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ABSTRACT
Background: Preoperative identification of breast cancer (BC) subtypes is essential
for optimizing treatment strategies and improving patient outcomes. This study
aimed to identify circulating cell-free DNA (cfDNA) methylation signatures to
differentiate triple-negative breast cancer (TNBC) from other BC subtypes (non-
TNBC).
Methods: We initially performed a genome-wide analysis to identify differentially
methylated CpG sites (DMCs; |Δβ| > 0.10 and P < 0.05) between five TNBC and nine
non-TNBC tissues using the Infinium HumanMethylationEPIC BeadChip. These
DMCs were further validated using large-scale data from the Cancer Genome Atlas
(TCGA, n = 774; |Δβ| > 0. 25 and P < 0.05), and only CpG sites with average β values
> 0.90 or < 0.10 in white blood cells (GSE50132, n = 233) were retained to minimize
potential background methylation interference. Least absolute shrinkage and
selection operator (LASSO) regression was applied to select optimal markers.
Diagnostic performance was assessed by the area under the receiver operating
characteristic curve (AUC), and prognostic value was evaluated using Cox regression
analysis. A multiplex digital droplet PCR (mddPCR) assay was developed to
simultaneously detect cg06268921 and cg23247845 in cfDNA from TNBC (n = 33)
and non-TNBC (n = 80) patients.
Results: We identified 113 DMCs, of which eight were selected as optimal markers.
They effectively discriminated TNBC from non-TNBC tissues. Then an eight-marker
diagnostic panel was developed with an AUC of 0.922 in TCGA and 0.875 in
GSE69914. Among them, cg06268921 was significantly associated with overall
survival (hazard ratio = 0.249, P = 0.044) and disease-free survival (hazard
ratio = 0.194, P = 0.015) in the TCGA-TNBC cohort. In the cfDNA cohort,
cg06268921 significantly differentiated TNBC from non-TNBC (P < 0.001), and the
combination of both markers yielded an AUC of 0.728. The findings demonstrated
the potential of methylation signatures as non-invasive diagnostic tools for TNBC.
Future research with larger cohorts is warranted.
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INTRODUCTION
Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor,
progesterone receptor, and human epidermal growth factor receptor 2 expression,
accounting for 15% to 20% of all BC cases (Foulkes, Smith & Reis-Filho, 2010; Perou, 2011).
TNBC is considered the most aggressive subtype due to rapid growth, early relapse, and
frequent metastasis (Bianchini et al., 2016; Ensenyat-Mendez et al., 2023; Metzger-Filho
et al., 2012), leading to poor survival compared to other subtypes of BC (Qiu et al., 2016). It
usually responds poorly to endocrine therapy and human epidermal growth factor
receptor 2 (HER2)-targeted therapy (Yagata, Kajiura & Yamauchi, 2011), so if TNBC and
other BC subtypes (non-TNBC) are distinguishing before surgery, it can been early
determined whether patients are suitable for neoadjuvant treatment and which strategy
would be more effective and also plays an important role in improving survival (Zhang
et al., 2021a). However, the current differential diagnosis of TNBC primarily relies on
immunohistochemistry, which involves in highly invasive tissue biopsy sampling and can
be time-consuming (Bianchini et al., 2016; Dass et al., 2021). Mammography and
ultrasound have been used for screening and diagnosis of BC overall (Wang et al., 2022; Xi
et al., 2022), until recently these imaging methods were studied to distinguish TNBC from
non-TNBC, but with result of relatively low discriminating power for microtumor and
largely limited by the experience of the radiologist (Ma et al., 2022; Shaikh & Rasheed,
2021). In addition, these imaging methods are often limited by the discomfort of patients,
radiation exposure, or high false-positive rates issues (Lee et al., 2010; Vourtsis & Berg,
2019). Consequently, a non-invasive, safer, and more accurate approach needs to be
developed to aid in differential diagnosis of TNBC.

DNA methylation is a heritable alteration that modulates gene expression without any
change in DNA sequence (Bird, 2002). Aberrant DNA methylation changes occur in early
carcinogenesis and hold potential as diagnostic markers for cancers, including BC (Baylin
& Jones, 2016; Vietri et al., 2021). In a liquid biopsy, circulating cell-free DNA (cfDNA) is
emerging as a non-invasive marker for early cancer diagnosis (Mattox et al., 2019; Schrag
et al., 2023; Zhang et al., 2024). Several studies have evaluated the usefulness of the tumor
methylation patterns of cfDNA in BC diagnosis. For instance, Manoochehri et al. (2023)
found that cfDNA-based methylation could discriminate TNBC from healthy controls
with an area under the receiver operating characteristic curve (AUC) of 0.780 in the test set
and 0.740 in the validation set. In addition, researchers also found that cfDNAmethylation
patterns could detect BC from benign tumors (Liu et al., 2021). Although these studies
demonstrated potential in distinguishing cancers from healthy controls or benign tumors,
they did not specifically address the differential diagnosis between the subtypes of BC.
Hence, the methylation markers that could distinguish TNBC from non-TNBC are lacking
and DNA methylation-based prognostic stratification of TNBC is rarely studied.
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Therefore, in our study, we initially identified significantly differentially methylated
CpG sites (DMCs) between TNBC and non-TNBC tissues using the Infinium
HumanMethylationEPIC BeadChip. Then these DMCs were validated by the Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Subsequently, we
applied the least absolute shrinkage and selection operator (LASSO) analysis to select the
optimal methylation markers. Furthermore, we assessed the diagnostic and prognostic
value of these markers in tissues. Finally, two candidate markers were detected in a cfDNA
validation cohort using a multiplex digital droplet PCR (mddPCR) assay, demonstrating
their potential to distinguish TNBC from non-TNBC.

MATERIALS AND METHODS
Patients and sample collection
This study recruited 113 primary BC patients diagnosed by pathology at Cancer Hospital
of Harbin Medical University between May 2021 and December 2023. The exclusion
criteria included: (1) incomplete molecular subtype data; (2) prior diagnosis of other
malignancies; (3) any therapy received before surgery. Tumor tissues (n = 14; 5 TNBC and
9 non-TNBC) were obtained through surgical resection and immediately snap-frozen in
liquid nitrogen. These samples were used for genome-wide DNA methylation profiling
using the Infinium HumanMethylation850K BeadChip to identify candidate markers.
Blood samples (1–2 mL, n = 113) were collected using Ardent Cell-Free DNA blood tubes
and centrifuged at 800 g at room temperature for 10 min to separate plasma and buffy coat.
Plasma was then transferred to a new tube and centrifuged at 16,000 g at 4 �C for 10 min to
remove the remaining cells. Plasma and buffy coat were immediately stored at −80 �C until
analysis. cfDNA extracted from the plasma of all enrolled patients (33 TNBC and 80 non-
TNBC) was used to validate selected methylation markers through mddPCR assay.
Demographic and clinical data were collected from medical records of all patients. This
study was approved by the Medical Ethics Committee of Harbin Medical University
(KY2016-01). Written informed consent was obtained from all patients before enrollment
and sample collection.

Public data sources
The Illumina-normalized methylation data of tissues from the TCGA BC cohort, including
83 TNBC and 691 non-TNBC, were downloaded from UCSC Xena (https://xena.ucsc.edu/
public/). Additionally, Illumina-normalized methylation data from 342 BC tissues and 233
BC white blood cells (WBC) were downloaded from GEO database (GSE69914, GSE72251,
and GSE50132). The methylation level for each CpG was represented as a beta value (β),
which is a ratio of intensities between the methylated allele and the sum of M and
unmethylated, ranging from 0 (no methylation) to 1 (full methylation).

DNA extraction and bisulfite conversion
Tumor tissue DNA was extracted using the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany) and quantified using NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA,
USA). Circulating cfDNA was extracted from plasma using the QIAamp� Circulating
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Nucleic Acid Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions,
with concentrations measured using a Qubit 3.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA). Both cfDNA and genomic DNA underwent bisulfite conversion
using the EZ DNA Methylation-GoldTM Kit (Zymo Research, Irvine, CA, USA), according
to the manufacturer’s guidelines.

Tissue methylation markers discovery and selection
As shown in Fig. 1, we first performed the genome-wide methylation analysis on five
in-house TNBC and nine non-TNBC tissues (Table S1) using Infinium MethylationEPIC
BeadChip. After data filtering, correction, and normalization, CpG sites with |Δβ| > 0.10
and P < 0.05 were identified as DMCs. Given the limited sample size of the in-house
dataset, a more lenient threshold was used to include more potential candidate markers. To
improve reliability, these markers were further evaluated in a larger cohort of 83 TNBC
and 691 non-TNBC tissues from the TCGA dataset, using a stricter cutoff (|Δβ| > 0.25 and
P < 0.05). Subsequently, to minimize false positive detection and increase the signal-to-
noise ratio in cfDNA analysis, CpG sites that were almost completely methylated (average
β value > 0.90) or unmethylated (average β value < 0.10) in WBC were selected. Pearson’s
correlation method was used to calculate correlation for methylation markers. Finally,
considering the existence of multicollinearity among them, the LASSO analysis with 10-
fold cross-validation was performed to select the optimal markers through the “glmnet”
package (Friedman, Hastie & Tibshirani, 2010) in the TCGA dataset. The eight tissue
methylation markers with non-zero coefficients were selected for further analysis.

In-house tissues 850K 
methylation data (5 TNBC 
and 9 non-TNBC, |Δβ| > 

0.10, P value < 0.05)

113 DMCs after filtering  WBC 
(GSE51032, average β < 0.10 or > 0.90 )

Lasso regression and marker selection 
Selection of eight markers 

TCGA  tissues 450K 
methylation data (83 TNBC 
and 691 non-TNBC, |Δβ| > 

0.25, P value < 0.05)

1,130 Differential methylated CpGs 
(DMCs)

Validation

Diagnostic performance
Tissues:  Construction and evaluation of eight-CpG 

methylation diagnostic score in public data (N = 1,079)
cfDNA: Detection of cg06268921 and cg23247845 with 

mddPCR in in-house data (N = 113)

Prognostic performance 
Tissues: Evaluation the association of one 

marker(cg06268921)  and overall survival time in 
public data (N = 120)

Figure 1 The overall flowchart of the study. Different Δβ thresholds were applied considering sample
size differences between datasets (in-house: |Δβ| > 0.10; TCGA: |Δβ| > 0.25). TNBC, Triple-negative
breast cancer; CpG sites; DMCs, differentially methylated CpG sites; WBC, white blood cells; Lasso, least
absolute shrinkage and selection operator; mddPCR, multiplex digital droplet PCR; cfDNA, cell-free
DNA. Full-size DOI: 10.7717/peerj.19888/fig-1
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Evaluation and validation the diagnostic effect of DNA methylation
markers in tissues
The diagnostic accuracy of individual CpG sites in differentiating TNBC and non-TNBC
tissues was assessed using ROC curves. CpG sites with an AUC greater than 0.80 were
retained. An eight-CpG methylation diagnostic score (MDS) was then constructed using
logistic regression in TCGA dataset and validated in GSE69914 dataset. It was calculated
based on the corresponding coefficients of the selected methylation markers. The formula
was as follows:

MDS ¼
Xn

i¼1

mi � Coefi þ bð Þ:

Here, n represents the number of methylation markers; mi represents the methylation
level of each marker; Coefi represents the coefficients; b represents to the intercept; and
MDS represents a weighted sum of the methylation level of each marker.

Evaluation and validation the prognostic effect of DNA methylation
markers in TNBC tissues
The primary endpoint for prognostic analysis in the study was overall survival (OS),
defined as the time from surgery to death from any cause or the last follow-up visit. In
addition, disease-free survival (DFS) was evaluated as a secondary endpoint, defined as the
time from surgery to the first local recurrence, distant metastasis, or death from any cause.
For each candidate CpG site, patients were divided into low-risk and high-risk groups
based on median methylation levels. Univariate Cox regression analysis was performed to
screen out CpG sites that significantly associated with OS or DFS in the TCGA-TNBC
patients (P < 0.10). Multivariate Cox regression was subsequently performed,
incorporating the significant CpG sites as predictor variables and adjusting for age and
stage, to identify independent prognostic markers. The stability of these markers was
validated in the GSE72251-TNBC cohort.

Development of mddPCR assay
We successfully designed forward and reverse primers, as along with minor groove binder
(MGB) Taqman probes (FAMTM/VICTM-reporter dyes) for two of the targeted markers
(Table S2), while design attempts for the others were unsuccessful due to unfavorable
sequence features. The methylation-insensitive β-actin (ACTB) gene served as an internal
control in each PCR well (primers and probes reported elsewhere) (Zhang et al., 2023). A
mddPCR assay (including three genes) was then performed in a 21 mL final volume system
with 10 mL of ddPCRTM Supermix for Probes (No dUTP), adjusted volumes of primers and
probes, and 5–6 mL bisulfite-converted DNA. The QX200TM Droplet Generator (Bio-Rad,
Hercules, CA, USA) generated droplets and the PCR conditions were as follows: 10 min at
95 �C, 40 cycles of 94 �C for 30 s, and annealing and extension at 60 �C for 1 min; 10 min
hold at 98 �C. The ramp rate was set at 2 �C/s for all steps. The emulsions were analyzed on
the QX200TM Droplet Reader device to count droplets containing amplified DNA targets
and empty droplets based on fluorescence. Data were analyzed using the QuantaSoftTM
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Analysis Pro software v1.0. Positive droplets (containing an amplified DNA target) were
manually identified in a 2D plot based on the distribution of droplets of control samples
(methylated DNA control, unmethylated DNA control, RNase-free water control, and
non-template control). cfDNA methylation was quantified as the number of copies of
methylated alleles per 1 mL of plasma.

Statistical analysis
Categorical variables were described as the number (percentage), and continuous variables
as median (interquartile range (IQR)) or mean (standard deviation (SD)). Methylation
levels between the two groups were compared using the t-test, Wilcoxon test, or
Mann-Whitney U test. Differential methylation analysis between TNBC and non-TNBC
tissues were conducted using ChAMP (2.32.0) package (Tian et al., 2017) or “Limma”
package (Ritchie et al., 2015). The unsupervised hierarchical clustering heatmap of DMCs
methylation was generated using the “pheatmap” package (Kolde, 2019). Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analyses (Gene Ontology Consortium, 2021; Kanehisa et al., 2021) were conducted using
the “clusterProfiler” package (Wu et al., 2021). Sensitivity, specificity, and AUC were used
to evaluate the diagnostic performance of the individual CpG sites and models. The R
package “survival” (Therneau, 2024) and “survminer” (Kassambara, Kosinski & Biecek,
2021) were used for survival analysis. The Kaplan-Meier and log-rank tests were utilized to
generate the survival curves and compare the differences between the groups.
Time-dependent ROC curves were performed to evaluate the prognostic performance of
CpG sites by the R package “timeROC” (Blanche, Dartigues & Jacqmin-Gadda, 2013).
Hazard ratios (HR) and 95% confidence interval (CI) were calculated with the Cox
regression analysis. A minimum sample size of 31 in each group could achieve 80% power
with a significance level of 0.05 using a one-sided z-test, which was conducted with PASS
11.0 (UCSS, USA) (Hanley & McNeil, 1983; Obuchowski & McClish, 1997). Statistical
analyses were performed in R (version 4.3.1), and P < 0.05 was considered significant.

RESULTS
Basic characteristics of patients
A total of 33 TNBC and 80 non-TNBC patients were enrolled in this study. The age
distribution was relatively balanced between TNBC and non-TNBC groups (mean age,
59.5 years vs. 58.7 years, P = 0.800). Detailed characteristics of patients are summarized in
Table 1 and Table S3.

Differential methylation markers based on in-house primary tissues
Based on a genome-wide methylation analysis between in-house five TNBC and nine
non-TNBC tissues using Infinium HumanMethylationEPIC BeadChip, a total of 32,787
DMCs (|Δβ| > 0.10 and P < 0.05) were identified; with 9,294 (28.35%) DMCs higher
methylation levels in TNBC tissues (defined as hypermethylated CpG) and 23,493
(71.65%) with lower methylation levels (defined as hypomethylated CpG, Fig. 2A). An
overview of the relative CpG island position and gene location annotation were shown in
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the Sankey plot (Fig. 2B). Pathway enrichment analysis showed that the DMCs were
mainly enriched in signaling-related pathways (Fig. 2C) and the biological process of
protein binding (Fig. S1).

Table 1 The basic characteristics of patients in in-house cohort.

Characteristic Non-TNBC (N = 80) TNBC (N = 33) P value

Age (years) 0.800

Mean ± SD 59.5 ± 10.5 58.7 ± 9.2

Range 36–82 37–73

BI-RADS category in mammographya, n (%) 0.032

1-4a 22 (27.5%) 11 (33.3%)

4b-6 48 (60.0%) 12 (36.4%)

Unknown 10 (12.5%) 10 (30.3%)

BI-RADS category in ultrasounda, n (%) 0.150

1-4a 5 (6.3%) 4 (12.1%)

4b-6 61 (76.2%) 19 (57.6%)

Unknown 14 (17.5%) 10 (30.3%)

Tumor size, n (%) 0.300

Tumor size <= 2 cm 38 (47.5%) 19 (57.6%)

Tumor size > 2 cm 42 (52.5%) 14 (42.4%)

Lymph node, n (%) 0.400

Negative 54 (67.5%) 19 (57.6%)

Positive 26 (32.5%) 14 (42.4%)

Unknown 0 (0.0%) 0 (0.0%)

Stageb, n (%) 0.300

Stage I 29 (36.3%) 15 (45.5%)

Stage II 34 (42.5%) 11 (33.3%)

Stage III 16 (20.0%) 5 (15.2%)

Stage IV 1 (1.3%) 2 (6.1%)

CEA, n (%) 0.130

≤5 ng/mL 64 (80.0%) 25 (75.8%)

>5 ng/mL 6 (7.5%) 0 (0.0%)

Unknown 10 (12.5%) 8 (24.2%)

CA15-3, n (%) 0.130

≤25 U/mL 65 (81.3%) 25 (75.8%)

>25 U/mL 5 (6.3%) 0 (0.0%)

Unknown 10 (12.5%) 8 (24.2%)

Notes:
a Categories of the Breast Imaging Reporting and Data System.
b Clinical staging was determined according to the eighth edition of the classification for breast cancer of the American
Joint Commission of Cancer;
SD, Standard deviation; TNBC, Triple-negative breast cancer; CEA, Carcinoembryonic antigen; CA15-3, Cancer
antigen 15-3.
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Discovery and selection of tissue-based methylation markers
Based on above obtained 32,787 DMCs from the in-house dataset, the methylation data of
83 TNBC and 691 non-TNBC tissues from TCGA were compared and selected 1,130 CpG
that were still significantly differentially methylated (|Δβ| > 0.25 and P < 0.05). Since
cfDNA can be derived from WBC of cancer patients, we excluded the CpG sites with
average methylation β ≥ 0.10 or β ≤ 0.90 in 233 WBC to reduce the false positive
possibility, and we obtained 113 DMCs. The 113 methylation markers showed high
correlations among them (Fig. S2). To further determine CpG sites that could distinguish
TNBC from non-TNBC, we applied the Lasso analysis to select optimal markers in TCGA
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Figure 2 Identification of differentially methylated CpG sites between TNBC and non-TNBC tissues based on in-house 850K data.
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dataset. We obtained eight markers (cg19758859, cg01095157, cg14534279, cg17588293,
cg06268921, cg04016621, cg23247845, and cg02096552) with non-zero coefficients for
further analysis, and the optimal λ value = 0.0234, log (λ) = −3.7547 (Table 2 and Fig. 3).
The methylation levels for two CpG sites were significantly higher in TNBC than those in
non-TNBC tissues, six residual CpG sites were significantly lower in TNBC than those in
non-TNBC tissues (Fig. 2D and Table S4).

Diagnostic performance of candidate markers in tissues
We investigated the diagnostic performance of eight CpG sites, with AUCs ranging from
0.809 to 0.893 for differentiating TNBC from non-TNBC tissues (Table S5). These CpG
sites (AUC > 0.80) were used to construct the MDS through logistic regression analysis.
The MDS was a sum of the methylation levels of eight CpG sites, each multiplied by its
corresponding coefficient from the logistic regression analysis: MDS = cg19758859 ×
(−0.394) + cg01095157 × (−1.894) + cg14534279 × (−1.088) + cg17588293 × 1.317 +

Table 2 The genomic characteristics of methylation CpG sites.

CpG sites Gene Gene description Genomic coordinate Gene_Group CpG_Island

cg01095157 GORASP2 Golgi Reassembly Stacking Protein 2 chr2:171784674 TSS1500 N_Shore

cg02096552 DISP1 Dispatched RND Transporter Family Member 1 chr1:223168232 Body Opensea

cg04016621 GRK7 G Protein-Coupled Receptor Kinase 7 chr3:141495947 TSS1500 N_Shore

cg06268921 NA chr1:214158573 IGR N_Shore

cg14534279 NA chr10:3329966 IGR Opensea

cg17588293 ZBTB7B Zinc Finger and BTB Domain Containing 7B chr1:154986238 5′UTR N_Shelf

cg19758859 SASH1 SAM and SH3 Domain Containing 1 chr6:148869489 Body Opensea

cg23247845 NA chr10:3679085 IGR Opensea
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Figure 3 Identification of optimal methylation markers for distinguishing TNBC from non-TNBC tissues. (A) Selection of optimal markers in
the LASSOmodel. (B) Tenfold cross-validation for tuning parameter (lambda) selection in the LASSOmodel. The dotted vertical lines were drawn at
the optimal values using the maximum criteria and the one standard error of the maximum criteria. LASSO, least absolute shrinkage and selection
operator; TNBC, Triple-negative breast cancer. Full-size DOI: 10.7717/peerj.19888/fig-3
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cg06268921 × 1.207 + cg04016621 × 0.126 + cg23247845 × (−1.559) + cg02096552 ×
(−1.489) + 1.189. The MDS was significantly different between TNBC and non-TNBC
tissues. (Fig. 4A), with an AUC of 0.922 (95% CI = 0.895–0.950) in the TCGA dataset
(Fig. 4B). Using the cutoff value of −2.51, the MDS yielded a sensitivity of 93.8% (61/65) in
stage I/II, 82.4% (14/17) in stage III/IV at a specificity of 84.9% (587/691, Table S6).
Furthermore, there was no significant difference in MDS between stage I/II and stage
III/IV TNBC tissues (Fig. S3A). Notably, the MDS could discriminate the early-stage
TNBC from non-TNBC, with an AUC of 0.932 (95% CI [0.908–0.957], Fig. S3B).

The MDS was then applied to the GSE69914 validation dataset, where it also showed a
significant difference between TNBC and non-TNBC tissues (Fig. 4C). Using the same
cutoff value of −2.51, the MDS achieved an AUC of 0.875 (95% CI [0.789–0.961], Fig. 4D),
with a sensitivity of 86.70% (26/30) and a specificity of 90.2% (248/275).

Prognostic effect of candidate markers in tissues
Next, we investigated prognostic potential of the eight CpG sites in the TCGA-TNBC
cohort by analyzing their association with OS and DFS. Among them, only cg06268921
(≥0.50 vs. <0.50) was significantly associated with both OS and DFS in univariate Cox
regression analysis (P < 0.10; Tables S7 and S9). After adjusting for age and stage in
multivariate Cox regression analysis, cg06268921 remained significantly associated with
OS (HR: 0.249, 95% CI [0.064–0.966], P = 0.044) and DFS (HR: 0.194, 95% CI
[0.052–0.727], P = 0.015), suggesting that it served as an independent prognostic factor for
TNBC (Tables S8 and S10). The Kaplan–Meier survival curves further confirmed that
patients in the low-methylation group (<0.50) had significantly worse OS and DFS
compared with those in the high-methylation group (≥0.50; log-rank P < 0.10, Figs.
5A, 5B). The prognostic performance of cg06268921 was evaluated using time-dependent
ROC analysis, yielding AUCs of 0.521 and 0.422 for 3-year OS and DFS, respectively (Figs.
S4A, S4B). To validate our findings, we analyzed the prognostic effect of cg06268921 in an
independent external cohort (GSE72251). The association was not statistically significant,
possibly due to limited sample size and cohort heterogeneity (Tables S8 and S10).
Meta-analysis of both cohorts showed non-significant pooled HR for OS and DFS, with
moderate heterogeneity (I2 > 60%), indicating variability in the prognostic effect of
cg06268921 across cohorts (Fig. S5).

Development of cfDNA mddPCR assay and the evaluation of limit of
quantification
We constructed an mddPCR assay (cg06268921, cg23247845, and ACTB, Fig. 6A and
Table S11) and then optimized its annealing temperature. By comparing the fluorescent of
methylated and unmethylated control in the FAM channel, we found that an annealing
temperature of 58.8 �C yielded the best performance (Fig. S6).

Next, we compared the limit of quantification (LOQ) of mddPCR assay with multiplex
quantitative methylation-specific PCR (mqMSP) assay using 10 ng of mixed methylated
DNA control and the unmethylated DNA control at concentrations of methylation at
100%, 10%, 5%, 1%, 0.5%, 0.1%, 0.01%, and 0. Three replicates of each reaction were
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performed. The mddPCR assay could simultaneously and independently quantify the
methylation level of each target gene, while mqMSP could only determine the combined
methylation level of multiple genes. In the FAM channel of the mqMSP assay, one
methylated allele in a background of 20 unmethylated alleles was detected (LOQ = 5%,
R2 = 0.982). In contrast, the LOQ of cg06268921 (R2 = 0.790) and cg23247845 (R2 = 0.990)
of mddPCR were 0.01% and 0.1%, respectively, indicating that the LOQ of mddPCR assay
was 0.01%, and greater sensitivity than the mqMSP assay (Fig. S7).

Validation the diagnostic effect of methylated markers detected with
mddPCR in cfDNA cohort
Moreover, we applied the mddPCR assay to detect methylation levels in cfDNA from 33
TNBC and 80 non-TNBC patients. The TNBC and non-TNBC yielded the median cfDNA
concentration of 7.15 ng/mL (IQR: 4.58–9.80), and 6.98 ng/mL (IQR: 2.54–10.4),
respectively, with no statistically significant different (P = 0.97, Fig. S8). However, the
number of methylated molecular copies of cg06268921 was significantly higher in TNBC
than in non-TNBC subtypes with AUC of 0.719 (95% CI [0.614–0.823]), but cg23247845
was not significantly different between two groups (Fig. S9). We incorporated these two
markers to construct the cfDNA-based MDS (cf-MDS), which was significantly different
between TNBC and non-TNBC groups in cfDNA and achieved a sensitivity of 54.5%, a
specificity of 82.5%, and an AUC of 0.728 (95% CI [0.618–0.839], Figs. 6B, 6C). In
addition, the cf-MDS could distinguish stage I/II TNBC from non-TNBC, with an AUC of
0.701 (95% CI [0.578–0.825], Fig. S10).
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DISCUSSION
In this study, we discovered cfDNA methylation markers for the differential diagnosis of
TNBC. Firstly, we identified 113 DMCs based on in-house tissue Infinium
HumanMethylationEPIC dataset combined with TCGA and GEO datasets. Subsequently,
we employed Lasso regression analysis to further select the eight optimal methylation
markers. The eight-CpG MDS could distinguish TNBC from non-TNBC tissues, with
AUC over 0.850. The Cox regression analysis revealed that cg06268921 was significantly
associated with OS and DFS in TCGA-TNBC cohort. Furthermore, in our cfDNA
validation cohort, we developed a mddPCR assay to detect two of these markers, the
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cf-MDS has potential as a non-invasive diagnostic marker for differentiating TNBC from
non-TNBC.

DNA methylation is a common early epigenetic modification in tumorigenesis and can
be tissue-specific, making it a valuable foundation for cancer diagnostic markers, including
those for BC (Kanwal, Gupta & Gupta, 2015; Laird, 2003; Liu et al., 2021; Zhang et al.,
2021b). Several studies have also demonstrated significant differences in DNAmethylation
profiles across BC subtypes. For instance, Sunami et al. (2008) reported distinct
methylation patterns of genes such as RASSF1A, CCND2, GSTP1, TWIST, and APC
between the estrogen receptor (ER)-positive and ER-negative groups. Similarly,
Fackler et al. (2011) identified 40 CpG loci capable of distinguishing ER-positive from
ER-negative BC, achieving an AUC of 0.961 in TCGA data, underscoring the robustness of
DNA methylation as a subtype-specific marker. The existing studies have focused
comparisons between TNBC and normal or tumor-adjacent tissues, or the development of
prognostic markers (Cristall et al., 2021; DiNome et al., 2019; Lin et al., 2023;Manoochehri
et al., 2023). However, few studies have specially profiled the DNA methylation profile
between TNBC and non-TNBC. In our study, we first conducted genome-wide DNA
methylation profiling to compare TNBC and non-TNBC tissues, identifying a set of
DMCs. Functional enrichment analysis revealed that these DMCs were predominantly
involved in key signaling pathways, including the Wingless/Integrated (Wnt),
Phosphatidylinositol 3-kinase/Protein kinase B (PI3K-Akt), and Mitogen-Activated
Protein Kinase (MAPK) signaling pathways, which are known to regulate tumor cell
proliferation, invasion, and metastasis (Chen, Zhang & Dai, 2019). Additionally, the
enrichment in protein binding functions suggests potential epigenetic regulation of key
transcriptional in cancer progression. Building upon these findings, we further selected
eight TNBC-specific methylation markers with strong discriminatory power to construct
MDS. The MDS demonstrated superior sensitivity compared to individual markers, with
an AUC of 0.922, highlighting its potential as a robust tool for distinguishing TNBC from
non-TNBC. Notably, the panel of 282 methylation markers proposed by Stirzaker, Zotenko
& Clark (2016) achieved a sensitivity of 0.720 (AUC = 0.900) for distinguishing TNBC
from non-TNBC tissues in TCGA data, which is lower than that observed in our study
using TCGA data (Sensitivity = 0.916). We speculated that the lower sensitivity may be due
to their markers being identified through comparisons between TNBC and matched
normal tissues, rather than TNBC and non-TNBC tissues. It is well known that patients
with TNBC have a worse prognosis compared to those with non-TNBC, primarily due to
the lack of targeted therapies and the aggressive nature of the disease (Carey et al., 2007;
Yagata, Kajiura & Yamauchi, 2011). In this study, we demonstrated that lower
methylation levels of cg06268921 were significantly associated with poor OS and DFS in
the TCGA-TNBC cohort. Although association was not validated in the external cohort,
the discrepancy may be due to inter-cohort heterogeneity and limited sample size, as also
reflected in the meta-analysis results. The meta-analysis revealed non-significant pooled
effects with moderate heterogeneity (I2 > 60%), highlighting variability across datasets and
the need for validation in larger, more homogeneous cohorts.
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In addition to tissue-based assays, cfDNA in plasma is promising non-invasive
diagnostic and prognostic markers for cancers. Some studies indicated that somatic
mutation information in cfDNA can reflect intratumor heterogeneity and be used for
differential diagnosis of BC (Cailleux et al., 2022; Zhang et al., 2019). However, the
detection may be affected by clonal hematopoietic mutations and somatic mutations from
non-breast tissues. In contrast, cfDNAmethylation patterns are consistent with the cells or
tissues from which they originated, making them a valuable alternative for cancer
diagnosis (Luo et al., 2021; Moss et al., 2018; Zhang et al., 2021b). Several cfDNA-based
methylation markers have been employed for BC diagnosis, yet few studies have explored
their application in the differential diagnosis between the TNBC and non-TNBC (Kloten
et al., 2013; Liu et al., 2021; Zhang et al., 2021b). Only one abstract from 2024 reported that
a ctDNA-based targeted methylation sequencing assay correctly classified 84% (58/69) of
TNBCs and 82% (94/115) of non-TNBCs (Nance et al., 2024). Despite its accuracy (82.6%,
152/184), sequencing remains expensive, time-consuming, and may require larger blood
samples, which limited its widespread clinical application. In our cfDNA validation cohort,
we successfully designed primers and probes for two candidate markers and developed a
mddPCR assay with capable of simultaneously and independently quantifying the
methylation level of each target gene. Meanwhile, compared to mqMSP, the mddPCR
assay is more sensitive, with a 500-fold lower LOQ using only 10 ng template DNA.
Furthermore, this method requires only 1–2 mL plasma, making it more suitable for
routine applications and avoiding the high sequencing cost. We observed significant
hypermethylation of cg06268921 in cfDNA from TNBC patients, consistent with
methylation patterns seen in tumor tissues. Although cg23247845 methylation levels did
not reach statistical significance, likely due to limited sample sizes, incorporating both
markers into the cf-MDS, which could significantly distinguish TNBC from non-TNBC
patients.

To further assess the specificity of our candidate methylation markers, we conducted a
supplementary analysis using a public cfDNA methylation dataset tested by Infinium
HumanMethylationEPIC BeadChip (GSE214344). This dataset includes plasma samples
from five healthy individuals and seven luminal B BC patients. As shown in Fig. S11, seven
of the eight tissue-derived markers showed no significant methylation differences between
the two groups. Despite the small sample size and absence of TNBC cases, this finding
aligns with our tissue-level results and suggests these methylation alterations may be
TNBC-specific.

The early and accurate differential diagnosis of TNBC is crucial. Currently,
immunohistochemistry is the primary method for determining BC molecular subtypes
(Bianchini et al., 2016), but tissue biopsy and large mass detection may not be suitable for
early-stage TNBC. Recent studies (Shaikh & Rasheed, 2021) have shown that non-invasive
methods such as mammography and ultrasound, can also differentiate TNBC from non-
TNBC. However, their discriminating power is relatively low (AUC = 0.719) and primarily
focused on tumor morphological features (Zhang et al., 2019). Therefore, a new method is
still needed to compensate for the above deficiencies. Our study confirmed the feasibility of
cfDNA methylation markers for early-stage TNBC differential diagnosis. The cf-MDS
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assay can differentiated stage I/II TNBC from non-TNBC in cfDNA cohort
(AUC = 0.701). While the diagnostic effect may be lower, combining cfDNA methylation
markers with existing methods could offer a more comprehensive and accurate approach
for differential diagnosis of TNBC in the future.

Several limitations of this study should be acknowledged. First, the sample size of the
plasma cfDNA validation cohort was not sufficiently large. The methylation-based panel
requires further validation in a multi-center study with a large-scale sample size. Second,
the candidate cfDNA methylation markers were selected from tumor tissues rather than
directly identified from plasma, which may limit the effectiveness in non-invasive
discrimination between TNBC and non-TNBC. Third, only two of the eight markers were
validated in plasma due to unsuccessful primer and probe design for the remaining six,
likely owing to unfavorable sequence characteristics. Future optimization or alternative
assay platforms may facilitate validation of these markers. Finally, we validated the
candidate DMCs using the TCGA dataset, which may cause us to miss some promising
markers, especially those not covered by the Illumina 450K array.

CONCLUSIONS
In summary, our study identified and validated DNA methylation markers that show the
potential for the differential diagnosis and prognosis of TNBC, based on integration
analysis of in-house, TCGA and GEO methylation data. While our findings highlight the
accuracy of cfDNA methylation markers for detection TNBC, whether the markers can be
applied as non-invasive diagnostic and prognostic markers should be further validated in a
larger population.
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