondrogenesis. As shown in Fig. 2C,
after transfection with the miR-145a-5p mimic, the miR-145a-5p expression level
significantly increased, whereas the miR-145a-5p expression level decreased in the
inhibitor group. qRT‒PCR was performed 3days after cell chondrogenic induction, as
shown in Figs. 2D–2F. miR-145a-5p mimic promotes the expression of Sox9, Acan, and
Col2. Moreover, alcian blue staining reveals greater chondrogenic differentiation ability in
the miR-145a-5p-mimic group than in the control group (Fig. 2B). The downstream genes
of miR-145a-5p were predicted via miRWalk (http://mirwalk.umm.uni-heidelberg.de),
and the predicted binding sequences were shown in Fig. 2G. As shown in Figs. 2H, 2I, the
expression levels of Nrf2 and Il-6 were increased in the miR-145a-5p-inhibitor group but
decreased in the mimic group, indicating that miR-145a-5p might alleviate OA through
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Nrf2 and Il-6. To validate the predicted miR-145a-5p binding site in the IL-6 3’UTR, we
conducted dual-luciferase reporter assays. Co-transfection of miR-145a-5p mimic with the
wild-type IL-6 3’UTR reporter significantly suppressed luciferase activity, whereas the
mutant reporter showed no response, demonstrating direct interaction between miR-145a-
5p and the IL-6 3’UTR (Fig. S2).

MiR-145a-5p can partially reverse the chondrogenic inhibition caused
by IL-1b
IL-1β was added to the culture medium of ATDC5 cells. Results showed that IL-1β
suppresses the expression of miR-145a-5p (Figs. 3A, 3B). Concurrently, the expression
levels of Sox9, Col2, and Acan also indicate the inhibitory effect of IL-1β on chondrogenesis

Figure 1 MiR-145a-5p expression is decreased in osteoarthritis. (A) The study design flow diagram. (B) Toluidine blue staining of the sham and
OA groups. (C) qRT-PCR results of cartilage miR-145a-5p expression levels. (D) MiR-145a-5p expression in the sham and OA groups was detected
via RNA FISH. (E) The fluorescence intensity in the sham and OA groups was calculated using ImageJ 2.3.0. (***p < 0.005 and ****p < 0.001).

Full-size DOI: 10.7717/peerj.19905/fig-1
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(Fig. 3C). Consistent with these findings, IL-1β similarly suppressed miR-145a-5p, Sox9,
Col2, and Acan expression in HACs (Fig. S3). As shown in Fig. 3D, IL-1β reduced the
expression of Sox9 and Col2, whereas miR-145a-5p increased the expression of Sox9, Col2,
and Acan. Moreover, miR-145a-5p alleviated the inhibitory effect of IL-1β on
chondrogenesis. Subsequently, alcian blue staining was performed on the cells. As shown
in Fig. 3E, miR-145a-5p partially reversed the inhibitory effect of IL-1β on cartilage
differentiation.

Figure 2 MiR-145a-5p promotes chondrogenic differentiation and regulates the expression of Nrf2 and Il-6. (A) The miR-145a-5p expression
level was detected via qRT‒PCR during chondrogenesis. (B) Alcian blue staining was performed in the miR-NC, miR-inhibitor, and miR-mimic
groups. (C–F) The expression of miR-145a-5p, Sox9, Acan, and Col2 was detected after transfection with the miR-145a-5p negative control (miR-
NC), miR-145a-5p inhibitor (miR-inhibitor) or miR-145a-5p mimic (miR-mimic). (G) The binding sequences of Nrf2 and Il-6 with miR-145a-5p
were predicted. (H-I) Nrf2 and Il-6 levels were detected in the three groups. (*p < 0.05, **p < 0.01, ***p < 0.005 and ****p < 0.001).

Full-size DOI: 10.7717/peerj.19905/fig-2

Du et al. (2025), PeerJ, DOI 10.7717/peerj.19905 8/21

http://dx.doi.org/10.7717/peerj.19905/supp-8
http://dx.doi.org/10.7717/peerj.19905/fig-2
http://dx.doi.org/10.7717/peerj.19905
https://peerj.com/


Figure 3 MiR-145a-5p can partially reverse the chondrogenic inhibition caused by IL-1 b. (A) MiR-
145a-5p in ATDC5 cells was detected via RNA FISH after treatment with IL-1 β. (B) Fluorescence
intensity was calculated using ImageJ. (C) The expression levels ofmiR-145a-5p, Sox9, Acan, and Col2 in
the Ctrl and IL-1 β groups were detected via qRT‒PCR. (D) The expression levels of Sox9, Col2 and Acan
in the miR-NC and miR-mimic groups with or without IL-1 β were detected. (E) Alcian blue staining was
performed in the four groups. (*p < 0.05, **p < 0.01, ***p < 0.005 and ****p < 0.001).

Full-size DOI: 10.7717/peerj.19905/fig-3
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Cyclic stretch stress regulates chondrogenesis and the expression of
miR-145a-5p
After stimulation with tensile mechanics, the intracellular distribution of YAP was
detected by immunofluorescence to confirm the mechanical response of ATDC5 cells
(Dupont et al., 2011). As shown in Fig. 4A, with the increase of tensile mechanics, the
distribution of YAP in the nucleus was enhanced, and the 20% stretching significantly
promoted the nucleolar residence of YAP, which gives us a clue that ATDC5 can receive
the mechanical stimulation. Subsequently, alcian blue staining revealed that the cells in the
10% stretch group exhibited greater chondrogenic ability (Fig. 4B), while the 20% stretch
inhibits chondrogenesis. As shown in Figs. 4C–4F, the application of physiological tensile
mechanics (10% stretch) promoted the expression of miR-145a-5p, Sox9, Acan, and Col2,
whereas overload (20% stretch) decreased their expression.

MiR-145a-5p rescues OA progression in vivo
To verify the role of miR-145a-5p in OA progression, ago-miR-145a-5p or ago-miR-NC
was intra-articularly injected into the knees of mice after DMM surgery. As shown in Figs.
5A, 5B, the expression level of miR-145a-5p in the cartilage was increased in the miR-145a-
5p group, and the administration of ago-miR-145a-5p indeed alleviated cartilage
destruction and decreased OARSI scores at 9 weeks post DMM surgery (Figs. 5C, 5D).

Figure 4 Cyclic stretch stress regulates chondrogenesis and the expression of miR-145a-5p. (A) Immunofluorescence of YAP in three groups
after stimulation with tensile mechanics. (B) Alcian blue staining was performed in the Ctrl and Stretch groups. (C–F) Sox9, Acan, Col2, and miR-
145a-5p expression in ATDC5 cells was detected after cyclic stretch stress. (*p < 0.05, **p < 0.01, ***p < 0.005 and ****p < 0.001).

Full-size DOI: 10.7717/peerj.19905/fig-4
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Figure 5 MiR-145a-5p rescues OA progression in vivo. (A) RNA FISH was performed to detect the expression level of miR-145a-5p in the four
groups. (B) The fluorescence intensity of miR-145a-5p was calculated via ImageJ. (C and D) Representative images of HE and safranin O/fast green
staining of joint sections and OARSI scores. (E–G) Representative images of IHC staining of joint sections and the fluorescence intensity results of
COL2 and MMP13. (*p < 0.05, **p < 0.01, ***p < 0.005 and ****p < 0.001). Full-size DOI: 10.7717/peerj.19905/fig-5
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Moreover, miR-145a-5p partially improved the expression of COL2 and suppressed the
expression of MMP13 (Figs. 5E–5G).

DISCUSSION
Our study demonstrates a significant decrease in miR-145a-5p expression in OA cartilage,
contrasting with its upregulation during chondrogenesis. We further establish that miR-
145a-5p can partially mitigate the detrimental effects of IL-1β on chondrogenesis.
Crucially, we identify cyclic stretch stress as a key regulator of miR-145a-5p expression,
with 10% stretch promoting and 20% stretch suppressing its levels. In vivo studies confirm
the OA-alleviating function of miR-145a-5p (Fig. 6), highlighting its potential as a novel
therapeutic target.

Our results demonstrate that miR-145a-5p effectively attenuates IL-1β-induced
cartilage degradation in ATDC5 cells, consistent with prior findings showing the
expression of miR-145 increased in OA chondrocytes and responded to IL-1β stimulation
(Yang et al., 2014). Similar to miR-365 and miR-144-3p (Lin et al., 2021; Hwang et al.,
2017), miR-145a-5p exhibits reduced expression in OA cartilage. While miR-365 inhibits
IL-1β-induced HIF-2a upregulation and targets HDAC4 (Chen & Wu, 2019), and miR-
144-3p downregulates IL-1β via MAPK, PI3K/Akt, and NF-κB pathways, we observed a
comparable negative regulatory relationship between IL-1β and miR-145a-5p. The
anti-inflammatory effects of miR-145a-5p appear mediated through the direct regulation

Figure 6 Schematic diagram representing the mechanism by which miR-145a-5p alleviates OA
development. MiR-145a-5p expression is downregulated in OA chondrocytes, it is also regulated by
cyclic stretch stress and can impair IL-1 β’s function. Intra-articular injection of miR-145a-5p alleviates
OA progression. Full-size DOI: 10.7717/peerj.19905/fig-6
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of IL-6. Furthermore, this study reveals the novel mechanoresponsive nature of miR-145a-
5p. Reported targets of miR-145a-5p include the NF-κB signaling pathway (regulating
pyroptosis) (Yao et al., 2022) and SMAD5 (promoting postinfarction revascularization)
(Long et al., 2022), suggesting potential involvement of NF-κB signaling in miR-145a-5p’s
actions during chondrogenesis or OA progression (Ni et al., 2023). Other miRNAs
including miR-29a (Li et al., 2016) and miR-448 (Yang et al., 2018) also exhibit
chondroprotective properties, whereas miR-217 (Papageorgiou et al., 2023) and miR-320a
(Jin et al., 2017) promote OA progression through SIRT1 and PBX3 regulation
respectively, both being upregulated in OA.

Consisting with studies that reported anti-inflammatory properties of miR-145a-5p, our
results indicate it counteracts the inhibitory effect of IL-1β on chondrogenesis (Yao et al.,
2022; Ramelli et al., 2020). IL-1β, a pivotal inflammatory factor in OA cartilage and
synovial (Sanchez-Lopez et al., 2022), exacerbates OA by inducing oxidative stress and
activating the MAPK, NF-κB, and Wnt pathways (Zhu et al., 2020; Feng et al., 2017). This
activation leads to the upregulation of IL-6 (Zhu et al., 2020), MMP3, MMP9, and NRF2
(Wu et al., 2018; Zhang et al., 2020). Our study demonstrates that miR-145a-5p attenuates
IL-1β’s function and suppresses the expression of Il-6 and Nrf2 expression (Figs. 2H, 2I),
suggesting its potential involvement in modulating oxidative stress, MAPK, NF-κB, and
Wnt pathways (Lane & Felson, 2020; Arra et al., 2020). Using IL-1β-treated ATDC5 cells to
model inflammation in vitro, we confirmed miR-145a-5p’s anti-inflammatory effect.
Notably, the miR-145a-5p mimic prevented IL-1β-induced suppression of Col2 expression
(Fig. 3D), indicating its role in protecting cartilage matrix and promoting regeneration.

Applying cyclic stretch stress to ATDC5 cells revealed that 10% elongation promoted
both chondrogenesis and miR-145a-5p expression, while 20% elongation exerted opposing
effects. These results demonstrate that miR-145a-5p is a mechanical response factor that
can be targeted to attenuate the mechanically induced pathological transformation of
chondrocytes (Sun et al., 2017; Pathak et al., 2014). Several miRNAs, such as miR-335-5p
(Xie et al., 2025) and miR-3085-3p (Lai et al., 2025) (upregulated by overload, accelerating
OA), and miR-143-3p (Yan et al., 2024) (mechanically suppressed, inhibiting MSC
chondrogenesis), have been implicated in mechanotransduction during OA. Our findings
demonstrate that optimal mechanical stress enhances both miR-145a-5p expression and
chondrogenic differentiation. However, the precise mechanisms governing mechanical
regulation of miR-145a-5p expression in vivo remain unresolved, complicated by altered
joint load distribution due to cartilage degeneration. These pathological changes expose
chondrocytes to abnormal mechanical stimuli even under normal loading conditions
(Vincent, 2013; Guilak et al., 2018). PIEZO1, a critical mechanosensor upregulated in
chondrocytes during OA progression (Hodgkinson et al., 2022; Lee et al., 2021; He et al.,
2024), is a likely mediator of miR-145a-5p expression, and such dysregulated
mechano-signaling contributes to OA progression via chondrocyte phenotypic changes
(Grad et al., 2011).

Intra-articular injection of miR-145a-5p into the DMM mouse knee alleviated OA
progression and inhibited MMP13 expression. This aligns with reports that miR-145
attenuates TNF-a-driven cartilage degradation and suppresses stroma-degrading enzymes
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(MMP-3, MMP-13, Adamts-5) by targeting MKK4 (Hu et al., 2017). These findings
position miR-145a-5p as a promising therapeutic target for OA. MicroRNAs have
demonstrated therapeutic potential in vivo for various diseases (Gargano et al., 2021, 2023).
Endisha et al. (2021) reported that the level of miR-34a-5p was significantly increased in
the plasma, cartilage, and synovium of patients with late-stage OA. That intra-articular
miR-34a-5p antisense oligonucleotide had cartilage-protective effects on DMM and
high-fat diet/DMM models (Endisha et al., 2021). MiR-21 has been identified as a critical
regulator of cancer and inflammation (Olivieri et al., 2021; Yu et al., 2015). All of these give
a clue that miRNAs can be a powerful method in treating disease (Oliviero et al., 2019).
Moreover, several studies have developed new techniques for delivering miRs to improve
available therapies (Modica et al., 2021; Tan et al., 2021). The limited effect of miR-145a-5p
in vivomay be partly due to insufficient targeted delivery, and more effective methods need
to be developed to improve its cartilage-targeting ability, which is a promising method for
OA treatment.

To our knowledge, this is the first study elucidating the role of miR-145a-5p in cartilage
metabolism and mechanical response. However, there are several limitations in this study.
First, we only detected the effect of miR-145a-5p on chondrogenesis. It may also play a role
in cell apoptosis, autophagy, and other phenotypes, so further studies are needed. Second,
our study examined the mechanoresponsive role of miR-145a-5p only in vitro, while the
mechanical parameters within joint cartilage during disease progression remain
uncharacterized. Advanced imaging techniques or implantable sensors may help elucidate
the dynamic mechanical microenvironment that regulates miR-145a-5p activity in vivo.
Finally, the sample size (n = 6 per group) for some histological analyses may be considered
modest. Future studies should further elucidate the mechanisms by which miR-145a-5p
alleviates OA and validate these findings in vivo using larger cohorts to enhance reliability.

CONCLUSIONS
In conclusion, the occurrence of osteoarthritis is related to a decrease in miR-145a-5p, and
intra-articular injection of miR-145a-5p alleviates OA progression. Specifically, increased
miR-145a-5p may slow the progression of osteoarthritis by inhibiting the function of
inflammatory factors, such as IL-1β. MiR-145a-5p can also be considered a mechanical
responder. Appropriate mechanical stimulation promotes but overload suppresses miR-
145a-5p expression, which makes it a new potential target for OA treatment.

LIST OF ABBREVIATIONS
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RNA FISH RNA Fluorescence in Situ Hybridization

NSAIDs nonsteroidal anti-inflammatory drugs
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TNF tumor necrosis factor
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COPD chronic obstructive pulmonary disease
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DMM destabilization of the medial meniscus
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H&E hematoxylin and eosin

IF Immunofluorescence

HACs Primary human articular chondrocytes
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