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ABSTRACT

Background. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease
characterized by inflammation and immune-mediated multi-organ system damage,
accompanied by clinical manifestations such as fever, hair loss, skin rash, oral ulcers,
and joint pain and swelling. SLE has been reported to affect more than 3.4 million
people worldwide, of which approximately 90% are women.

Purpose. This study aims to identify and characterize key hub genes implicated in SLE
through comprehensive bioinformatics analyses, providing a theoretical foundation for
the development of more effective therapeutic strategies.

Methods. Two datasets were procured from the Gene Expression Omnibus (GEO)
database: GSE13887 and GSE10325. Differentially expressed genes (DEGs) were
identified and subjected to functional enrichment analysis, protein-protein interac-
tion (PPI) network construction, and receiver operating characteristic (ROC) curve
analysis to evaluate potential hub genes. The top 20 significantly upregulated and
downregulated DEGs, alongside the top 15 enriched Gene Ontology (GO) terms and
five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, were screened
from both datasets. Quantitative real-time PCR (RT-q PCR) was utilized to validate
hub gene expression in CD3 + T cells from peripheral blood samples of SLE patients.
Concurrently, flow cytometry was employed to quantify inflammatory cytokines in
peripheral blood samples.

Results. Bioinformatics analyses identified 1,912 DEGs in GSE13887 and 52 DEGs
in GSE10325, with eight DEGs common to both datasets. Functional enrichment
analysis underscored critical biological processes, notably cell-mediated cytotoxicity
and cell killing. PPI network and enrichment analyses highlighted seven hub genes,
among which FCERIA and RGSI demonstrated consistent expression trends across
datasets and clinical samples—FCERIA was significantly downregulated, while RGS1
was upregulated in SLE patients. ROC curve analysis confirmed their strong diagnostic
potential (AUC > 0.7). Principal component analysis (PCA) further highlighted
distinct gene expression profiles differentiating SLE patients from healthy controls.
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Clinical validation via RT-q PCR and flow cytometry corroborated these findings,
demonstrating decreased FCER1A expression and increased RGS1 expression in CD3 +
T cells from SLE patients. Moreover, elevated plasma levels of IL-6 and TNF-a, coupled
with diminished IL-10 levels, were observed in SLE patients. These findings suggest that
FCERI1A and RGS1 are promising biomarkers for SLE diagnosis.

Conclusions. FCER1A and RGSI are significantly associated with SLE and serve as
potential biomarkers for distinguishing SLE patients from healthy individuals. Their
involvement in SLE pathogenesis underscores their potential as targets for future
diagnostic and therapeutic interventions.

Subjects Bioinformatics, Genomics, Immunology, Rheumatology, Statistics

Keywords Systemic lupus erythematosus, Bioinformatics analysis, Disease biomarker, FCERIA,
RGS1

INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by
multisystemic involvement, affecting various organs such as the skin, kidneys, joints, and
central nervous system (Hoi et al., 2024). It impacts approximately 3.4 million individuals
globally (Tian et al., 2023) and predominantly affects women of childbearing age, with a
female-to-male ratio of approximately 10:1 (Fanouriakis et al., 2021). In recent decades,
the incidence of SLE has shown a continuous upward trend (Barber et al., 2021; Gergianaki
et al., 2017). The global prevalence of SLE varies across regions, ranging from 20 to 150
cases per 100,000 people. The disease burden is notably higher among certain racial and
ethnic groups, including Black, Asian, and Hispanic populations (Barber et al., 2021; Siegel
& Sammaritano, 2024).

The pathogenesis of SLE is intricate, involving a multifactorial interplay of genetic,
epigenetic, environmental, and hormonal factors (Tsokos, 2024; Tsokos, 2011). Its
pathogenesis is involved in the alteration of whole immune system. Dysregulated T
cell responses are pivotal in the immunopathology of SLE, with CD4™" T helper (Th) cells,
particularly Th1, Th2, Th17, and regulatory T cells (Tregs), playing crucial roles in disease
progression (Sharabi & Tsokos, 2020). An imbalance in Th1/Th2 cytokine profiles and the
heightened presence of proinflammatory cytokines, such as interleukin 6 (IL-6), interleukin
17 (IL-17), and interferon-a (IFN-a), are strongly associated with disease activity and
organ damage (Li et al., 2022). Moreover, impaired Treg function exacerbates immune
dysregulation and fosters the generation of pathogenic autoantibodies (Brusko, Putnam e
Bluestone, 2008). B cell hyperactivity and the subsequent overproduction of autoantibodies,
such as anti-dsDNA and anti-Smith (Sm) antibodies, are defining features of SLE (Pisetsky,
Bossuyt & Meroni, 2019; Karrar ¢ Cunninghame Graham, 2018). These autoantibodies
form immune complexes that are deposited in various tissues, instigating complement
activation, inflammation, and tissue damage (Tsokos et al., 2016). Furthermore, neutrophil
extracellular traps (NETs) have been implicated in the pathogenesis of SLE by exacerbating
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self-antigen exposure and perpetuating type I interferon expression (Papayannopoulos,
2018).

Despite significant advances in the understanding of disease mechanisms, the early
diagnosis and management of SLE remain challenging due to its heterogeneous clinical
manifestations and unpredictable progression (Ddirner ¢» Furie, 2019; Durcan, O’Dwyer ¢
Petri, 2019). Current therapeutic approaches primarily target immunosuppression and
symptom alleviation; however, these strategies are frequently accompanied by substantial
side effects and variable therapeutic efficacy (Fanouriakis et al., 2019). The diagnosis of
SLE is predominantly based on clinical presentation and laboratory testing. The American
College of Rheumatology (ACR) and the Systemic Lupus International Collaborating
Clinics (SLICC) have established classification criteria, which incorporate both clinical
manifestations (e.g., cutaneous rashes, joint involvement, renal dysfunction) and serological
markers, including the presence of antinuclear antibodies (ANA), anti-dsDNA antibodies,
Sm antibodies, and reduced complement levels (Styrkarsdottir et al., 2021). Additional
diagnostic modalities include urinalysis to assess renal involvement and skin biopsies in
cases of cutaneous lupus.

However, these diagnostic methods are not without their limitations. First, the clinical
manifestations of SLE are highly heterogeneous and may overlap with those of other
autoimmune diseases, rendering early diagnosis challenging (Ddrner ¢ Furie, 2019). For
instance, symptoms such as fatigue, arthralgia, and rashes are not exclusive to SLE and may
occur in a variety of other conditions, leading to delayed identification and intervention.
Secondly, the presence of autoantibodies such as ANA lacks specificity for SLE, as these
antibodies may also be found in other autoimmune disorders or even in healthy individuals
(Durcan, O’Dwyer & Petri, 2019). Furthermore, some patients with SLE may test negative
for certain autoantibodies, complicating the diagnostic process. Lastly, these diagnostic
methods often fail to adequately capture disease activity or predict organ damage, thus
limiting their effectiveness in monitoring disease progression and guiding therapeutic
strategies (Fanouriakis et al., 2019). Traditional diagnostic approaches are time-intensive
and cumbersome, hindering their utility in the timely diagnosis, treatment, and prognosis
of patients.

Genetic testing has increasingly become a pivotal tool in the diagnosis and treatment of
SLE, significantly enhancing both the accuracy and efficiency of diagnosis and therapeutic
strategies. By identifying genetic biomarkers linked to SLE, these tests facilitate earlier
and more precise diagnoses, thereby enabling timely interventions and optimizing
patient management. Consequently, genetic screening is now an essential component
of clinical practice, not only refining diagnostic precision but also paving the way for
more personalized treatment approaches. Through the identification of disease-associated
genes via genetic testing, coupled with the validation of corresponding biomarkers through
techniques such as flow cytometry, SLE can be diagnosed and managed more swiftly and
effectively, allowing for a more targeted approach to treatment. This, in turn, improves
both short-term clinical outcomes and long-term disease control (Ghodke-Puranik, Olferiev
& Crow, 2024; Vasquez-Canizares, Wahezi & Putterman, 2017; Lee et al., 2022; Horisberger
et al., 2022; Zhu et al., 2023).
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Table 1 Characteristics of SLE patients and HCs. This table details the characteristics of patients with
SLE and HC. Data are presented as mean (minimum-maximum) for continuous variables and n (%) for

categorical variables.

General information SLE (n=45) HC (n=40) p value
gender Female 42 (93.33%) 39 (97.5%) 0368
Male 3 (6.67%) 1(2.5%)

Age, years 38.09 (15-74) 42.20 (24-67) 0.099

WBC, 10°/L 6.72 (1.96-21.97) 6.00 (3.65-9.54) 0.695
LYM,10°/L 1.74 (0.07-3.92) 2.07 (1.38-3.04) 0.008"

NEU, 10°L 4.36 (1.12-17.84) 4.63 (1.72-52.80) 0.269
RBC, 10'?/L 4.29 (2.46-5.74) 4.62 (3.64-5.18) 0.003”
HGB, g/L 124.71 (78-163) 134.80 (99-165) 0.003”
HCT, L/L 0.38 (0.25-0.48) 0.41 (0.33-0.49) 0.002
PLT, 10°/L 225.09 (9-377) 260.78 (144-387) 0.051
SLEDAI 9.44 (1-24) S S
Notes.

Abbreviations: WBC, white blood cell; LYM, lymphocyte; NEU, neutrophil; RBC, red blood cell; HGB, hemoglobin;

HCT, hematocrit; PLT, platelet.

Data represent mean values (minimum-maximum values). P values were calculated by Mann—Whitney U test or ¢ test.

1p < 0.05.

2p <0.01.

3p < 0.001.

The purpose of this study is to explore genes, biomarkers and molecular processes
related to SLE in combination with comprehensive bioinformatics analysis, and verify

them through clinical data to better diagnose SLE.

MATERIALS AND METHODS

Research participants and sample collection

This study is a retrospective study. A total of 45 SLE patients and 40 healthy controls (HCs)
were collected from Nanfang Hospital of Southern Medical University from January 2024
to December 2024. All SLE patients met the 2012 ACR SLE disease classification criteria
(Petri et al., 2012; Tan et al., 1982). All the SLE patients with concurrent infection, acute
concurrent illness, and use of probiotics or antibiotics within 1 month before admission
were excluded. The collected HCs also needed to have no history of known autoimmune
diseases and be of comparable age to SLE patients. All the participants were collected two
mL EDTA-K; blood sample.

Ethics approval was granted by the Ethics Committee of Nanfang Hospital, under the
surveillance of ethical number: NFEC-2025-026. All the methods used were in accordance
with the approved guidelines. Written informed consent was required from all patients
and healthy volunteers in the study.

The SLE patients and HCs in this study were comparable in age and gender (Table 1).
Average age of the SLE and HC groups was 38.09 & 11.97 and 42.20 =+ 10.34, respectively
(p = 0.099).

Xiao et al. (2025), PeerdJ, DOI 10.7717/peerj.19891 4/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.19891

Peer

Datasets

Two raw datasets, GSE13887 and GSE10325, were downloaded from the Gene Expression
Omnibus (GEO) database (https:/www.ncbi.nlm.nih.gov/geo/). GSE13887 was an analysis
of CD3-positive T cells isolated from 10 SLE patients and nine HCs. GSE10325 was an
analysis of freshly isolated lymphocytes (CD4™ T cells and CD19™ B cells) and CD33™
myeloid subsets from the blood of 28 HCs and 39 SLE patients.

Identification of differentially expressed genes

Differentially expressed genes (DEGs) between SLE and HCs were identified using the
limma package (version 3.64.1) in R (version 4.2.1). The GSE13887 and GSE10325 datasets
were first converted into expression matrices, appropriately grouped, and normalized.
Normalization and differential expression analysis were performed using the limma
package. Genes with an adjusted p-value (false discovery rate, FDR) < 0.05 and an absolute
log2 fold change (]log2FC|) > 0.5 were considered statistically significant. DEGs were
classified as upregulated or downregulated based on whether their log2FC values were
above 0.5 or below —0.5, respectively. An online Venn diagram tool was employed to
identify overlapping DEGs between SLE and HC. The results were visualized using ggplot2
(version 3.4.4) for volcano plots (with thresholds set at p < 0.05 and [log2FC| > 1) and
box plots to assess normalization across datasets. Heatmaps were generated using the
ComplexHeatmap package (version 2.13.1), while unique and shared DEGs were further
illustrated using the VennDiagram package (version 1.7.3) (Gu, Eils & Schlesner, 2016).

Gene Ontology term and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis

The R language packages clusterProfiler (version 4.4.4) and ggplot2 were used to perform
Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis on common DEGs (co-DEGs) and visualize the results, with
a threshold of p value < 0.05, and bar charts, bubble charts, and chord plots were drawn
(Yuetal. , 2012).

Construction of protein-protein interaction network and
identification of hub genes

The PPI network of DEGs that may play an important role in the progression of SLE
was constructed using the STRING online database (https:/www.string-db.org/). The
protein—protein interaction (PPI) network was performed using Cytoscape (version
3.10.2) (http:/www.cytoscape.org/) to better visualize the interaction information. Hub
genes with connectivity >10 were selected using the CytoHubba (version 0.1).

Hub gene validation

Receiver operating characteristic (ROC) analysis was performed on the data using the

R language package pROC (version 1.18.0). The results were visualized using ggplot2 to
plot the ROC curve of the hub gene. The area under the curve (AUC) of the ROC curve
corresponding to the hub gene was used to evaluate the ability to distinguish between SLE
and HC. The expression profiles of the hub genes in the two data sets were used as variables
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for principal component analysis (PCA) to obtain PC1 and PC2, and ggplot2 was used to
visualize the results.

CD3* T cell isolation from SLE and HC periphal blood samples
Human primary PBMC were isolated from periphral blood with EDTA-K2 by density
gradient centrifugation using Ficoll. 1 X 10° CD3™ T cells were enriched by positive
selection with an CD3™ T cells isolation kit (130-097-043, Miltenyi Biotec, Bergisch
Gladbach, Germany). The purity of T cell were analyzed by Flow cytometry (Cantoll, BD
Bioscience, Franklin Lakes, NJ, USA) staining with anti-CD3 -PE antibody (562310, clone:
HIT3A, BD Bioscience, Franklin Lakes, NJ, USA).

Real-time quantitative polymerase chain reaction

The sorted CD3™ T cells were lyzed with TRIzol reagent (Cat. #G3013 Servicebio, Wuhan,
China). After chloroform substitute (Cat. #G3014 Servicebio, Wuhan, China) isolation,
RNA were percipitated by isopropanol by centrifugation at 4 °C, 15,000 g, 15 min. After that,
RNA were rinsed with 2 times 75% ethanol. The cDNA were synthesized with SweScript RT
I First Strand cDNA Synthesis Kit (Cat. # G331-1, Servicebio, Wuhan, China) by Random
Hexamer Primer (Cat. #G331-4, Servicebio, Wuhan, China). The RNA template were
added one pg.

The qPCR were conducted by using Servicebio™ 2xSYBR Green gqPCR Master Mix
(Cat. #G3326-1, Servicebio, Wuhan, China). The reation volume were used 20 pL in each
wells, cDNA templated were diluted in 10 times with DEPC water and 2 pL, forward and
reverse primers were added 0.4 pL. The qPCR were performed with Roche Cobas 4800 PCR
machine (Roche, Basel, Switzerland). This experiment used a two-step reaction procedure:
pre-denaturation: 95 °C, 2-5 min; cyclic amplification (35-45 cycles): 95 °C denaturation
5-15 s; 60-68 °C annealing/extension 20-60 s (simultaneous fluorescence collection,
SYBR Green collection at the end point, TagMan collection in real time). Melting curve
(SYBR Green): gradually increase the temperature from 65 °C to 95 °C and monitor the
fluorescence. Relative gene expression was calculated using the 244 method, and the
results were normalized using GAPDH. Primer sequences are shown in Table S1.

Flow cytometry

The FCER1A and RGSI protein expression levels of CD3" T cells in plasma collected
from HCs and SLE patients and the levels of inflammatory factors in plasma were detected
by flow cytometry. Samples were analyzed using a BD FACS Fortassa flow cytometer
(BD Biosciences, USA). Data acquisition was performed using BD FACSDiva software,
and at least 10,000 events were recorded for each sample. Polyclonal rabbit anti-human
RGSI antibody (Cat# LS-C162570-400; LSBio, Seattle, WA, USA) and FITC-conjugated
goat-anti-rabbit secondary antibodies were used for RGS1 analysis (Jiang et al., 2024).
Polyclonal rabbit anti-human RGS1 antibody (Cat# LS-C162570-400; LSBio, Seattle,
WA, USA) and FITC-conjugated goat-anti-rabbit secondary antibodies were used for
RGSI analysis. A rabbit polyclonal FCER1 alpha Monoclonal Antibody (Cat# 16-5899-82,
Functional Grade, eBioscience, San Diego, CA, USA) was used for FCER1A analysis (Greer
etal., 2014).
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Statistics

All data processing and analysis were performed in GraphPad Prism 9.0. To compare
two groups of variables, the Mann—Whitney U test was applied. Fisher’s exact test was
performed to analyze the statistical significance between two variable data sets. P < 0.05
was considered statistically significant. Statistical significance is reported as follows: p <
0.05(*), p < 0.01(**), p < 0.001(***), p < 0.0001(****), ns(not significant).

RESULTS
Identification of DEGs

Utilizing bioinformatics analysis through R software (version 4.2.1), a total of 1,912
DEGs were identified in the GSE13887 dataset, while 52 DEGs were detected in the
GSE10325 dataset. Subsequent hierarchical clustering analysis was performed on these
DEGs, prioritizing the top 20 upregulated and downregulated genes from GSE13887
(Table S3) and GSE10325 (Table S4), respectively. Volcano plots and heatmaps were
generated to visualize the clustering results for GSE13887 (Figs. 1A, 1C) and GSE10325
(Figs. 1B, 1D). The heatmaps distinctly illustrated a high degree of consistency in sample
clustering.

Following data normalization and comparative evaluation across datasets, box plots
were constructed to confirm the normalization quality for GSE13887 (Fig. 1E) and
GSE10325 (Fig. 1F). The results demonstrated that the data distribution across both
datasets conformed to established quality standards, affirming the robustness and cross-
comparability of the microarray data. A Venn diagram (Fig. 1 G) was subsequently generated
to illustrate the overlap of DEGs between the two datasets, identifying eight shared DEGs.

Enrichment analysis of DEGs
GO and KEGG pathway enrichment analyses were conducted to elucidate the functional
roles of the eight common differentially expressed genes (co-DEGs). GO terms were
categorized into biological process (BP), cellular component (CC), and molecular function
(MF), with the top five most significantly enriched terms in each category selected based
on the lowest p-values (Table S5). These results were visualized via bar charts (Fig. 2A)
and bubble plots (Fig. S1A). The co-DEGs were predominantly associated with processes
such as cell killing, leukocyte-mediated cytotoxicity, natural killer cell-mediated immunity,
and natural killer cell-mediated cytotoxicity.

Subsequently, the five most significantly enriched KEGG pathways were identified
(Table S6) and represented through bar plots (Fig. 2B) and bubble charts (Fig. S1B).
The co-DEGs were chiefly involved in pathways related to transcriptional dysregulation in

cancer, apoptosis, thyroid cancer, African trypanosomiasis, and asthma.

PPI network and hub genes

A chord diagram was generated to illustrate the enrichment of genes within the top
five GO categories across BP, CC, and MF, identifying seven key genes: GZMB, LAG3,
APOLL1, CXCL13, RGS1, FCER1A, and DPEP2. Notably, RGS1, CXCL13, and GZMB were
enriched in at least two GO categories (Figs. 2C-2E). The DEGs were uploaded to the
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Figure 1 Volcano plots, heat maps, box plots, and a Venn diagram of GSE13887 and GSE10325
datasets. (A) Volcano plot of GSE13887 dataset. The x-axis represents log2 (Fold Change), and the
y-axis represents —logl0 (P value). Red dots represent upregulated genes, and blue dots represent
downregulated genes. (B) Volcano plot of GSE10325 dataset. (C) Heat map of the top 20 upregulated and
downregulated EP-DEGs in GSE13887 dataset. Each row represents a gene, and each column represents a
sample. Red represents high expression levels, and blue represents low expression levels. (D) Heat map of
GSE10325 dataset. (E) Box plot of GSE13887 dataset, with no significant difference in median and upper
and lower quartiles. (F) Box plot of GSE10325 dataset. (G) Venn diagram of common DEGs in GSE13887

and GSE10325 datasets.

Full-size Gal DOL: 10.7717/peerj.19891/fig-1

STRING database to construct the PPI network (Fig. 52). Using the MCODE plugin, a
tightly interconnected protein cluster consisting of CXCL13, GZMB, LAG3, and FCER1A

was identified (Fig. 3A).

Overall, seven hub genes—GZMB, LAG3, APOL1, CXCL13, RGS1, FCER1A, and
DPEP2—were selected based on both the PPI network and chord diagram analyses. Volcano
plot assessments of their expression levels in the GSE13887 and GSE10325 datasets revealed
that only FCER1A and RGS1 exhibited consistent expression trends across both datasets,

Xiao et al. (2025), PeerdJ, DOI 10.7717/peerj.19891

8/24


https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13887
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10325
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13887
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10325
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13887
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10325
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13887
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10325
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13887
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10325
https://doi.org/10.7717/peerj.19891/fig-1
http://dx.doi.org/10.7717/peerj.19891#supp-8
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13887
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10325
http://dx.doi.org/10.7717/peerj.19891

PeerJ

natural killer cell mediated cytotoxicity

natural killer cell mediated immunity Apoptosis
leukocyte mediated cytotoxicity

dg

cell killing

endothelial cell chemotaxis to fibroblast growth factor . : .
Transcriptional misregulation in cancer

cytolytic granule
triglyceride-rich plasma lipoprotein particle Ontology
very-low-density lipoprotein particle P

o0}

Ontology

cc Asthma [ e

high-density lipoprotein particle MF

RREN

plasma lipoprotein particle

dipeptidase activity Thyroid cancer
CXCR chemokine receptorbinding 1|

fibroblast growth factor binding -

EL

immunoglobulin binding African trypanosomiasis

G-protein alpha-subunit binding -

L T T T T T
00 05 10 15 20 25
-Log 1 (P value)

0 1 2 3
-Log 19 (P value)

BP

logFC logFC
,@ 1125 g 147
o 1.100 g 1.15
,é’ 1.075 & 113
o 1.11
O 10%0 N" 1.09
G0:0034385

2 LQEOU"OO\

=
=

/G 0:0016305

GO:0017134

Figure 2 Functional enrichment analysis of DEGs. (A) Bar plot of GO enrichment analysis results for
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plot of KEGG pathway enrichment analysis results. (C-E) Chord diagrams depicting EP-DEGs enriched
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Full-size Gl DOI: 10.7717/peer;j.19891/fig-2
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FCER1A

Figure 3 Identification of hub genes in the PPI network and functional enrichment analysis of
FCERIA and RGS1. (A) Identification of four hub genes (CXCL13, GZMB, LAG3, FCERIA) using
CytoHubba in Cytoscape. (B) Top ten hub genes identified in the FCERIA PPI network using CytoHubba
in Cytoscape. (C) Top ten hub genes identified in the RGSI PPI network using CytoHubba in Cytoscape.
Full-size & DOI: 10.7717/peerj.19891/fig-3

with FCER1A being downregulated and RGS1 upregulated (Fig. S3). These two genes
were further analyzed using the STRING database to construct an additional PPI network
(Fig. 54), visualized in Cytoscape. MCODE analysis identified a highly interconnected
protein cluster comprising ten genes (Figs. 3B, 3C).

Prognostic value of hub genes

ROC curves were generated to evaluate the diagnostic efficacy of FCERIA and RGSI,
both individually and in combination, using their expression levels in the GSE13887 and
GSE10325 datasets (Fig. 4). Both genes demonstrated strong diagnostic potential, with area
under the curve (AUC) values exceeding 0.7. The combined analysis of these two genes
exhibited superior diagnostic performance.

PCA was performed to further validate their discriminatory power. The PCA plot,
derived from dimensionality reduction of gene expression data in both HCs and SLE
patients, demonstrated clear separation between the two groups based on the expression
profiles of FCERIA and RGSI (Fig. 5). The first two principal components (PC1 and PC2)
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Figure4 Hub gene ROC curve. (A) ROC curve analysis of FCERIA and RGS1 hub genes in the
GSE13887 dataset. (B) ROC curve analysis of FCER1A and RGS1 hub genes in the GSE10325 dataset. (C)
Joint ROC curve analysis of FCER1A and RGS1 genes in the GSE13887 and GSE10325 datasets.
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accounted for 100% of the explained variance. SLE samples clustered predominantly on the
negative axis of PC1, while HCs were localized on the positive axis, indicating significant
differences in gene expression patterns between the groups and highlighting the robust
discriminatory capability of these two genes.

Verification by other datasets and clinical samples

To further substantiate these findings, the expression of FCER1A and RGS1 was validated
using the GSE61635 dataset, which corroborated their diagnostic efficacy. The expression
trends observed in GSE61635 were consistent with those from GSE13887, GSE10325,
and clinical samples, with FCERIA downregulated and RGSI upregulated in SLE patients
relative to HCs (Fig. 6).

Peripheral blood samples were collected, and CD3™ T cells were isolated using magnetic
bead separation. RNA extraction followed by RT-qPCR revealed significant downregulation
of FCERIA (p < 0.0001) and upregulation of RGS1 (p < 0.0001) in SLE patient samples
compared to HCs (Fig. 7A). These findings were corroborated by flow cytometry, which
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demonstrated a marked reduction in FCER1A protein levels (p < 0.01) and a significant
increase in RGS1 protein expression (p < 0.001) in the plasma of SLE patients (Figs. 7B,
7C).

Additionally, flow cytometric analysis of inflammatory cytokines revealed elevated
plasma levels of IL-6 and TNF-a (p < 0.01), alongside a significant reduction in
IL-10 (p < 0.001) in SLE patients compared to HCs (Fig. 7D). These results further
support the potential of FCER1A and RGS1 as robust biomarkers for the diagnosis and
pathophysiological understanding of SLE.

DISCUSSION

SLE is a multifactorial autoimmune disorder characterized by widespread inflammation and
immune-mediated damage across multiple organ systems, with a notably higher prevalence
in women (Kaul et al., 2016). The pathogenic mechanisms underlying SLE are intricate and
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(%), p < 0.0001 (¥+*),
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interdependent, encompassing T cell dysregulation, B cell hyperactivity, and an elevation
in proinflammatory cytokines (Parodis, Gatto & Sjowall, 2022; Wangriatisak et al., 2022;
Yap & Lai, 2013). SLE manifests in a diverse array of clinical presentations and follows an
unpredictable trajectory, complicating early diagnosis and therapeutic intervention (Ddrner
& Furie, 2019; Durcan, O’Dwyer ¢ Petri, 2019). Hence, the identification of SLE-related
biomarkers, genes, or signaling pathways is imperative for advancing diagnostic accuracy,
therapeutic strategies, and prognostic evaluations in SLE.

Bioinformatics has emerged as a robust tool for predicting potential therapeutic targets
and biomarkers in autoimmune diseases such as SLE. For instance, Zhao et al. (2021)
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demonstrated through a comprehensive bioinformatics analysis that targeting IFI27 holds
promising therapeutic potential for SLE. Shen et al. (2022) identified a set of interferon-
stimulated genes as potential diagnostic biomarkers for SLE. Leveraging transcriptomic
data, Wu et al. (2024) established that the pathogenesis of COVID-19 shares certain
similarities with that of SLE and screened small-molecule compounds, thereby suggesting
potential molecular targets for the treatment of both COVID-19 and SLE in combination.
Lietal. (2023) conducted an in-depth exploration of the molecular characteristics of
NET-associated genes (NRGs) in SLE, identifying three prospective biomarkers (HMGBI,
ITGB2, and CREBS5), and categorizing three distinct clusters based on these key biomarkers.
In this study, we conducted an analysis of the GSE13887 and GSE10325 datasets
associated with SLE using bioinformatics tools, and identified eight co-DEGs. This was
followed by functional enrichment analysis. Among these, seven hub genes—FCERIA,
RGS1, CXCL13, DPEP2, LAG3, APOLI, and GZMB—were extracted by constructing a PPI
network, and subsequently validated in peripheral blood samples of SLE patients through
RT-qPCR and flow cytometry. Upon evaluating the expression levels of genes across
the two datasets, we identified two genes, FCERIA and RGSI, whose expression trends
were consistent in both the datasets and clinical samples. FCERIA, a high-affinity IgE
receptor, is significantly downregulated in SLE patients, suggesting potential impairment
in antigen presentation and immune regulation (Andiappan et al., 2021; Leffler et al., 2019,
He et al., 2020). Conversely, RGS1, a G protein signaling regulator, is notably upregulated,
and its expression is associated with T cell migration and immune response modulation
(Jiang et al., 2024; Bai et al., 2021). Functional enrichment analysis revealed that DEGs were
significantly associated with biological processes such as “leukocyte-mediated cytotoxicity”,
“natural killer cell-mediated immunity”, and “apoptosis”. KEGG pathway analysis
highlighted the enrichment of pathways related to “cancer transcriptional dysregulation”,
“apoptosis”, and the “thyroid cancer pathway”, underscoring the involvement of immune
dysregulation and apoptosis in the pathogenesis of SLE. Previous studies have established
that inflammation, the over activation of immune pathways, and compromised apoptotic
mechanisms are central to the pathogenesis of SLE (Crow, 2023; Sutanto ¢ Yuliasih,
2023; Mistry & Kaplan, 2017; Mahajan, Herrmann ¢ Munoz , 2016). Our findings align
with these reports, emphasizing the pivotal role of the hub genes identified within these
pathological processes. Among the identified hub genes, FCERIA plays a critical role in
immune regulation, participating in IgE-mediated signaling, while RGSI modulates G
protein-coupled receptor signaling pathways, influencing immune cell migration and
function. Likewise, CXCL13 is known to regulate B cell trafficking and follicular helper
T cell responses, both of which contribute to the pathogenesis of SLE (Hui ef al., 2024;
Schiffer, Worthmann & Haller, 2015). The serine protease GZMB has been implicated
in cytotoxic T cell-mediated apoptosis, a crucial mechanism in immune homeostasis
(Thompson & Cao, 2024). Additionally, DPEP2, LAG3, and APOL1 exhibit well-established
immunoregulatory effects, though their precise contributions to SLE progression remain
to be fully characterized. Simultaneously, we assessed the levels of inflammatory mediators
IL-6, TNF-a, and IL-10 in the collected plasma samples. It was observed that IL-6 and
TNF-a levels were elevated, while IL-10 levels were diminished. IL-6, a proinflammatory
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cytokine, plays a pivotal role in B-cell differentiation, T-cell activation, and the production
of acute-phase proteins. The increased levels of IL-6 in SLE patients indicate its involvement
in driving systemic inflammation, enhancing autoantibody production, and contributing
to disease activity (Karampetsou et al., 2019; Talaat et al., 2015). TNF-a. is a potent
proinflammatory cytokine that plays a significant role in inflammation, tissue damage,
and apoptosis in SLE. Elevated TNF-a levels are strongly associated with disease severity
and organ damage (Richter et al., 2023; Ghorbaninezhad et al., 2022). 1L-10, recognized
for its anti-inflammatory properties, modulates excessive immune responses and ensures
immune tolerance. Reduced IL-10 levels in SLE patients impair its protective function in
suppressing inflammation and preventing immune dysregulation. A deficiency in IL-10
may foster the persistence of auto reactive B and T cells, thereby exacerbating autoimmunity
(Moore et al., 2001; Biswas, Bieber ¢~ Manz, 2022).

Previous studies have made significant strides in identifying biomarkers for autoimmune
diseases (ADs) in general. For instance, a review by Gibson et al. (2010) highlighted the
challenges in diagnosing and predicting outcomes in autoimmune disorders, emphasizing
the need for proteomic strategies to discover early biomarkers. The authors discussed the
potential of proteomic platforms to reflect the complexity of autoimmune disease processes,
suggesting that these approaches could lead to more accurate and timely diagnoses. Another
study by Kruta et al. (2024) explored the application of machine learning for precision
diagnostics of autoimmune diseases. The authors developed an integration pipeline to
preprocess and integrate various types of health data, including clinical, laboratory, and
multi-omics data, to improve the accuracy of machine learning models in classifying
autoimmune diseases. Their results demonstrated that integrating multiple data types
significantly enhanced the prediction accuracy, highlighting the potential of machine
learning in personalized medicine for autoimmune conditions. A comprehensive review
by Vivas, Boumediene ¢ Tobon (2024) provided an overview of the latest advancements in
predicting autoimmune diseases, including both traditional biomarkers and innovations
in artificial intelligence. The authors discussed the potential of Al tools in predicting SLE,
emphasizing the importance of early diagnosis and intervention. They also highlighted the
need for further research to develop robust predictive models that can be applied in clinical
settings. However, these studies summarized the advancements in biomarkers for ADs and
outlined directions for future perspectives; in particular, these methods still require further
investigation.

Despite these insights, our study still has some limitations. Although clinical samples
provided preliminary validation, the functional role of the identified hub genes in the
pathogenesis of SLE still needs to be further explored through in vitro experiments and
animal models, and we are currently trying to establish a multicenter study for further
validation.

In summary, our bioinformatics analysis identified key hub genes, including FCERIA
and RGS1, which may serve as potential biomarkers and therapeutic targets for SLE. As
research continues to unravel the complexities of SLE, the integration of genomic data with
clinical findings will pave the way for improved diagnostic tools, personalized treatments,
and better outcomes for SLE patients in the future.
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CONCLUSION

In this study, we employed integrative bioinformatics analysis and clinical validation

to identify and verify FCERIA and RGSI as potential biomarkers for SLE. These genes
exhibited consistent differential expression patterns across multiple independent datasets
and patient-derived clinical specimens, with FCERIA markedly downregulated and RGS1
significantly upregulated in individuals with SLE. Functional enrichment and PPI analyses
implicated these genes in critical immunological processes, including immune regulation,
cell-mediated cytotoxicity, and apoptosis—hallmarks of SLE pathogenesis. Moreover,
dysregulated levels of pro- and anti-inflammatory cytokines in patient plasma further
substantiate the immunopathological relevance of these findings. Collectively, our results
provide a foundation for the potential application of FCERIA and RGSI in SLE diagnosis
and suggest their promise as targets for future therapeutic strategies. Further mechanistic
studies are warranted to elucidate their functional roles in disease progression.
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