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ABSTRACT
MicroRNAs (miRNAs) are small regulatory molecules that repress the translational
processes of their target genes by binding to their 3′ untranslated regions (3′ UTRs).
Because the target genes are predominantly determined by their sequence comple-
mentarity to the miRNA seed regions (nucleotides 2–7) which are evolutionarily
conserved, it is inferred that the target relationships and functions of the miRNA
family members are conserved across many species. Therefore, detecting the rele-
vant miRNA families with confidence would help to clarify the conserved miRNA
functions, and elucidate miRNA-mediated biological processes. We present a mixture
model of position weight matrices for constructing miRNA functional families. This
model systematically finds not only evolutionarily conserved miRNA family mem-
bers but also functionally related miRNAs, as it simultaneously generates position
weight matrices representing the conserved sequences. Using mammalian miRNA
sequences, in our experiments, we identified potential miRNA groups characterized
by similar sequence patterns that have common functions. We validated our results
using score measures and by the analysis of the conserved targets. Our method would
provide a way to comprehensively identify conserved miRNA functions.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Mixture model, MicroRNA, EM algorithm, Machine learning, Position weight matrix,
Sequence analysis

INTRODUCTION
MicroRNAs (miRNAs) are a kind of small noncoding RNA which mediate a wide variety

of biological processes, including development, differentiation, and metabolism (Ambros,

2004; Bartel, 2004; Bushati & Cohen, 2007). The molecules regulate gene expression by

repressing the translation of the target mRNAs or by directly cleaving them, with the

RNA-induced silencing complex (RISC). In this regulatory process, nucleotide positions

2–7 of the miRNAs play an important role in the selection of target gene, and are known as

seed regions (Bartel, 2009).

The conservation of miRNAs and their targets has been reported previously (Altuvia

et al., 2005). For example, the relationship between let-7 miRNA and lin-41, one of its

targets, is broadly conserved in many species, and let-7 and lin-4 miRNAs also bind to a
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conserved target gene, lin-28, in mammals and nematodes (Pasquinelli et al., 2000; Moss &

Tang, 2003). Several studies have also shown that a number of miRNA-target relationships

are conserved in plants (Floyd & Bowman, 2004; Axtell & Bartel, 2005). Because the target

genes are identified based on the binding of the conserved seed sequences of the miRNAs,

the target mRNAs and their functions are considered to be evolutionarily conserved among

the seed-sharing miRNAs (Lewis, Burge & Bartel, 2005; Friedman et al., 2009).

One approach to defining the miRNA functions is to search for miRNAs that are differ-

entially expressed under specific conditions. Various analyses have successfully identified

the miRNAs associated with a particular biological state using miRNA expression profiles

(Chen et al., 2006; Liu et al., 2012; Zhang et al., 2012; Tzur et al., 2008). Recently, a study

based on an analysis of miRNA profiles with a deep sequencing approach showed that the

let-7 family, well-conserved miRNA sequences, is highly expressed in human embryonic

stem cells and shares downstream targets (Koh et al., 2010). However, many researchers

have demonstrated that the expression patterns of conserved miRNAs are not strictly

conserved (Ason et al., 2006; Bak et al., 2008). Moreover, changes in their expression levels

might be not an origin necessarily causing the particular biological changes but a result

from specific circumstances or environmental conditions.

Another way of investigating miRNA functions is to use a low-level animal model or

other species. Using transgenic or knock-out experiments, several studies have identified

the biological roles of miRNAs (Costinean et al., 2006; Park, Choi & McManus, 2010).

Lindow et al. studied orthologues of the targets of conserved miRNAs to identify conserved

regulatory interactions between miRNAs and their targets in different species (Lindow

et al., 2007). Recently, an experiment was designed to study the regulatory functions of

miRNAs for a pathway by identifying conserved miRNAs and their targets in humans and

Drosophila (Hyun et al., 2009).

Although the functions of several miRNAs have been reported in previous studies, the

functions of the majority of miRNAs remain poorly understood. To effectively advance

the research into miRNA functions using conservation information, a careful construction

of miRNA functional families is essential. Here, we describe a method for identifying

conserved sets of miRNAs to clarify their conserved functions. In this paper, we define

the miRNA functional family as a set of miRNAs which share common functions. These

miRNA families are represented by their sequences and share their target relationships.

Therefore, a study of the miRNA functional family should extend our understanding of the

shared functions of miRNAs across species.

We develop a method of identifying miRNAs which perform similar function based on

a mixture model of position weight matrices (PWMs) derived from miRNA sequences.

The PWM is a commonly used representation model in biological sequence analyses,

constructed by calculating the frequency of each specific base (A, T, G and C) at each

nucleotide position in the motif sequence sets. The PWM model has been successfully

applied to diverse problems in DNA and protein sequence analysis, and has demonstrated

its usefulness in identifying functional sequence elements (Bailey & Elkan, 1995;

Hannenhalli & Wang, 2005; Orenstein, Linhart & Shamir, 2012).
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In this work, we systematically generated the PWMs from whole mammalian miRNA

sequences using a mixture model. The mixture model is a type of probabilistic model for

density estimation based on underlying data with mixed distributions. The mixture model

has been known to capture the dominant patterns in samples by component distributions

(Houseman et al., 2008; McNicholas & Murphy, 2010; Costa, Boccignone & Ferraro, 2012;

Melnykov & Maitra, 2010). Therefore, it is appropriate to use a mixture model to identify

the sequence patterns and to group similar miRNAs from whole miRNA sequences that

contain different bases. Given a set of miRNAs, our approach finds the miRNA sequence

profiles in subclasses and constructs the PWMs by estimating the mixing probabilities. Our

experimental results show the characteristics of the consensus sequences, with accurate

modeling of the base distributions at each position in the PWM. The results confirm that

our method can help to identify miRNA functions by collecting similar sequences, and

provides an overview of the evolutionarily and functionally related miRNA groups for

future functional analyses.

MATERIALS & METHODS
MicroRNA sequences and position weight matrix
We collected the mature miRNA sequences from miRBase (release 14) (Griffiths-Jones

et al., 2008; Kozomara & Griffiths-Jones, 2011) and extracted the mammalian miRNAs

from these. We selected for the analysis of the 6-mers at nucleotide positions 2–7, the seed

regions, in the mature sequences. Then, we constructed the PWMs, which are scoring

matrices weighted according to a specific position in the given seed sequences, with a

computational learning approach. The PWMs for our experiments were initialized by

randomly and repeatedly extracting sequences of six nucleotides from human genome

sequences.

Mixture model of PWMs and the expectation–maximization (EM)
algorithm
We developed a mixture model of position weight matrices to construct miRNA families,

and estimated the model parameters with an EM algorithm to maximize the likelihood of

the model.

Suppose that X = {X1,X2,...,Xi,...,XN} is a dataset of N miRNA sequences, and each

sequence length |Xi| is L. When the model is set as having k PWMs, the matrices are

denoted by W = {W1,W2,...,WN}, which is a set of 4× L position weight matrices derived

from miRNA seed sequences. The probability of sequence data X is then represented as:

P(X|W)=

k∑
i=1

λiP(X|λi,Wi)

=

k∑
i=1

λi

N∏
m=1

L∏
v=1

Wi[u= Xmv,v],

where λi is a weight value for the i-th PWM, and Xmv is the v-th base symbol in the m-th

miRNA sequence. Wi[u,v] is the value of index (u, v) in the i-th PWM, and Wi[u= Xmv,v]

Rhee et al. (2013), PeerJ, DOI 10.7717/peerj.199 3/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.199


is the probabilistic value matched to the base symbol of Xmv in the index (u, v) of the

matrix Wi. The sum of λs should be 1, i.e.,:

k∑
i=1

λi = 1 (λi ≥ 0).

To show assignment of the data samples to the model, we introduce a hidden variable zmi

indicating the probability that an input sequence Xm is represented by a PWM Wi. Given

these data, the expected log-likelihood to be maximized by the learning process in the

PWM-mixture model is given by:

logL(W,λ|X)=
N∑

m=1

k∑
i=1

E(zmi)log(P(Xm|Wi)λi),

L(·) is a likelihood function in the model, and E(·) is an expected value. The parameters

of the model are estimated with the EM algorithm. The EM algorithm searches for the

maximum value of the likelihood by iteratively repeating the E-step and M-step until

convergence is achieved.

The E-step calculates the expected value of the hidden variable zmi as follows:

E(zmi)= P(zmi = 1|Xm,Wi,λi)

=
P(Xm|Wi)λi∑k
j=1P(Xm|Wj)λj

.

E(zmi) is the posterior probability that a miRNA seed sequence Xm is fitted in the position

weight matrix Wi.

The M-step computes the parameters, W and λs, to maximize the log-likelihood by

λ̂i =
1

N

N∑
m=1

E(zmi),

Wi[û,v] =

∑N
m=1Wi[u= Xmv,v]E(zmi)∑

b∈{A,U,G,C}

∑N
m=1Wi[u= b,v]E(zmi)

.

Here, ·̂ is the estimate of the parameters, and N is the sample size.

The algorithm is then run iteratively until the marginal likelihood is maximized. When

the learning is finished, a miRNA sequence Xm is assigned to the i-th group among the k

groups, according to the hidden variable zmi that has the maximum value.

Score functions for validation
To interpret and validate our grouping results, we used two approaches to score the miRNA

sequence sets in each cluster. The first scoring function, the match score, was originally

developed to search transcription factor binding sites in DNA sequences (Kel et al., 2003).
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The function ScoreM is calculated as follows:

ScoreM(XM)=

∑L
v=1 I(v)fv,b−

∑L
v=1 I(v)f min

v∑L
v=1 I(v)f max

v −
∑L

v=1 I(v)f min
v

,

where fv,b is the frequency of nucleotide b (b ∈ {A,T,G,C}) at position v, and f min
v is

the frequency of the nucleotide that is the lowest frequency at position v, and f max
v is the

highest at the position. I(v) represents the conservation of position v in a matrix, defined

as:

I(v)=
∑

b∈{A,U,G,C}

fv,b log(4fv,b).

The information value I(·) makes that mismatches in highly conserved regions are

suppressed, whereas mismatches in less conserved regions are relatively acceptable.

The other score function is the silhouette measure, first described by Rousseeuw (1987).

The score, ScoreS, can be used to determine how tightly grouped all the datasets in the

cluster are. The score function is defined as:

ScoreS(Xm)=
β(Xm)−α(Xm)

max{α(Xm),β(Xm)}
,

where α(Xm) is the average distance of Xm to all the other sequences in the same cluster,

and β(Xm) is the minimum value for the average distance of Xm to every other single

cluster. The score value varies between−1 and 1. If ScoreS(Xm) is close to 1, it means that

the sequence Xm is well-matched to its own cluster, and dissimilar to the other neighboring

clusters. The dissimilarity between two sequences is calculated as the Hamming distance.

Analysis of the functional relationships in each group
To evaluate the biological meaning of our results, it is necessary to analyze the functional

relationships among the miRNAs in the same group. We predicted the target genes of

the miRNAs within each group using microCosm Targets release version 5. We chose for

further analyses the target genes that were bound by more than half the miRNAs within

each group.

We investigated the biological process and molecular function categories of Gene

Ontology (GO), and the entries for the KEGG pathways enriched with the target genes

in each group, to verify the functional relationships among the human miRNAs assigned

to the same group. These analyses were conducted using the DAVID Bioinformatics

Resources (Huang, Sherman & Lempicki, 2009).

Next, we looked for the shared functions of the conserved miRNAs and their targets

across species. We extracted information for homologues between human and mouse

genes from the Ensembl database (Flicek et al., 2013), and then determined whether the

miRNA members in the same group shared the conserved targets and their biological roles.
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Table 1 Comparison of the average scores for all miRNA sequences.

ScoreS ScoreM

Random −0.065 0.592

miRBase 0.092 0.919

Hierarchical clustering 0.126 0.892

Our approach 0.144 0.892

RESULTS
miRNA functional family construction
We ran our algorithm independently multiple times with random starts on the same

datasets, and with a varying number of clusters (5–100). For each number of clusters, we

repeated the algorithm 10 times, because of the possible existence of many local maxima

for the mixture model, and we selected the one that maximized the likelihood value. With

the highest likelihood value, the chosen number of clusters was 81. All the grouping results

are shown in Table S1.

We computed two score measures, ScoreS (silhouette score) and ScoreM (match score),

to validate our grouping results (see Methods section). We calculated the average values for

each group, and then compared them with the random and hierarchical clustering results.

To confirm that our approach identified relevant miRNA families, we also compared the

results with the family information in miRBase (Griffiths-Jones et al., 2008; Kozomara &

Griffiths-Jones, 2011). In miRBase, the miRNA families have already been defined, and

several of them are known to be sequentially and functionally conserved. We compared

our family construction results with the miRBase family information, random groupings

and hierarchical clustering results using the average ScoreS and ScoreM values. Table 1

shows that the ScoreS and ScoreM values for our results are high. The average ScoreM for

our results is similar to that for the miRBase families, and the ScoreS is much better in our

results. The match score, ScoreM simply evaluates how well the sequences are represented

by the PWM in their own group, and does not explain how well the similar data are

collected together by dividing the incompatible instances into several groups, because

the score does not measure the differences with samples in other groups. Therefore,

the scores for our results indicate that our approach can be used as a way to construct a

sequence-based family, by assigning similar miRNA sequences to an identical group well,

while assigning dissimilar sequences to different sets.

Table 2 shows that the well-known miRNA family members defined in miRBase

are grouped together in our experiment. For example, all the let-7 miRNA sequences,

members of one of the most well-known families, are collected into the same group,

cluster 10. The let-7 miRNA family members are known to be highly conserved across

species in both their sequences and functions, and the members play roles in tumor

suppression, and cell differentiation, proliferation and development (Roush & Slack,

2008). The mir-181 family is grouped into cluster 44 in our experiment. Its members

are considered to be oncogenic miRNAs that down-regulate the Tcl1 overexpressed in
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Table 2 Examples of the enrichments of miRBase family members in our groups.

AC number miRNA family ID Group ID Enrichments

MIPF0000002 let-7 c10 86/86

MIPF0000006 mir-15 c63 68/68

MIPF0000007 mir-181 c44 52/52

MIPF0000011 mir-19 c13 37/37

MIPF0000013 mir-25 c62 42/42

MIPF0000014 mir-9 c27 16/16

MIPF0000022 mir-7 c35 19/19

MIPF0000024 mir-103 c65 34/35

MIPF0000025 mir-99 c12 38/38

MIPF0000026 mir-218 c48 18/18

MIPF0000027 mir-23 c67 30/31

MIPF0000028 mir-135 c81 25/27

MIPF0000031 mir-196 c36 27/27

MIPF0000034 mir-130 c80 41/44

MIPF0000042 mir-204 c25 27/27

MIPF0000042 mir-26 c20 23/23

MIPF0000046 mir-101 c74 20/20

MIPF0000048 mir-128 c27 16/16

MIPF0000050 mir-153 c14 14/14

MIPF0000051 mir-221 c45 25/25

MIPF0000054 mir-216 c17 22/22

MIPF0000055 mir-194 c39 13/13

MIPF0000058 mir-205 c33 16/16

MIPF0000059 mir-184 c43 13/13

MIPF0000062 mir-214 c51 17/17

MIPF0000063 mir-192 c15 23/23

MIPF0000066 mir-183 c66 15/15

MIPF0000074 mir-105 c28 17/20

mature B-cell lymphomas, and Hox protein, a repressor of differentiation processes in

mammals (Pekarsky et al., 2006; Naguibneva et al., 2006). The members of the miRNA

families that show corresponding results, including let-7, mir-15, mir-181, mir-196, and

so on, share similar sequences, and the sequence conservation in our groupings can also

be detected with WebLogo (Fig. S1) (Crooks et al., 2004). Our results confirm that our

approach effectively groups previously known miRNA family sequences together.

Although many of our groupings are similar to previously constructed miRNA families

as shown in Table 2, several results differ. For example, we cannot find sufficiently

similar sequence patterns in the sequences of miRBase MIPF0000018 family (mir-154)

(Fig. 1A, Table 3). In our experiment, the miRNAs in MIPF0000018 were allocated to

several different groups, including clusters 3, 37, and 52, and the similarities between the

sequences in our groups were shown more clearly. For further confirmation, we calculated

the silhouette measure (ScoreS) and match score (ScoreM) for MIPF0000018 (Table 3). The
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Figure 1 Sequence similarity of groups involving mir-381 in miRBase family and in our results using
WebLogo. (A) MIPF0000018 in miRBase, (B) group 52 in our results. The x-axis shows the position
numbers of the miRNA sequences.

Table 3 Allocation of members within the miRBase family MIPF0000018 in our results.

Group ID # miRNAs ScoreS ScoreM

MIPF0000018 142 −0.669 0.707

c3 82 (42*) −0.087 0.886

c27 432 (12*) −0.366 0.773

c37 58 (11*) −0.146 0.835

c52 19 (10*) 0.767 0.990

c71 72 (12*) 0.069 0.894

c75 79 (11*) −0.215 0.876

Notes.
* is the number of miRNAs in miRBase family MIPF0000018.

ScoreS and ScoreM for the miRBase family were markedly lower than the results for our

groups.

In more detail, the miR-381 sequences are included in the MIPF0000018 family with

the mir-154 miRNAs. However, in our analysis, the mir-381 sequences are grouped with

the mir-466-3p sequences in cluster 52. In this group, the average ScoreS is 0.767 and the

average ScoreM is 0.990, which means that the sequences in the group are highly conserved.

These scores show that the mir-381 sequences are sufficiently similar to those mir-466-3p,

as expected. The sequence similarities are clearly shown using WebLogo in Fig. 1B. The first

five bases of the seed sequences are identical, AUACA in the sequences. From this analysis,

it might be supposed that mir-381 was inherited from the same ancestral miRNA gene

as mir-466-3p, but not the same as that of mir-154. The inference is reasonable because

the mature form of the mir-381 miRNAs is also a 3′-donor sequence in their secondary
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structure, like mir-466-3p. The property that the miRNA members within one miRBase

family are split into several groups in our results is also found in other miRNAs including

mir-188 and mir-506 (Table S1). Conversely, MIPF0000013 (mir-25) and MIPF0000069

(mir-32) in miRBase are merged into one group, cluster 62, in our results. Actually, the

seed sequences of mir-32 are completely identical to those of mir-25, AUUGCA. Our

grouping of cluster 62 is strongly supported by the observation that mir-32 and mir-25

have similar roles. For instance, these miRNAs can lead to cancer by inhibiting apoptosis,

because mir-32 suppresses the expression of Bim protein, a pro-apoptotic factor, as mir-25

does in cancer cells (Petrocca et al., 2008; Ambs et al., 2008). Therefore, we established that

our method might identify functionally related families.

Functional analysis for the constructed family
To verify the biological functions of our miRNA groups more comprehensively, we

conducted the Gene Ontology (GO) and KEGG pathway enrichment analysis of the

human target genes of the miRNAs within each group. The functions of miRNAs are

strongly related to the biological roles of their target genes, because the miRNAs recognize

the target mRNAs and inhibit their expression. We used the target information produced

in microCosm Target version 5. The enrichment results for the target genes in each group

are assessed in Tables S2 and S3. We show the most significant part of the results of the GO

enrichment analysis using biological process terms in Table 4, and for the KEGG pathways

in Table 5. In most of the groups, the target genes are significantly involved in several GO

categories. Similarly, we checked the biological relationships among the miRNAs in our

groups by the KEGG pathway enrichment analysis, and found frequently and statistically

enriched pathways based on the target genes of the members in each group. These results

for the GO annotation and KEGG pathway enrichment analyses are consistent with the

biological functions of the miRNAs previously reported in the literature. For example, the

target genes of cluster 63 were related to the cell cycle in our enrichment analyses. In fact, it

is already known that the mir-16 gene family in cluster 63 regulates cell-cycle progression

(Linsley et al., 2007; Xia et al., 2009).

Finally, we checked the conserved target information for the human and mouse miRNAs

categorized into the same group. Figure 2A shows an example of the conserved target

analyses in the two different species. The human and mouse miRNAs within cluster 63

share orthologous target genes. These analyses help to clarify the functions of the miRNAs

in each group because the target relationships are conserved across most species. Using our

miRNA grouping results, we can speculate about their functions based on our knowledge

of other miRNAs, with already-known functions, in the same group. As an example, it

has previously been shown that the expression of Bcl2 protein is negatively regulated

by miR-15 and miR-16, which are assigned to the same group, cluster 63 (Cimmino et

al., 2005). Because the Bcl2 protein inhibits cell apoptosis, its overexpression leads to

leukemias or other cancers (Cory & Adams, 2002). In our experiment, there were many

other miRNAs within the cluster 63, such as mir-322, mir-424, mir-497, and so on,

grouped with the miR-15 family members, whose functions are not yet clearly known.
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Table 4 GO Biological Process enrichment of the target genes of the miRNAs in each group.

Group ID GO accession GO term p-value

c64 GO:0009987 Cellular process 4.75E−06

c52 GO:0016070 RNA metabolic process 5.84E−05

c64 GO:0006139 Nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

6.09E−05

c52 GO:0016071 mRNA metabolic process 8.88E−05

c55 GO:0046489 Phosphoinositide biosynthetic process 9.26E−05

c56 GO:0006281 DNA repair 9.29E−05

c52 GO:0006396 RNA processing 9.86E−05

c52 GO:0006397 mRNA processing 1.11E−04

c64 GO:0034641 Cellular nitrogen compound metabolic process 1.36E−04

c52 GO:0000087 M phase of mitotic cell cycle 1.56E−04

Table 5 KEGG pathway enrichment of the target genes of the miRNAs in each group.

Group ID Entry Pathway name p-value

c52 hsa04630 Jak-STAT signaling pathway 0.0022

c64 hsa00230 Purine metabolism 0.0026

c52 hsa04060 Cytokine-cytokine receptor interaction 0.0029

c55 hsa00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 0.0034

c6 hsa00340 Histidine metabolism 0.0051

From our results, we can infer that these miRNAs may induce cancers by a similar

mechanism to that of miR-15 and miR-16 (Fig. 2B). In practice, microCosm predicts

that mir-503 binds to the Bcl2 gene transcript. Therefore, our grouping analyses, together

with the conservation information, provide clues to the biological effects of functionally

unknown miRNAs. Furthermore, the example demonstrates that, as well as identifying

the miRNA functions, our approach can help to discover miRNA-mRNA modules in the

complex gene regulatory networks and to understand the combinatorial effects of miRNAs

in cellular processes.

DISCUSSION
Understanding gene regulation is still challenging, and action of miRNAs, in particular,

may cause the processes to be even more complex and harder to interpret. Much

research had been directed towards understanding the gene regulation by miRNAs and

identifying their functions, but there have been not many studies that comprehensively

and systematically examine conserved information across various species although it is

known that miRNA genes are evolutionarily conserved (Shi, Gao & Wang, 2012; Berezikov,

2011; Borenstein & Ruppin, 2006; Li et al., 2010). Furthermore, computational target

prediction methods have mainly focused on one-to-one interactions, and the experimental

identification and validation of miRNA functions remain time consuming and technically
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Figure 2 Conserved targets and functional relationships of miRNAs in cluster 63. (A) The miRNA
family members in cluster 63 target orthologous genes across species, and this observation implies that
functions of the family members are similar. (B) Highly expressed mir-15 and mir-16 induce cell death
by targeting the Bcl2 gene, a repressor of apoptosis, but the misregulation of these miRNAs causes cancer.
The other miRNAs in cluster 63 might be supposed to have similar regulatory functions.

Rhee et al. (2013), PeerJ, DOI 10.7717/peerj.199 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.199


limited. In this study, we have undertaken a fundamental task of the miRNA research in

identifying evolutionarily conserved miRNAs, to extend the functional studies of miRNAs.

The previous classification of miRNA family in miRBase was based on the Rfam

database (Griffiths-Jones et al., 2008; Kozomara & Griffiths-Jones, 2011; Gardner et al., 2009;

Burge et al., 2013). However, it might need to use another definition for functional analysis

or target prediction. For example, Friedman et al. (2009) defined 87 miRNA families and

the definition was used for target prediction. Also, there has been lots of other research

to precisely detect miRNA families using evolutionary information (Guerra-Assunção

& Enright, 2012; Gerlach et al., 2009). We constructed miRNA functional families from

miRNA seed sequences based on a mixture model of position weight matrices. Our method

starts with random PWMs extracted from human genome sequences. Through iterative

learning to maximize the likelihood value using the EM algorithm, this method assigns

the miRNA sequences to each group and builds PWMs that represent the corresponding

conserved sequences in each group, by adjusting the parameters in the mixture model. We

have presented results for all the mammalian miRNAs, demonstrating that our approach

constructs biologically relevant miRNA families, using score measures and functional

analyses of their target genes. We have also shown that these results can facilitate the

identification of conserved and biologically related subsets or modules of miRNAs and

mRNAs by analyzing the conserved target information in our groups.

Usually, a model selection criterion such as Bayesian information criterion (BIC), is

adapted to reduce model complexity when using the maximum likelihood estimation

(Schwarz, 1978; Jones, 2011). However, the scheme could not be applied in our experiment.

BIC always penalizes multiple clusters since our approach has a relatively huge number of

parameters unlike other general models. Moreover, it is difficult to interpret biologically.

Previous works have assumed that each miRNA sequence is contained in only one

miRNA family. Unfortunately, it is not possible to clearly know what the true ancestor of

each miRNA is and how the sequence has evolved. The imprecise assumptions may limit

the study of branched miRNAs. However, our approach has the potential to overcome

these restrictions because it assigns the miRNAs to families with a probabilistic value.

Although we selected a group of miRNAs by choosing the one with the maximum prob-

abilistic value among hidden variables in our experiment, it is feasible to accommodate

overlapping occurrences of miRNAs by modifying the group assignment scheme and to

flexibly assign a sequence to various number of clusters. Moreover, by diversifying the

number of clusters, it may be likely to find more broadly conserved miRNA groups or more

specialized families.

Many miRNAs remain to be identified, and it is not easy to identify the conserved

sequence patterns of several miRNAs when the number of corresponding family members

is limited. However, with the increasing availability of miRNA sequences, our method can

substantially improve the grouping properties with greater precision. Furthermore, the

PWMs generated by our method might also be used to search for novel miRNAs in the

genome, as in the identification of transcription factor binding sites.
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In conclusion, because a large fraction of protein-coding genes is regulated by miRNAs,

the systematic and comprehensive search for conserved miRNAs may be a useful way

to understand gene regulatory processes and to elucidate the biological functions of

miRNAs. Our method should provide a basis for the functional annotation of miRNAs

and fundamental insight into the widespread impact of miRNAs.
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