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ABSTRACT

Marine organisms harbor diverse microbial communities on their surface, yet studies
exploring the epibiotic bacteria of marine hosts remain largely unexplored, particularly
in subantarctic ecosystems. Here, we cultured and isolated bacteria from the surface
of three marine hosts: the centolla (the southern king crab; Lithodes santolla), a squat
lobster (Grimothea gregaria), and a brown macroalgae (Macrocystis pyrifera), from a
subantarctic ecosystem, the Magellan Strait. Bacteria were inoculated in Petri dishes
with Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS) agar medium, and a fragment of
the grown colonies was used to extract their DNA and sequence the whole 16S rRNA
gene. We detected 14 different bacterial taxa, 11 from crustaceans, most of which were
found only in the squat lobster. Vibrio spp. was detected in all marine hosts, but V.
tasmaniensis was only detected in crustaceans. Phylogenetic comparisons revealed that
epibiotic Vibrio formed a clade related to environmental Vibrio species, such as V.
tasmaniensis, V. echinoidereum, and V. atlanticus. Given the ongoing climate change
the world is experiencing, we explore the future sea surface temperatures that these
bacteria might experience in the Magellan Strait. Oceanographic predictions indicate
that the maximum sea surface temperatures will be 1 °C warmer in the future decades,
and they could reach values above 14 °C in the last decades of the century. Our results
increase the distribution and ecology of Vibrio bacteria and give insights about the
temperatures that these microbes will face in future decades, which could have relevant
consequences for aquaculture activities.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Marine Biology, Microbiology,
Zoology

Keywords Climate change, Epibiotic Vibrio, Sea surface temperature, Microbial biosensor, Sea
warming, Vibrio tasmaniensis

INTRODUCTION

During the last two decades, the average global sea surface temperature has increased by
1 °C (Huang et al., 2024). However, sea surface temperature has different behaviors in
local contexts, particularly in the Southern Hemisphere, where temperature anomalies
between 2—4 °C have lasted for several weeks (Holland et al., 2021). Increases in sea surface
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temperature can threaten ocean ecosystem integrity, leading to a decline in habitat-forming
species, like corals and their associated fish populations, as well as invertebrates and marine
mammals (Venegas, Acevedo ¢ Treml, 2023; Ripple et al., 2025). Also, increases in sea
surface temperature are expected to be one of the main drivers of the increase in the
geographic distribution of marine pathogens, resulting in higher rates of contaminated
seafood and seafood-borne illnesses (Rowley et al., 2024). Moreover, climate change is
thought to aggravate the frequency, severity, and geographic distribution of known diseases
(Ebi et al., 2017; Mora et al., 2022), where coasts are particularly vulnerable ecosystems
(Romanello et al., 2023). To inform about the pathogenic potential in local areas, it is
imperative to have better knowledge of autochthonous biodiversity.

Vibrio bacteria are the most common cultivable microbes in marine and coastal waters
(Gomez-Gil et al., 2014). Historically, Vibrio bacteria distribution has been restricted to
tropical and temperate waters (Vezzulli, Colwell ¢ Pruzzo, 2013). However, in the last
decades, the incidence of Vibrio epidemic outbreaks has increased globally due to the
increase in global sea surface temperature (Baker-Austin et al., 2024). Moreover, several
studies have linked latitudinal increases in sea surface temperature with the latitudinal
expansion of Vibrio bacteria in the Northern Hemisphere (Baker-Austin et al., 2013;
Vezzulli et al., 2015; Archer et al., 2023). Also in the Southern Hemisphere, the latitudinal
expansion of Vibrio bacteria has started, as shown by the recent reports of epidemic
outbreaks of pathogenic Vibrio in southern latitudes (Raszl et al., 2016). Furthermore,
Vibrio pathogenic outbreaks have been recorded in southern Chile, in Puerto Montt
(41°28') (Gonzdlez-Escalona et al., 2005) and in Reloncavi fjord (41°, 42") (Bacian et al.,
2021). However, we still miss information about native Vibrio bacteria in subantarctic
ecosystems, such as the Magellan Strait.

The Magellan Strait, Chile, is an extensive geographical area (ca. 8,500 km of coastline),
located in the southernmost region of South America. It is a V-shaped interoceanic
channel, where Atlantic and Pacific Ocean waters converge (Andrade, 1991). The Magellan
Strait is also seasonally influenced by freshwater input from precipitation and glacier melt
in spring/summer (Rivera et al., 2023). Together, these characteristics create a complex
oceanographic scenario that allows high seasonal productivity (Aracena et al., 2011; Pantoja,
Iriarte ¢& Daneri, 2011).

The epibiotic bacteria of marine hosts in the Magellan region, particularly from
crustaceans, remain poorly studied (Ochoa-Sdnchez et al., 2023a). This is an important
gap since several hosts could harbor epibiotic Vibrio bacteria, such as the squat lobster
(Grimothea gregaria, Fabricius, 1793), a key species in the trophic network of the region
(Haro et al., 2022); centolla (Lithodes santolla, Molina, 1782), an abundant crustacean of
economic importance (Pollack, Berghifer ¢ Berghifer, 2008); and the brown macroalgae
(Macrocystis pyrifera, L. C.Agardh, 1820), an ecosystem engineer that provides shelter for
several species, including centolla (Cdrdenas et al.,, 2007). Under the ongoing climate
change, southern Chile will face warmer temperatures, which currently has caused
consistent glacier retreat and thinning during the last 20 years (Dussaillant, Berthier
¢ Brun, 2019). Furthermore, marine heatwaves (discrete warm water anomalies) have
been increasing in frequency and duration during the last ten years (Pujol et al., 2022;
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Gonzidlez-Reyes et al., 2023). Given the relationship between increased surface temperature
and pathogen proliferation (Rowley et al., 2024), it is crucial to couple biological surveys of
potential pathogens with their future thermal suitability.

In this study, we have three objectives: (1) Isolate and identify epibiotic Vibrio bacteria
from the centolla (Lithodes santolla), the squat lobster (Grimothea gregaria), and the brown
macroalgae (Macrocystis pyrifera); (2) determine if these Vibrio isolates are phylogenetically
related to pathogenic Vibrio species; and (3) explore the future sea surface temperatures
under the most plausible climate change scenarios that both hosts and their epibiotic
bacteria will face in future decades. We found several bacterial taxa associated with the
surface of each host. Vibrio spp. was detected in all marine hosts, but V. tasmaniensis was
only detected in crustaceans. Also, Shewanella spp. was only detected in crustaceans, while
Photobacterium profundum and Psychromonas antarctica were only detected in macroalgae.
Phylogenetic comparisons revealed that epibiotic Vibrio formed a clade related to
environmental Vibrio species, such as V. tasmaniensis, V. echinoidereum, and V. atlanticus.
Average sea surface temperature is expected to be similar between contemporary times
and climate change scenarios, while maximum sea surface temperature is expected to be
significantly higher in future decades.

MATERIAL AND METHODS

Marine host sampling

Sampling was conducted on four individuals of centolla, four individuals of squat lobsters,
and two individual macroalgae blades from Choiseul Bay in the Magellan Strait (—53.59°S,
—72.3°W) during the austral summer (February 2022). Centollas were sampled by diving
up to 12 m below sea level. In the case of macroalgae blades, the obverse of the floating
blades was sampled. Squat lobsters were sampled from nocturnal swarms that arose near the
ship. Between 10-15 squat lobsters were collected, but the sampled ones (four) were kept
in separate containers with marine water to avoid fecal contamination since they defecate
upon contact with each other. All samples were collected following approved bioethical
guidelines of the Comité de Etica, Bioética y Bioseguridad, Universidad de Concepcién,
Chile (protocol number CEBB 1081 2021) and a sampling permit of the Subsecretaria de
Pesca y Acuicultura, Chile (resolution E- 2021- 531).

Epibiotic bacterial isolation and DNA extraction

We swabbed the body and legs of both crustacean species, as well as all the blade surfaces
from each individual with one swab per individual (Puritan, Guilford, ME, USA),
which later were used to conduct the basic striatum technique in prepared Petri dishes
with Thiosulfate—citrate—bile salts—sucrose agar medium (BD TCBS™ DIFCO). Media
swabbing was conducted near a laboratory gas burner inside the ship to prevent airborne
contamination. TCBS agar medium is regarded as a selective medium for isolating Vibrio
bacteria and related species since it has high concentrations of sodium thiosulfate and
sodium citrate, inhibiting the growth of opportunistic Enterobacteria. Typically, grown
colonies that belong to Vibrio are large and have yellow-green tones (Pfeffer ¢ Oliver,
2003). Cultures were sealed with parafilm paper and placed inside the incubator, where

Ochoa-Sanchez et al. (2025), PeerJ, DOI 10.7717/peerj.19881 319


https://peerj.com
http://dx.doi.org/10.7717/peerj.19881

Peer

they were incubated at ca. 37 °C for four days to ensure enough colonies of a proper size
to obtain genetic material. After incubation, colonies were kept in cold (5-6 °C) and dark
conditions for two days, until arrival at CEQUA facilities, where they were stored in cold
(4 °C) for 10 weeks until DNA extraction. Colonies were distributed across the plate and
had a visible size. Swabs from all hosts retrieved yellow-orange colonies. After examination
for the presence of yellow or green colonies, each colony was grown independently on the
same media to isolate single colonies, and the plates were incubated overnight at 37 °C.
Total genomic DNA was extracted from each single colony using the DNAeasy Blood and
Tissue kit (QIAGEN).”

Amplification of 16s rDNA and taxonomic annotation

Amplification of the 16S rDNA was conducted using the universal primers 27F (5'-AGA
GTT TGA TCC TGG CTC AG-3") and 1492R (5'-GGT TAC CTT GTT ACG ACT T-3)
(Lane, 1991). An amplification reaction was performed with 50 ng of genomic DNA at a
final PCR reaction of 25ul (Go Taq Flexi DNA Polymerase; PROMEGA). The reaction
mixture was amplified in a Thermal Cycler C100 Touch (Bio-Rad, Hercules, CA, USA)
with the following conditions: denaturation at 94 °C for 5 min; followed by 30 cycles:
94 °C for 1 min for denaturation, 50 °C for 30 s for annealing, and extension at 72 °C for 1
min; and final extension at 72 °C for 5 min. PCR products obtained were ca. 1,500 bp, and
their quantity and quality were first evaluated by electrophoresis in 1.0% agarose, and then
quantified by Nanodrop. The PCR products were Sanger sequenced in both directions by
Macrogen in South Korea.

The program 4 Peaks version 1.8 was used to view the quality of DNA sequences.
Sequences were then reviewed, trimmed, assembled, and edited using Geneious Prime
version 2020.5. Determination of the taxonomic assignment of each bacterial isolate was
done using a BLAST search at NCBI (https:/blast.ncbi.nlm.nih.gov/Blast.cgi). We reported
the best-scoring reference sequence similarity cut-off of 98-100%. The 15 sequences
obtained were then submitted to GenBank with the following accession numbers PP266351
to PP266365.

Phylogenetic comparison of Vibrio isolated from Magallanes

Due to the large number of fully sequenced genomes of Vibrio spp. available in the
NCBI database (746 as of November 20, 2024), 72 genomes classified as fully sequenced
reference genomes were downloaded from the NCBI database (https:/www.ncbi.nlm.nih.
gov/datasets/igenomeftaxon=662&reference_only=true&assembly_level=3:3).

For the phylogenetic comparison, we obtained the 16S rRNA gene from the complete
genomes by using the software barrnap (v.0.9) (Seermann, 2013). Subsequently, the 16S
rRNA genes from the 72 genomes, including the six isolates from Magallanes, were aligned
using MAFFT (v.7.490) (Katoh ¢ Standley, 2013). The phylogenetic tree was inferred using
maximum likelihood as implemented in IQ-TREE (Minh et al., 2020). ModelFinder was
used to select the sequence evolution model which was TIM3e+I+G4 (Kalyaanamoorthy et
al., 2017). To estimate branch support, 1,000 ultrafast bootstrap replicates were applied to
estimate branch support (Hoang et al., 2018). The tree was visualized using iTOL (Letunic
¢ Bork, 2021).
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Sea surface temperature projections under climate change scenarios
Average and maximum sea surface temperature (SST max) were extracted from Bio-oracle
database version 3, using its associated R package, smdpredictors (Assis et al., 2024; Bosch
¢ Fernandez, 2021). We used average temperature as a proxy of the most common sea
surface temperature in the Magellan Strait, but also maximum sea surface temperature
as a proxy of the upper temperatures that the Strait could experience in the future. We
considered the following scenarios: contemporary (average temperatures from 2000-2020)
and the two most plausible climate change scenarios according to Burgess et al. (2023);
Shared Socioeconomic pathway (SSP) 2.6 and 4.5, at two temporal resolutions 2020-2050
and 2050-2100.

The geographic range was delimited to the Magellan Strait (—52.2, —68; —54.5, —73),
where the samples were taken. Data management and posterior analysis were done in R
version 4.1 (R Core Team, 2021). We projected 30 random points across the Magellan
Strait (—52.2, —68; —54.5, —73) to extract average and maximum sea surface temperature
across different scenarios. We compared average and maximum sea surface temperatures
across scenarios with the Kruskal-Wallis test, followed by the Wilcoxon paired test to
detect specific differences between scenarios.

RESULTS

We identified 14 bacterial taxa associated with crustaceans and macroalgae (Table 1). The
squat lobster, G. gregaria, was the host that had the highest number (nine) of cultivable
bacterial taxa, followed by the brown macroalgae M pyrifera (four) and the centolla L.
santolla (two).

Vibrio bacteria were found in all hosts, whereas both crustaceans shared Shewanella.
Cultivable epibiotic bacteria in the squat lobster included Brachybacterium sp. and
Staphylococcus equorum. Interestingly, S. equorum colony had similar morphological
characteristics to Vibrio colonies (yellow-orange color and intense growth in TCBS culture
medium). Cultivable epibiotic bacteria in the brown macroalgae included Photobacterium
profundum, Psychromonas antartica, and Cellulophaga sp. M8-3.

Vibrio bacteria reported in this study were phylogenetically close to each other
(Fig. 1). The closest relationships with reference sequences were with V. echinoideorum,
V. tasmaniensis, and V. atlanticus. Intriguingly, pathogenic bacteria, such as V. cholerae and
V. parahaemolyticus were located in a contiguous clade, while V. vulnificus was the most
distant pathogenic bacteria.

Statistical comparisons revealed different patterns in mean and maximum surface
temperatures in future decades (Fig. 2, Table 2). Mean surface temperature will differ
across scenarios (KW = 88.944, p < 0.001), but only between current temperatures and
those expected between 2050 and 2100 in both scenarios: SSP26 (p.adjusted = 0.042) and
SSP45 (p.adjusted = 0.007). Current mean temperatures were on average 7.28 °C, while
mean temperatures in the two periods 2020-2050 and 2050-2100 will be similar; 7.56 °C
(2020-2050) and 7.81 °C (2050-2100) in the SSP26 scenario, whereas 7.48 °C (2020-2050)
and 8.06 °C (2050-2100) in the SSP45 scenario.
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Table 1 Cultivable epibiotic bacteria of marine hosts according to BLAST alignments with the 16S rRNA gene database.

Host Class Order Family Genus Species Reference accession ~ NCBI
number/BLAST accession
identity (%) number

Squat lobster Gammaproteobacteria Vibrionales Vibrionacea Vibrio Vibrio tasmaniensis strain Bl KF444394.1/99.78 PP266351

Grimothea gregaria

Vibrio sp. strain B2 KF444393.1/99.50 PP266352

V. tasmaniensis strain B8 KF444400.1/99.78 PP266358

Enterobacterales Shewanellaceae Shewanella S. electrodiphila KX078084.1/99.70 PP266355

Bacilli Bacillales Staphylococcaceae Staphylococcus S. equorum strain T1Z32 0Q472446.1/99.67 PP266353
S. equorum MKO015791.1/99.86 PP266359

Actinobacteria Micrococcales Dermabacteraceae Brachybacterium Brachybacterium sp. MT163354.1/99.28 PP266354
B. faecium strainXJB-Y]8 KM186613.1/99.57 PP266356

Brachybacterium sp. MF092313.1/99.49 PP266357

MT043879.1/99.35

Centolla (southern Gammaproteobacteria Vibrionales Vibrionacea Vibrio V. tasmaniensis strain B10 EU862332.1/99.79 PP266360

king crab) Lithodes

santolla

Alteromonadales Shewanellaceae Shewanella Shewanella sp. MA325 FR744883.1/99.71 PP266361

Brown macroalgae Gammaproteobacteria ~ Vibrionales Vibrionacea Photobacterium P. profundum DQ027054.1/99.86 PP266362

Macrocystis pyrifera

Vibrio V. atlanticus strain B14 LN832929.1/99.51 PP266363
Vibrio sp. strain B16 KF444400.1/99.78 PP266365
Alteromonadales Psychromonadaceae Psychromonas Psychromonas antarctica AY771768.1/99.28 PP266364

Similarly, maximum surface temperatures in future decades will differ across scenarios
(KW = 88.944, p < 0.001), but all expected conditions have significant variation
among them. Current maximum temperatures were on average 11 °C, while maximum
temperatures in the two periods 2020-2050 and 2050-2100 will be; 12.26 °C (2020-2050)
and 12.39 °C (2050-2100) in the SSP26 scenario, whereas 12.07 °C (2020-2050) and
12.72 °C (2050-2100) in the SSP45 scenario. Interestingly, maximum surface temperatures
above 14 °C are expected to occur only during scenario SSP45 (2050-2100).

DISCUSSION

We report for the first time some cultivable epibiotic bacteria from centolla, squat lobster,
and brown macroalgae from the Magellan Strait, Chile. Our results represent a valuable
contribution to the distribution and ecology of Vibrio bacteria in marine hosts in a
subantarctic ecosystem. In addition, we explored the thermal suitability of the Magellan
Strait in future decades under two climate change scenarios. Oceanographic predictions
gave insight into the future thermal characteristics of the Magellan Strait. They suggest
that: (1) Mean surface temperature will be similar between contemporary values and those
projected in the next 30 years (2020-2050), in contrast, it will differ from those in the last
50 years of the century (2050-2100). (2) Maximum sea surface temperature will increase on
average by 1.26 °C during 2020-2050 (SSP26), and by 1.39 °C during 2050-2100 (SSP45)
in comparison to contemporary sea surface maximum temperatures. (3) The maximum
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Figure 1 Phylogenetic context of epibiotic Vibrio. Phylogenetic tree of 16S rRNA gene from different
Vibrio species. The tree is unrooted, best-fit model: TIM3e+1+G4 chosen according to Bayesian inferences
criterion (BIC). Sequences corresponding to isolates from Magallanes are those with the NCBI GeneBank
identifier at the beginning of the branch name.

Full-size &) DOL: 10.7717/peerj.19881/fig-1

sea surface temperature record will occur during 2050-2100 in the SSP45, where there
could occur sea surface temperatures above 14 °C. These expected temperatures fall within
the thermic niche of important pathogenic Vibrio species, which could create suitable
environmental conditions for their proliferation.

Latitudinal expansion of the distribution of Vibrio bacteria in Chile
Vibrio bacteria associated with marine hosts in Chile were reported in fish in Quintay Bay
(33°11’S; 71°1'W) in Valparaiso (Lasa et al., 2015) and mollusks in Tongoy Bay (30°15’S
71°29'W) in Coquimbo (Rojas et al., 2019). Recent reports have indicated the presence
of Vibrio bacteria in some hosts, such as the nest soil and body surfaces of Magellanic
penguins (Ochoa-Sdnchez et al., 2023b; Ochoa-Sdnchez et al., 2024), and as a pathogen of
farmed Atlantic salmon (Bohle et al., 2007). Also, Vibrio bacteria are common microbes of
the marine microbial community in the Magellan region (Crisafi et al., 2010; Maturana-
Martinez et al., 2021). Hence, it is likely that there is a marine reservoir of autochthonous
subantarctic Vibrio bacteria that could interact with marine hosts. However, our results
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indicate the presence of Vibrio bacteria in the epibiotic microbiota of three marine wild
hosts in the Magellan Strait: the squat lobster, the centolla, and the brown macroalgae.

On the potential role of increasing temperatures in epibiotic
subantarctic Vibrio

Over the last 30 years, Vibrio infections have been positively correlated with sea surface
temperature increases (Jayakumar et al., 2024). Also, rising sea surface temperatures are

associated with increased Vibrio pathogenicity. For example, increases of 4 °C in sea
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Table 2 Mean and range of average and maximum sea surface temperatures across different climate
change scenarios.

Climatic scenario Average sea surface Maximum sea surface
temperatures temperatures
Mean Range Mean Range
SSP26 2020-2050 7.56 6.71-8.29 12.26 11.51-13.72
SSP26 2050-2100 7.81 6.96-8.58 12.39 11.61-13.93
SSP45 2020-2050 7.48 6.60-8.21 12.07 11.30-13.69
SSP45 2020-2100 8.06 7.17-8.78 12.72 11.95-14.31

surface temperature increase clam mortality by Vibrio by 70% (Tian et al., 2024). Also,
marine heatwaves are associated with increased Vibrio pathogenicity in oysters (Siboni et
al., 2024). Under ongoing climate change, it is important to have scientific data of expected
increases in sea-surface temperature, which could inform about the pathogenic risk for
aquaculture activities from marine microbes. Our results indicate that the expected average
and maximum average sea surface temperatures in the Magellan Strait would be around
7-8 °C and around 12.26-12.72 °C, respectively. Hence, given the presence of native
Vibrio in the waters of the Magellan region (Crisafi et al., 2010; Maturana-Martinez et al.,
2021) and the role of rising sea surface temperatures in Vibrio metabolism, prevalence, and
pathogenicity, it is plausible that Vibrio bacteria from subantarctic ecosystems will have
higher metabolic activity in the future.

However, there are cases when Vibrio bacteria could produce disease under cold
conditions. For example, Vibrio splendidus, a sister species to Vibrio atlanticus (found
on the surface of macroalgae), has caused disease in the Yesso scallop (Patinopecten
yessoensis) in northeastern China at 10 °C (Liu et al., 2013). Similarly, another strain of
Vibrio splendidus has caused disease in the gorgorian octocoral Eunicella verrucosa, in
England, at 7.5 °C (Vattakaven et al., 2006). Furthermore, important pathogenic Vibrio
species, such as V. parahaemolyticus and V. vulnificus, could grow even at refrigeration
with temperatures below 10 °C (Kim et al., 2012). Noteworthy, V. parahaemolyticus could
grow inside oysters below 15 °C (Fernandez-Piquer et al., 2011). Vibrio parahaemolyticus
might be particularly relevant for the subantarctic Chilean region since epidemic outbreaks
of this species were recorded a decade ago in Puerto Montt, Chile (Raszl et al., 2016),
approximately 10° latitudinal degrees above the Magellan Strait. The fact that some Vibrio
species could produce disease under cold conditions, coupled with the expected increases
in sea surface temperature in the Magellan region, as well as the intensive aquaculture
activities, encourages the establishment of a constant microbiological program to prevent
epidemiological outbreaks.

Vibrio tasmaniensis as a common member of the epibiotic bacteria
in centolla and squat lobsters

We detected different strains of Vibrio tasmaniensis on the surface of crustaceans, strains
Bl and B8 in the squat lobster, and strain B10 in the centolla. Vibrio tasmaniensis is
commonly found as a commensal microbe of mollusks (Travers et al., 2015), however,
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there are pathogenic strains within this species. For example, V. tasmaniensis LGP32 is an
intracellular pathogenic strain of the oyster Crassostrea gigas, that infects its hemocytes
and causes hemocyte cytotoxicity (Vanhove et al., 2016). Moreover, infection caused by
V. tasmaniensis LGP32 leads to systemic infection that damages connective tissue, muscles,
and several organs (Rubio et al., 2019). The strains of V. tasmaniensis inhabiting the squat
lobster and the centolla are likely innocuous commensals. However, innocuous commensals
can turn into pathogens upon acquisition of plasmids with virulence factors, as has been
shown in the commensal Vibrio crassostreae associated with oysters, a phylogenetically
closely related bacterium to V. tasmaniensis (Bruto et al., 2017). Conversion of innocuous
strains into pathogenic strains has also been described in Vibrio vulnificus (Lépez-Pérez
et al., 2021). In this case, pathogen emergence is caused by horizontal transmission of the
capsular polysaccharide cluster, an important virulence factor in V. vulnificus (Pettis ¢
MukerjiA, 2020).

Host ecology relevance in Vibrio prevalence and future ecological
perspectives

The life-history strategy of centolla naturally increases their probability of encountering
and spreading Vibrio. Centolla usually eats algae or crustaceans (cannibalism is common)
(Andrade et al., 2022), hosts where Vibrio commonly grows as biofilm (Vezzulli et al., 2010).
From the spatial ecology perspective, juvenile centollas usually gather in high densities
upon brown macroalgae rhizoids (Cdrdenas et al., 2007), which could facilitate dispersion
of Vibrio among juvenile king crabs. From the phenological and reproductive ecology
perspective, adult king crabs court during spring in shallow waters (>20 m depth) (Lovrich
et al., 2002). These behavioral and phenological factors might expose centolla to the highest
SST max. Besides, ongoing sea surface warming is expected to impair the physiology of
king crabs. Temperatures above 12 °C produce physiological stress in larvae and juveniles
of centollas (Calcagno et al., 2005). Furthermore, Vibrio bacteria are the main bacterial
pathogens of crustaceans (De Souza Valente & Wan, 2021), and the activity of pathogenic
species is highly correlated with seasonal peaks of sea surface temperature (Vezzulli, Colwell
& Pruzzo, 2013).

The expected increase in the SST max of the region may have important consequences
for fisheries and aquaculture practices. Temperature is a multifactorial driver of Vibrio
ecology. Although tropical Vibrio strains require SST max above 18 °C to proliferate,
important pathogenic Vibrio could start growing at 10 °C (McGovern ¢ Oliver, 1995;
Kirschner et al., 2008; Kim et al., 2012). Furthermore, horizontal transmission of virulence
factors underlies the fast evolution of Vibrio bacteria from innocuous to pathogenic strains
in a few years (Lopez-Pérez et al., 2021). Alternatively, natural weather events could facilitate
the dispersion of pathogenic clades across oceans, as occurred with an Asiatic lineage of
V. parahaemolyticus that migrated to South America during El Nifio event in 1997, due
to the arrival and displacement of warm water (Gonzidlez-Escalona et al., 2015). Notably,
V. parahaemoliticus appears to be the most successful Vibrio spp. in the southern region of
South America, since it has caused several epidemic outbreaks of hemorrhagic diarrhea in
the last 20 years in Puerto Montt, Chile (located at 42°S) (Raszl et al., 2016).
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The reported Vibrio bacteria in this study lie in a contiguous clade to the phylogenetic
clade where lie two of the most important Vibrio species from the clinical perspective:
V. cholerae and V. vulnifius. Also, we detected V. tasmaniensis in crustaceans, a Vibrio
species that has known pathogenic strains in invertebrates (Vanhove et al., 2016; Rubio
et al., 2019). This result per se does not inform about the pathogenic potential of the
Vibrio bacteria found in this study, however, phylogenetic relatedness could increase the
probability of successful genetic exchange that could lead to pathogen emergence, which
could be a likely scenario in future decades due to increasing sea surface temperatures and
the link between high temperatures and genetic horizontal transmission (Kim et al., 2012;
Lépez-Pérez et al., 2021). Hence, we strongly suggest starting a comprehensive, continuous
monitoring program in the Magellan Region centered on Vibrio detection and its genomic
repertoire, ideally upon several potential hosts.

Occurrence of non-Vibrio bacteria in crustaceans

The non-Vibrio bacteria we cultivated from the surface of crustaceans were Brachybacterium
sp. (Dermabacteraceae: Actinomycetota), Shewanella sp. SS15 (Shewanellaceae:
Proteobacteria), and Staphylococcus equorum (Staphylococcaceae: Bacillota). These bacteria
are common members of marine and cold environments across the world (Lemaire,
Mejean ¢ Tobbi-Nivol, 2020; Ribeiro et al., 2023). Shewanella sp. bacteria are common
epibiotic bacteria of marine hosts, whose role might be host-specific. For example, several
epibiotic Shewanella taxa are capable of synthesizing tetrodotoxin, a potent neurotoxin,
which prevents predation from its hosts (Magarlamov, Melnikova ¢ Chernyshev, 2017).
Furthermore, other Shewanella bacteria can produce a wide array of metabolites that
interfere with Vibrio spp. proliferation (Zhang et al., 2023). Hence, it could have a beneficial
role against the proliferation of pathogenic Vibrio. We want to point out that S. equorum
(isolated from G. gregaria) had a colony phenotype strongly resembling the Vibrio colonies
(orange/red colonies), underscoring the importance of incorporating molecular approaches
to identify culturable bacteria.

Limitations of the study

Our results are biased by the sampling method, which focused on the use of a neutral
marker gene from culturable microorganisms. Furthermore, the low sample size of our
study and regional tissue microbiological variation limit the generalizability of the presence
of Vibrio bacteria in these species. Thus, it is uncertain the quantitative, metabolic, and
pathogenic relevance of Vibrio bacteria in crustaceans and macroalgae from the Magellan
Strait. However, we believe this is a valuable contribution to the distribution and ecology
of Vibrio bacteria in subantarctic environments. Further studies should combine higher
sample sizes with genomic approaches to test the prevalence of Vibrio bacteria in these
hosts and to characterize their metabolic repertoire, which should properly inform about
their ecological relevance and pathogenic potential.
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CONCLUSIONS AND PERSPECTIVES

These results highlight the presence of native epibiotic Vibrio from crustaceans and
macroalgae in a subantarctic ecosystem, the Magellan Strait, which increases the natural
distribution of this bacterium commonly found in tropical and temperate waters.
Interestingly, we found several strains of V. tasmaniensis in the centolla and the squat
lobsters, which increases the geographic distribution and host ecology of this bacterium.
Vibrio bacteria reported in this study lie in a contiguous clade to some pathogenic Vibrio,
such as V. cholerae and V. vulnificus; however, further genomic approaches are required to
better inform about the pathogenic potential of these strains.

Oceanographic predictions estimate that future average values of mean and maximum
sea surface temperature will be in the range of 7.56-8.06 and 12.26-12.72, depending on
the climatic scenario and period. However, maximum sea surface temperature could have
specific points where temperatures rise above 14 °C in the SSP45 during 2050-2100. This
expected seasonal increase in sea surface temperatures, coupled with the high abundance of
crustacean hosts, could increase the activity of native Vibrio from the Magellan Strait, which
could have relevant consequences for aquaculture activities. In consequence, we strongly
suggest starting a comprehensive, continuous monitoring program in the Magellan Region
centered on Vibrio detection and its genomic repertoire, ideally upon several potential
hosts. Furthermore, given the possibility to cultivate Vibrio, it becomes possible to conduct
experimental studies that address the effect of expected warming and UV radiation in
psychrophilic Vibrio, as well as their pathogenic and antibiotic potential. Finally, Vibrio
monitoring in subantarctic ecosystems could serve as a microbial biosensor that attests the
progress of climate change (Baker-Austin et al., 2017).
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