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ABSTRACT

The sexual reproduction phase of flowering plants encompasses a multitude of
physiological processes, including floral induction, floral organ morphogenesis,

fertilization, and the maturation of seeds and fruits. In addition to being vital to the
successful reproduction of the plants, these processes are also crucial to their
adaptation to diverse environmental conditions. However, this phase is extremely
complex and vulnerable to environmental impacts and constraints, with both biotic
and abiotic stresses playing a significant role. Accumulating evidence has
demonstrated that environmental stress has multifaceted impacts on plant sexual
reproduction, leading to substantial losses in seed production and crop yield.
Although several excellent reviews have explored the regulatory mechanisms of
abiotic stresses (such as light and temperature stress) on the plant sexual
reproduction process, particularly flowering time and gametophyte development, a
comprehensive overview of the effects of biotic stresses is still lacking. Rather than
comprehensively reviewing the massive amount of literature in this field, our review
aims to leverage case studies to cover a wide range of mechanisms by which biotic
stressors, including fungi, bacteria, viruses, parasitic plants, and herbivorous animals,
affect the sexual reproduction process of flowering plants.
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Mohammad Irfan Flowering plants undergo a series of distinct stages throughout their life cycle,

Additional Information and encompassing embryonic development, vegetative growth, reproductive development, and
Declarations can be found on senescence. The reproductive development phase is critical to the success of the next
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generation (Alvarez-Buylla et al., 2010). The floral transition, which marks the shift from
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the vegetative phase to the reproductive phase, represents the most dramatic phase change

S?Z?i?iigrt in plant development. For this transition to occur, endogenous cues (such as age and
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phytohormones) need to integrate with environmental cues (such as light and low

Gomez-Casati, 2024). Once the decision to flower has been made, the shoot apical
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meristem (SAM) undergoes volumetric enlargement and accelerates its division rate,
progressively developing into the floral meristem (FM) (Cucinotta et al., 2021).
Subsequently, the stem cell populations retained within the FM maintain a delicate balance
between proliferation and differentiation rates, and this is crucial for ensuring the correct
morphogenesis of individual floral organs situated at the apex of the pedicel and the
elongation of the floral axis (Sun et al., 2009; Lee et al., 2019). This stage involves the
differentiation of the floral organ primordia into five concentric whorls: the outermost
whorl (the sepals), which is followed by the petals, stamens, carpels, and finally the ovules.
The molecular mechanisms behind the formation of floral organs have been explained by
the ABCDE model (Irish, 2017). The final stage is when the flower matures, accompanied
by the release of pollen from the anther onto the stigma. The pollen germinates on the
stigma, and the pollen tube then penetrates the ovules, resulting in the ultimate fusion of
gametes to complete the double fertilization (Edlund, Swanson ¢ Preuss, 2004; Chapman
¢ Goring, 2010; Meng et al., 2023). After anthesis, the plants focus their energy on fruit
development and seed formation (Zhao et al., 2023).

Several comprehensive reviews have explored the genetic and biochemical mechanisms
governing plant reproduction, with a focus on the genes and epigenetic machinery
involved in flowering induction, floral organ formation, gametophyte development,
fertilization, and seed development (Rieu et al., 2023; Takagi, Hempton ¢ Imaizumi, 2023;
Chow & Mosher, 2023; Wang et al., 2023; Zhang ¢ Elomaa, 2024). Plant reproduction is
regulated not only by a complex intrinsic genetic network but also by diverse
environmental cues, including both biotic and abiotic stresses (De Storme & Geelen, 2014;
Nawaz et al., 2023; Begcy, Mendes ¢» De Storme, 2024). The roles of abiotic stresses in
regulating reproductive development have been well-documented in several excellent
reviews (Resentini et al., 2023; Patra et al., 2024; Begcy, Mendes & De Storme, 2024; Ye
et al., 2024; Qian et al., 2025). Biotic stresses, such as pathogens and pests, can regulate
flowering time by altering the expression of key flowering genes (e.g., FLC, FT, GI), disrupt
floral organogenesis (e.g., stigma, filament, anther), and impair pollen viability (Tang et al.,
2013; Lyons et al., 2015; Otulak, Koziet & Garbaczewska, 2016; Rasmann et al., 2018; Fan
et al., 2020). However, in contrast to the extensive research on abiotic stresses, there is a
notable scarcity of comprehensive reviews that delve into the effects of biotic stresses on
plant reproductive development. The limited existing reviews, while relevant, tend to focus
narrowly on the timing of floral induction, offer only a general overview of stress impacts
across all stages of plant growth and development, or broadly cover plant strategies against
both biotic and abiotic stressors, rather than providing a comprehensive analysis of the
specific effects on the sexual reproduction process (Nawaz et al., 2023; Patra et al., 2024).
To address this gap, this review focuses on summarizing the effects of biotic stress on the
sexual reproduction of flowering plants (Table 1) and elucidates the underlying
mechanisms involved by leveraging case studies. The review should appeal to researchers
in the fields of biology and agronomy, with a particular resonance for those studying plant
reproduction and environmental stress.
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Table 1 Summary of the impact of biotic stresses on the sexual reproductive processes of flowering plants discussed in this review.

Biological Stress source Host plant(s) Infection/ Impact/Damage References
stress type Feeding site
Fungi Peronospora parasitica Arabidopsis Leaves Accelerates flowering Korves & Bergelson
(2003)
Fusarium oxysporum Arabidopsis Roots Accelerates flowering Lyons et al. (2015)
Piriformospora indica Arabidopsis and Roots Accelerates flowering Kumari et al. (2003),
Coleus forskohlii Das et al. (2012)
Pochonia chlamydosporia  Arabidopsis and Roots Accelerates flowering and improves seed Zavala-Gonzalez et al.
tomato (Solanum yield (2015, 2017)
lycopersicum)
Ustilaginoidea virens Rice (Oryza sativa) Floral organs Halts flowering and prevents fertilization Fan et al. (2015)
Claviceps purpurea Secale cereale, Pistil Impedes seed development Miedaner & Geiger
barley (Hordeum (2015), Tente et al.
vulgare), and (2021)
wheat (Triticum
aestivum)
Fusarium graminearum  Maize (Zea mays)  Floral organs Reduces yield Boenisch & Schifer
and wheat (2011)
Ustilago tritici Wheat Floral organs Impedes seed development Thambugala et al. (2020)
Sporisorium reilianum Maize Floral organs Reduces yield Wang et al. (2024)
Viruses Prunus necrotic ringspot  Apricot (Prunus Pollen Reduces pollen germination rate and Amari et al. (2007)
virus armeniaca) slows pollen tube growth
Tomato brown rugose fruit Tomato Leaves and Reduces pollen germination rate Avni et al. (2022)
virus Floral organs
Tobacco rattle virus Tobacco (Nicotiana Anthers Reduces floral/pollen number and Otulak, Koziel ¢
tabacum) and induces pollen degeneration Garbaczewska (2016)
pepper
(Capsicum
annuum)
Raspberry bushy dwarf Torenia fournieri ~ Stigma Inhibits fertilization Isogai et al. (2014)
virus
Zucchini yellow mosaic Wild squash Leaves Reduces yield Ahsan et al. (2023)
virus (Cucurbita pepo
subsp. Texana)
Turnip mosaic potyvirus ~ Wild cabbage Leaves Reduces floral number and fruit set Maskell et al. (1999)
and Turnip yellow (Brassica
mosaic tymovirus olerucea)
Barley Yellow Dwarf Virus Winter wheat Leaves Reduces plant height and yield, and Riedell et al. (1999)
delays flowering
Maize Leaves Reduces plant and ear height, and Korber (2013)
accelerates flowering
Ageratum leaf curl Sichuan Nicotiana Leaves Reduces plant height and delays Li, Chen & Zhang (2022)
virus benthamiana flowering
Bacteria ~ Erwinia amylovora Rosaceae plants Anther Causes floral withering Spinelli et al. (2005)
Pseudomonas syringae pv. Kiwifruit (Actinidia Anthers Causes floral withering Donati et al. (2018)
actinidiae chinensis)
Pseudomonas syringae and Arabidopsis Leaves Accelerates flowering Korves ¢ Bergelson

Xanthomonas campestris

(2003)

(Continued)
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Table 1 (continued)

Biological Stress source Host plant(s) Infection/ Impact/Damage References
stress type Feeding site
Burkholderia phytofirmans Arabidopsis Roots Accelerates flowering Poupin et al. (2013),
Esmaeel et al. (2018)
Burkholderia seminalis Pepper and okra  Roots Accelerates flowering and increases Hwang et al. (2021)
(Abelmoschus floral/fruit yield
esculentus (L.)
Moench)
Bacillus sp. and Cannabis sativa Roots Increases floral number Lyu, Backer & Smith
Mucilaginibacter sp. (2022)
Parasitic Struthanthus flexicaulis Mimosa Stems Reduces leaf area, fruit yield and seed Mourdo et al. (2009)
calodendron weight
Rhinanthus serotinus Linum Stems Decreases floral and fruit number, Salonen & Lammi (2001)
usitatissimum shortens petals, and increases floral
and Brassica rapa asymmetry
ssp. oleifera
Cassytha filiformis Suriana maritima, Stems Reduces floral and fruit yield Parra-Tabla et al. (2024)
Scaevola plumieri,
and Tournefortia
gnaphalodes
Cuscuta partita Zornia diphylla Stems Reduces branch, leaf, floral, pollen and ~ Cruz et al. (2017)
ovule number, and lowers pollen
viability
Orobanche elatior Centaurea scabiosa Roots Reduces pollination efficiency and seed ~ Ollerton et al. (2007)
yield
Orobanche spp. Chrysanthemum Stems Delays flowering or completely Liu et al. (2021)
morifolium suppresses bloom
Herbivores Megalurothrips sjostedti ~ Cowpea (Vigna Floral organs Causes floral necrosis/abscission and Alabi, Odebiyi & Tamd

Tanysphyrus lemnae

Pieris brassicae

Chrysomelidae and
Scarabaeidae

Anthonomus signatus

Cionus nigritarsis

Pieris brassicae and
Brevicoryne brassicae

Bombus terrestris

unguiculata)

Sagittaria lancifolia

Black mustard
(Brassica nigra L.)

Solanum rostratum

Wild strawberry
(Fragaria
virginiana)

Verbascum nigrum

Brassica nigra

Tomato, black
mustard (Brassica
nigra L.)

Floral organs

Floral organs
Floral organs

Floral organs

Floral organs

Leaves

Leaves

prevents pod formation

Damages floral organs and reduces seed
set per fruit

Damages floral organs
Damages floral organs

Feeds on pollen

Damages floral organs

Reduces floral number, accelerates
flowering and decreases pollinator
attractiveness

Accelerates flowering

(2006), Ngakou et al.
(2008)

Rodriguez-Morales,
Aguirre-Jaimes &
Garcia-Franco (2024)

Smallegange et al. (2007)

Gilmar-Moreira et al.
(2022)

Séber, Moora & Teder
(2010)

Penet, Collin & Ashman

(2009)
Rusman et al. (2020)

Pashalidou et al. (2020)
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Table 1 (continued)

Biological Stress source Host plant(s) Infection/ Impact/Damage References
stress type Feeding site
Aphis craccivora Koch Cowpea Leaves Delays flowering and reduces fruit yield Obopile (2006), Obopile
& Ositile (2010)
Pieris rapae Sinapis arvensis Leaves Delays flowering Poveda et al. (2003)
Agriotes sp. Sinapis arvensis Roots Increases nectar production and Poveda et al. (2003)
pollinator attraction
Acalymma vittatum Cucumber Roots Reduces leaf and fruit production, Barber et al. (2015)
(Cucumis sativus) decreasing pollinator attraction
Pieris ¢ Diplotaxis Leaves and Enhances the emission of floral volatiles Farré Armengol et al.
erucoides Floral organs that attract pollinators to improve (2015)

Helicoverpa zea

Manduca sexta

Pieris brassicae and
Spodoptera littoralis

Manduca sexta

Manduca sexta and
Manduca
quinquemaculata

pollination efficiency and lure natural
enemies to limit floral damage

Cotton (Gossypium Leaves and floral Induces the release of volatile organic ~ Rdse & Tumlinson

hirsutum L.) organs compounds that attract herbivore (2004)
enemies
Nicotiana Leaves Induces the release of volatile organic Zhou et al. (2017)
attenuata compounds that attract both
pollinators and herbivore enemies,
thereby enhanceing pollination success
and defense
Brassica rapa Leaves Reduces the emission of floral volatiles  Schiestl et al. (2014)
that attract pollinators, resulting in
decreased seed yield
Solanum Leaves Causes significant changes in the volatile Kessler, Diezel ¢
peruvianum organic compound profile of floral Baldwin (2010)
tissues
Nicotiana Leaves Decreases the release of floral volatiles  Kessler, Diezel &
attenuata that enhance attraction to both Baldwin (2010)

pollinators and herbivores

SURVEY METHODOLOGY

To gather relevant literature for this manuscript, we conducted a comprehensive search
using the Web of Science, PubMed databases, and reputable academic journals. Our
literature retrieval process followed a two-step strategy. Initially, we performed the search
using the combination of “biotic stress” AND “keywords related to plant reproductive
development processes” (e.g., flowering time, floral organ development, seed development,
reproductive success, efc.). Subsequently, we conducted a more specific search by
combining “particular biotic stress agents” (e.g., fungi, viruses, bacteria, parasitic plants,
herbivores) with the same set of keywords related to plant reproductive development.
Articles retrieved were carefully evaluated based on their relevance to our topic. Articles
that provided insights into how specific biotic stresses affect sexual reproduction in
flowering plants and/or elucidated underlying mechanisms were downloaded for full-text
reading. For selected references where the full texts were unavailable, we thoroughly
examined their abstracts. Articles with unclear or ambiguous findings in their abstracts
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were further excluded from our analysis. To ensure a balanced representation of the
literature, we systematically considered studies regardless of publication date or journal
impact factor, while preferentially citing recent or high-impact journal studies only when
multiple studies reported consistent findings. We acknowledge that this selection process
may introduce potential biases; however, our goal was to provide a comprehensive
framework for understanding biotic stress impacts on plant reproduction. In our literature
inclusion process, we did not exclude studies simply because they reported contradictory
results. Instead, we systematically presented all relevant findings in the main text to
provide readers with a comprehensive perspective. As this review aims to explore various
biotic stresses affecting plant sexual reproduction and their underlying mechanisms
through representative case studies, we carefully examined and synthesized both review
articles and experimental studies, provided they contained relevant case examples that
aligned with our thematic focus.

IMPACT OF FUNGAL INFECTIONS ON PLANT
REPRODUCTIVE DEVELOPMENT

A wide range of fungi, including Fusarium, Alternaria, Fusicladium, Neoerysiphe,
Mpycosphaerella, Trichoderma, and Epicoccum, has been identified worldwide (Li et al.,
2023). The complex ecological interactions between these fungi and plants play a crucial
role in shaping plant growth and development, with particularly significant impacts during
the reproductive stage (Bennett ¢» Meek, 2020; Batzer et al., 2023). During this critical
phase, fungal infections can substantially alter flowering patterns, reduce fruit set, and
compromise seed quality, ultimately affecting agricultural productivity (Liu et al., 2018;
Gonzalez-Gomez et al., 2021; Anand & Rajeshkumar, 2022).

Fungal infections influence flowering time

The flowering process, especially the timing of flowering, is integral to the successful
reproduction of plants and the perpetuation of the species (Chen et al., 2023; Li et al,
2024b). Flowering time is intricately determined by an integrated regulatory network that
emerges from the crosstalk between environmental cues and endogenous factors (Li et al,
2022a; Jiang, 2023). This intricate regulatory mechanism has rendered the study of
flowering time a consistent area of research focus. Extensive research carried out on the
plant model organism Arabidopsis thaliana (hereafter, Arabidopsis) and numerous other
flowering plants has revealed the molecular mechanisms of five genetically defined
pathways that regulate flowering, namely the photoperiod, autonomous, vernalization,
gibberellin (GA), and age pathways (Bao et al., 2020; Freytes, Canelo ¢ Cerddn, 2021;
Zhang et al., 2023). These main pathways, governed by several key miRNAs, crosstalk with
each other and ultimately converge on downstream floral integrator genes (involving
GIGANTEA (GI), CONSTANS (CO), FLOWERING LOCUS C (FLC), FLOWERING
LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOCI), and
CRYPTOCHROME (CRY)), which in turn transmit signals to downstream FM-identity
genes (such as APETALAI (AP1), FRUITFULL, and LEAFY (LFY)), thereby orchestrating
the process of flower formation (Chen et al., 2018; Matar et al., 2021; Fan et al., 2022).
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Several excellent reviews have highlighted the significance of these pathways in regulating
flowering (Lee et al., 2023; Yang et al., 2024; Cai et al., 2024). Additionally, increasing
evidence shows that other phytohormones, such as abscisic acid (ABA), ethylene,
cytokinin, salicylic acid (SA), auxin, and jasmonic acid (JA), also affect the flowering
process (Campos-Rivero et al., 2017).

Fungal interactions with plants exhibit convergence in regulating flowering time
through modulation of core flowering integrator genes, though pathogenic and symbiotic
fungi may employ distinct strategies (Fig. 1A). The obligate biotroph Peronospora
parasitica accelerates flowering in Arabidopsis by reducing the number of aerial branches
while promoting early transition to reproductive phase (Korves ¢ Bergelson, 2003). The
pathogen Fusarium oxysporum directly targets the floral integrator FLC, a key repressor of
flowering, while simultaneously inducing FT expression (Lyons et al., 2015). This pathogen
additionally interferes with the photoperiod pathway as it modulates GI expression, which
in turn activates FT (Mizoguchi et al., 2005). These coordinated changes in gene expression
collectively alter plant physiology, thereby hastening the progression towards flowering
(Lyons et al., 2015).

Endophytic fungi exhibit more complex interactions with flowering regulation (Figs. 1A
and 2). Piriformospora indica establishes intercellular and intracellular colonization in
Arabidopsis roots and systemically upregulates multiple flowering regulatory genes (FT,
LFY, and AP1I) and photoreceptor genes (e.g., CRY1 and CRY?2) (Kim et al., 2017; Pan et al.,
2017). This endophyte specifically activates GA biosynthetic genes (e.g., GA200x2 and
GA3oxI) and other GA-related genes (e.g., RGAI, AGL24, GA3, and MYB5) while
suppressing FLC expression, creating a permissive environment for flowering initiation
(Cheng et al., 2004; Kim et al., 2017; Pan et al., 2017). The GA-dependence of this effect is
evidenced by experiments where GA application promoted while GA inhibitors blocked
P. indica-induced early flowering (Pan et al., 2017). Pochonia chlamydosporia employs a
broader strategy, simultaneously activating multiple floral integrator genes SOCI, FT,
TWIN SISTER OF FT (TSF), and LFY while suppressing FLC (Zavala-Gonzalez et al.,
2017). This transcriptomic reprogramming may explain its strong effect on accelerating
both flowering and fruiting in tomato (Solanum lycopersicum). The fungus likely achieves
this through indole-3-acetic acid (IAA) production and phosphate solubilization, which
indirectly affect flowering pathways (Zavala-Gonzalez et al., 2015).

These studies collectively reveal a recurring pattern that fungal infection (e.g.,

F. oxysporum) or endophytic colonization (e.g., P. indica, P. chlamydosporia) consistently
downregulates the floral repressor FLC while activating positive regulators (such as FT,
SOC1, and LFY) (Fig. 1A). The convergence of different fungal species on similar flowering
regulators implies these genes represent key control points in the plant’s development
network that can be effectively targeted to alter flowering timing. Notably, while strongly
influencing photoperiod and GA pathways fungal interactions leave age and autonomous
pathways largely unaffected as shown by unchanged expression of their regulatory genes
(Pan et al., 2017). However, the current understanding of these fungal-plant interactions is
primarily based on targeted gene expression analyses, such as RT-qPCR, which focus on
well-characterized flowering regulators (Zavala-Gonzalez et al., 2017; Kim et al., 2017;
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Figure 1 Biotic stresses significantly affecting flowering time. (A-C) Fungal (A), viral (B), and bacterial
(C) infections involved in modulating flowering time. The fungal regulatory pathways on flowering
illustrated in (A) integrate findings from studies (Kumari et al., 2003; Korves ¢ Bergelson, 2003; Martinez
et al., 2004; Cheng et al., 2004; Mizoguchi et al., 2005; Das et al., 2012; Zavala-Gonzalez et al., 2015, 2017,
Lyons et al., 2015; Kim et al., 2017; Pan et al., 2017; Luo et al., 2019). The regulatory
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Figure 1 (continued)
pathway of Ageratum leaf curl Sichuan virus on flowering depicted in (B) is based on research by Li et al.
(2022b). The regulatory pathway of Burkholderia phytofirmans on flowering presented in (C) draws upon
studies (Poupin et al., 2013; Esmaeel et al., 2018). (D) Herbivory behaviors that influence flowering time.
Solid lines illustrate the already-determined regulatory mechanisms, with dashed lines representing the
underlying mechanisms that remain unexplored. The figure was created offline using the Adobe Illus-
trator 2023 software (https://www.adobe.com/cn/creativecloud.html).

Full-size K] DOI: 10.7717/peerj.19880/fig-1

Pan et al., 2017). While these approaches robustly confirm the involvement of core
flowering pathways, they may inadvertently overlook other potential mechanisms by
which fungi modulate flowering time, such as uncharacterized genes or pathways,
epigenetic modifications and post-translational regulation.

Fungal infections impede floral organ development

While many fungi accelerate flowering to access nutrient-rich floral tissues (e.g.,

F. oxysporum, P. indica), others delay flowering or disrupt reproductive development.
Ustilaginoidea virens, a prominent pathogen in rice-cultivating regions worldwide and the
causal agent of rice false smut (Chen et al., 2022), employs a contrasting strategy. This
ascomycete fungus specifically infects the floral organs of rice (Oryza sativa), beginning
with epiphytic growth on the lemma and palea, which are the outer and inner glumes that
encase the floret, followed by an intercellular invasion of the stamen and pistil tissues
(Fig. 2) (Tang et al., 2013; Fan et al., 2020). Ustilaginoidea virens primarily infects the
stamen filaments, disrupting their development, preventing flowers from opening, and
ultimately interrupting fertilization, which results in failed seed formation in the affected
spikelets (Fan et al., 2015). Notably, unlike the root colonization by fungi such as

F. oxysporum, P. indica, and P. chlamydosporia, which accelerate the floral transition by
regulating key floral integrator genes (Lyons et al., 2015; Zavala-Gonzalez et al., 2017; Kim
et al., 2017; Pan et al., 2017), Ustilaginoidea virens interferes with flower opening through
disrupting stamen development. In the case of rice, this kind of disruption is part of the
pathogen’s mechanism to hijack the rice’s reproductive structures to form false smut balls,
which are a characteristic symptom of rice false smut disease (Yu et al., 2023). The
divergent effects on flowering regulation highlight the complexity of plant-fungal
interactions. While some fungi promote flowering through convergent modulation of key
flowering genes (Lyons et al., 2015; Zavala-Gonzalez et al., 2017; Kim et al., 2017; Pan et al.,
2017), U. virens suppresses it to maintain colonization sites. This dichotomy likely reflects
distinct ecological strategies. Pathogens like F. oxysporum may accelerate flowering to
exploit nutrient-rich tissues before disease progression and host death (Lyons et al., 2015),
whereas U. virens prioritizes prolonged access to reproductive structures by inhibiting
flower opening (Fan et al., 2015). Such differences underscore the importance of
considering fungal lifestyle (pathogenic vs. endophytic) and infection site (roots vs.
flowers) when interpreting their effects on plant development. To facilitate infection,

U. virens secretes a cytoplasmic effector protein, UvCBP1, which interacts with the host
protein OsRACKI1A and competes with its binding to OsSRBOHB. This interaction inhibits
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Figure 2 The initial infection/feeding sites of fungi, viruses, bacteria and herbivores that impact
plant sexual reproduction. The black solid lines demarcate the initial infection/feeding sites of various
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Figure 2 (continued)

pathogens. Pathogens with colored fonts indicate that their infection pathways are established. Erwinia
amylovora (green) colonizes the stamens, infects pollen, and subsequently spreads to the stigma via
pollination before progressing along the stigma to the style and nectary (Wilson, Sigee & Epton, 1989;
Spinelli et al., 2005). Pseudomonas syringae pv. actinidiae (brown) infects flowers through both stylar and
anther pathways, colonizing either the stigma and style to reach the receptacle systemically or invading
anthers to produce contaminated pollen for inter-plant transmission (Donati et al., 2018). Fusarium
graminearum (red) establishes infection in floral bracts and ovaries before migrating downward through
the rachis (Pritsch et al., 2000; Wanjiru, Zhensheng ¢ Buchenauer, 2002). Claviceps purpurea (blue)
colonizes the stigma before invading ovarian tissues to disrupt seed formation and development
(Miedaner & Geiger, 2015; Sun et al., 2020; Tente et al., 2021). Ustilaginoidea virens (purple) penetrates
the lemma and palea before compromising stamens and pistils, ultimately causing fertilization failure
(Tang et al., 2013; Fan et al., 2015, 2020). The figure was created offline using the Adobe Illustrator 2023
software (https://www.adobe.com/cn/creativecloud.html).  Full-size k] DOT: 10.7717/peerj.19880/fig-2

the production of reactive oxygen species (ROS), weakening the plant’s immune response
(Li et al., 2022¢). In addition, the fungus secretes another virulence effector, SCRE4, into
the nuclei of rice cells, where it downregulates the expression of the auxin response factor
OsARF17, a key regulator in flower development, thereby indirectly disrupting the
flowering process of rice (Nagpal et al., 2005; Tabata et al., 2010; Qiu et al., 2022). These
molecular interventions contrast sharply with the gene activation strategies employed by
flowering-promoting fungi, demonstrating how different fungal species have evolved
distinct mechanisms to manipulate host development according to their ecological needs.

Fungal infections affect seed development

Cereal crops such as rye (Secale cereale), barley (Hordeum vulgare), and wheat (Triticum
aestivum) are especially vulnerable to infection by the fungus Claviceps purpurea during
anthesis due to their open-flowering nature (Mette et al., 2015). The spores of C. purpurea
infect female flowers by germinating on the unfertilized stigma and producing germ tubes
that mimic the pollen tubes (Fig. 2), thereby circumventing host recognition mechanisms
that are usually triggered by pollen-stigma interactions (Sun et al., 2020). Once inside the
ovary, these mimicking germ tubes develop into a white, cottony mycelium. Over time, this
mycelium condenses into a compact mass, culminating in the formation of a dark,
hardened sclerotium, which replaces the developing seed and halts normal seed formation
(Miedaner & Geiger, 2015; Tente et al., 2021).

Fungal infections impact grain quality and crop yield

The mycotoxin-producing fungal pathogen F. graminearum is the primary cause of
Fusarium head blight (FHB) in small grain cereals and cob rot of maize (Zea mays), leading
to both substantial yield losses and reduced grain quality (Johns et al., 2022). Under natural
conditions, FHB is typically initiated when airborne spores land on the flowering spikelets,
with the open florets during the flowering phase serving as the initial entry point (Boenisch
¢ Schdfer, 2011). In wheat, F. graminearum spores released from crop residues land on or
inside the florets, where they germinate and initiate infection. The fungus penetrates floral
tissues, spreading from the floral bracts and ovaries down through the rachis (Fig. 2)
(Pritsch et al., 2000; Wanjiru, Zhensheng & Buchenauer, 2002). Most infections occur
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during anthesis, partly because anthers contain stimulants for spore germination and
pathogen growth (Wegulo et al., 2015). Another pathogenic fungus that invades the
inflorescence tissues of wheat during flowering is the heterobasidiomycetous fungus
Ustilago tritici (Persoon) Rostrup, which leads to the occurrence of loose smut
accompanied by a significant reduction in the quality of grain seeds (Thambugala et al.,
2020). Ustilago tritici normally survives as mycelium inside wheat seeds. Upon seed
germination, the mycelium colonizes the crown node and subsequently invades the
inflorescence. Once inside the florets, the spores germinate and develop into dikaryotic
hyphae, which infect the ovaries and develop alongside the seed embryo (Arif, 2019). In
maize, Sporisorium reilianum f. sp. zeae (Kithn) causes head smut, a systemic fungal
disease that can reduce yields by up to 80% (Jin et al., 2000; Zhou et al., 2022). After
infecting the plant, the fungus produces spores within the inflorescence (Fig. 2), leading to
partial or complete replacement of the tassels and ears with large white galls filled with
dark brown spores. The infection not only stunts growth and disrupts apical dominance
but also triggers a variety of additional morphological abnormalities, contributing to
significant losses in maize production (Wang et al., 2024).

IMPACT OF VIRAL INFECTIONS ON PLANT REPRODUCTIVE
DEVELOPMENT

Viruses invade the reproductive organs

Plant viruses pose a significant threat to global agricultural productivity, ranking as the
second most important group of plant pathogens after fungi (Jaybhaye et al., 2024). While
many pathogenic viruses can infect the entire plant, most are unable to penetrate
gametophytes, gametes, and/or progeny (embryos and seeds) (Bradamante,
Mittelsten-Scheid ¢ Incarbone, 2021). Plants have evolved meristematic and
transgenerational antiviral defense systems that block viruses from being transmitted to
the next generation (Li ef al., 2024a). Nevertheless, under certain conditions, some viruses
manage to bypass these defenses (Bennett, 1969).

The majority of plant viruses are transmitted through seeds, via both male and female
gametes, with a higher frequency observed in pollen than in ovules (Rajasekharan et al,
2024). A recent comprehensive review highlighted three virus/viroid infection routes
during plant sexual reproduction (Bradamante, Mittelsten-Scheid ¢ Incarbone, 2021). One
route is complete invasion, where a virus successfully infects all reproductive tissues,
including gametes and embryos, enabling direct vertical transmission to the next
generation (Amari et al., 2007). Another route is partial invasion, in which the viruses
reach some reproductive tissues but do not infect the gametes or embryos. Although true
vertical transmission does not occur, such infections can still be passed to seedlings
post-germination via mechanical inoculation from the seed coat. For example, tomato
chlorotic dwarf viroid has been observed in floral organs of tomato plants without reaching
the embryos (Fig. 2) (Matsushita, Usugi & Tsuda, 2011). Moreover, transmission via pollen
has been documented for a number of plant viruses and viroids, such as Barley stripe
mosaic virus, Potato spindle tuber viroid, Chrysanthemum stunt viroid, Tomato
planta macho viroid, and Pepper chat fruit viroid (Fig. 2) (Bennett, 1969; Carroll, 1974;
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Kryczyniski, Paduch-Cichal & Skrzeczkowski, 1988; Mink, 1993; Card, Pearson & Clover,
2007; Woo, Clover & Pearson, 2012; Liu et al., 2014; Yanagisawa ¢ Matsushita, 2017;
Matsushita, Yanagisawa ¢ Sano, 2018). In these cases, a virus-infected pollen grain can
fertilize a healthy plant, potentially infecting both the mother plant (horizontal
transmission) and the developing embryo (vertical transmission) (Matsushita, Usugi ¢
Tsuda, 2011; Isogai et al., 2014; Matsushita, Yanagisawa ¢ Sano, 2018). Despite these
observations, the underlying mechanisms governing these transmission pathways remain
poorly understood.

Viral infections negatively affect pollen performance

To date, at least 46 plant viruses have been reported to be pollen-transmitted (Card,
Pearson & Clover, 2007; Liu et al., 2014). Some of these viruses have been demonstrated to
impair pollen performance, resulting in reduced pollen quantity, lower viability, decreased
germination rates, and inhibited pollen tube growth. For example, the Prunus necrotic
ringspot virus (PNRSV) has been detected throughout the entire development of apricot
(Prunus armeniaca) pollen after infection, from the pollen mother cells to the mature
pollen and even in growing pollen tubes. Infected pollen shows a reduced germination rate
and slower tube elongation, although it remains capable of fertilization (Amari et al., 2007).
Notably, PNRSV can be transmitted via pollen to all reproductive organs, including
embryos and even fruits (Fig. 2) (Amari et al., 2009). Similarly, the tomato brown rugose
fruit virus (ToBRFV), a recently identified Tobamovirus, is abundantly present in various
tissues, including the leaves, petals, stamens, styles, stigmas, pollen grains, and ovaries but
not inside ovules (Fig. 2). Although ToBRFV-infected pollen appears normal in quantity
and morphology, its ability to germinate is significantly impaired (Avni et al., 2022). In
plants infected with Tobacco rattle virus (TRV), such as tobacco (Nicotiana tabacum) and
pepper (Capsicum annuum), viral presence causes abnormalities in generative organs,
leading to reduced flower and pollen production. Pollen grains from infected plants are
often degenerated and have additional adverse effects on seed germination, seed quantity,
and fruit formation, ultimately leading to reduced crop yields (Otulak, Koziet ¢
Garbaczewska, 2016). In Torenia fournieri, pollen tubes carrying Raspberry bushy dwarf
virus (RBDV) are unable to progress beyond the style, halting fertilization (Isogai et al.,
2014). Zucchini yellow mosaic virus (ZYMV), a member of the Potyviridae family, has
caused severe losses in cucurbit crops throughout the world since the late 1970s (Ahsan
et al., 2023). In wild squash (Cucurbita pepo subsp. texana), ZYMV infection results in
reduced flower and fruit production per plant, decreased pollen production per flower, and
lower overall fertility under competitive conditions (Harth et al., 2016). In soybean
(Glycine max), anthers infected with tobacco ringspot virus produce fewer pollen grains
with lower germination capacity and reduced pollen tube growth compared with those of
healthy plants (Fig. 2) (Yang ¢ Hamilton, 1974). Similarly, in highbush blueberries,
infection by leaf mottle virus leads to reduced pollen quantity, smaller grain size, and
diminished pollen viability (Childress ¢ Ramsdell, 1986; Madhavi, Rao & Subbarao, 2011).
The detrimental impacts of viral infections on pollen are also observed in a range of other
crops, such as ring spot virus-infected papaya, Ilar virus-infected gherkin and okra, mosaic
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virus-infected alfalfa, bottle gourd and chow-chow, yellow vein mosaic virus-infected okra,
mosaic-infected watermelon and pumpkin, bud necrosis-infected watermelon, and yellow
mosaic-infected bitter gourd flowers (Pesic ¢ Hiruki, 1988; Amari et al., 2007;
Rajasekharan et al., 2024). While these studies provide compelling evidence for
virus-induced pollen dysfunction, the underlying molecular mechanisms remain largely
unexplored. Current research has primarily relied on phenotypic observations and viral
localization studies through techniques such as in situ hybridization, RT-qPCR, and
immunogold labeling (Amari et al., 2007, 2009; Avni et al., 2022), with limited
investigation into the dynamic viral transmission processes and the specific molecular
interactions between viral components and host pollen development.

Viral infections influence the flowering process

The impact of viral infections on plant flowering has been well documented through
numerous case studies (Fig. 1B). For instance, in courgette plants, inoculation with a mild
strain of ZYMV delays flowering and consequently postpones fruit maturation, potentially
reducing overall yield (Spence et al., 1996). Similarly, wild cabbage (Brassica oleracea)
inoculated with either Turnip mosaic potyvirus (TuMV) or Turnip yellow mosaic
tymovirus (TYMV) exhibits substantially reduced survival, stunted vegetative growth, and
impaired reproductive development, accompanied by a diminished capacity to flower,
fewer pods, and lower seed production (Maskell et al., 1999). In winter wheat, infection with
barley yellow dwarf virus (BYDV) leads to reduced plant height, delayed anthesis, smaller
seed size, and an overall decline in grain yield (Riedell et al., 1999). In contrast,
BYDV-infected maize also shows growth inhibition characterized by reduced plant height
and ear height, but interestingly, it flowers earlier than uninfected plants (Korber, 2013).
This discrepancy may arise from the fundamental differences in the genetic regulation of
flowering between winter wheat and maize. Winter wheat, a vernalization-requiring
species, relies on prolonged cold exposure to initiate flowering (Liu et al., 2024). BYDV
infection at the two-leaf stage (pre-vernalization) in wheat can disrupt resource allocation
or signaling pathways critical for vernalization, delaying anthesis (Riedell et al., 1999). In
contrast, maize, an annual plant without vernalization requirements, may prioritize
stress-induced early flowering to ensure reproduction before viral damage escalates, a
strategy observed in other stress responses (Takeno, 2012). These contrasting responses
underscore the diverse effects that viral infection can have on the flowering process,
although the underlying mechanisms remain poorly understood. Recent research has
begun to clarify some of these mechanisms. In Nicotiana benthamiana, infection by
Ageratum leaf curl Sichuan virus (ALCScV) delays flowering by interfering with GA
signaling. Specifically, the viral C4 protein interacts with NbGAI, a negative regulator of GA
signaling, disrupting its interaction with NbGID2. This interference inhibits the
degradation of NbGALI, thereby suppressing GA signaling and resulting in delayed
flowering and dwarfing (Li et al., 2022b).

These examples highlight how viral infections can significantly affect reproductive
timing and success in plants. It is important to note, however, that plant viruses primarily
pose a significant threat to crop production through early-stage infections or mixed
infections (Gaur et al., 2021; Navas-Castillo ¢ Fiallo-Olive, 2021).
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BACTERIA REGULATE PLANT REPRODUCTIVE
DEVELOPMENT

Pathogenic bacterial infections lead to flower withering and yield loss
Bacteria are among the most prevalent plant pathogens, with several species known for
their high virulence and destructive impact on crops. Notable examples include Ralstonia
solanacearum, Pseudomonas syringae, Xanthomonas campestris, Xylella fastidiosa, Dickeya
dadantii, and some Pectobacterium species (Mansfield et al., 2012; Gutiérrez-Pacheco et al.,
2019). These pathogens collectively contribute to substantial reductions in fruit quality and
yield, affecting approximately 10% of global crops during both pre- and post-harvest stages
(Din, 2011). Most bacteria, such as X. oryzae pv. oryzae (Xoo), X. axonopodis pv. citri,
X. fastidiosa, and Candidatus Liberibacter asiaticus, reduce crop yields by damaging roots
and/or leaves, thereby impairing water and nutrient uptake (Graham et al., 2004; Vojnov
et al., 2010; Wang et al., 2017; Ference et al., 2018; Oliva et al., 2019; Ahmed et al., 2020).
Pollen-mediated transmission of bacterial pathogens is a relatively rare phenomenon,
documented only for a few species such as X. arboricola pv. juglandis, Erwinia amylovora,
and P. syringae (Fig. 2) (Ercolani, 1962; Wilson, Sigee & Epton, 1989; Mansvelt & Hattingh,
2011). Among them, X. arboricola pv. juglandis, which specifically infects walnuts (Juglans
regia L.), is disseminated by wind and rain and can colonize pollen, enabling it to spread to
healthy plants via pollination (Kaluzna et al., 2021). In Rosaceae plants, E. amylovora
inoculated onto the stamens of freshly opened flowers can penetrate the anther locules
through the dehiscence zone and subsequently infect the pollen grains (Wilson, Sigee ¢
Epton, 1989). Following infection, the pathogen then colonizes the stigmas via pollination,
subsequently migrating towards the nectaries along a stylar groove lined with papillae
(Spinelli et al., 2005). Recent studies in kiwifruit (Actinidia chinensis) have detailed the
floral infection and pollen-mediated spread of P. syringae pv. actinidiae (Psa), the causative
agent of kiwifruit bacterial canker. This pathogen causes typical flower symptoms,
including browning of petals and sepals in the early stages of infection, followed by flower
withering before blooming or shortly after fruit set. Psa invades flowers through two
primary pathways: the stylar pathway and the anther pathway (Fig. 2). In the stylar
pathway, it colonizes the stigma, travels along the stylar furrow, and enters the receptacle
via the style or nectar grooves. From there, the bacteria migrate into the pedicel and
become systemic. In the anther pathway, Psa colonizes anthers both epiphytically and
endophytically, producing infected pollen that can transmit the pathogen to healthy plants
through fertilization (Donati et al., 2018). Likewise, other species, such as P. viridiflava and
P. syringae pv. syringae, are also known to cause floral blight and similar symptoms (Young
et al., 1988; Spinelli et al., 2005; Donati et al., 2020).

Plant growth-promoting bacteria impair sexual reproduction by
modulating the balance of phytohormones

Phytohormones are well-established as key regulators of sexual reproduction in plants,
playing vital roles in processes such as floral primordia differentiation, flowering
induction, stamen and pollen development, seed setting, and fruit development. Extensive
reviews have discussed the roles of various phytohormones, such as auxin, cytokinin, GA,
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ABA, SA, and JA, in these processes (Barazesh & McSteen, 2008; Pagnussat et al., 2009;
Kaur et al., 2021; Castro-Camba et al., 2022; Huang et al., 2023).

Over the past decades, compelling evidence has emerged indicating that plant
growth-promoting bacteria (PGPB) can influence the sexual reproductive development of
flowering plants by modulating the biosynthesis or degradation of phytohormones
(Nascimento, Glick & Rossi, 20215 Asif et al., 2022). For example, in Arabidopsis, infection
with the biotrophic bacterium P. syringae or X. campestris (Fig. 2) resulted in a
dose-dependent reduction in both flowering time and the number of aerial branches on the
primary inflorescence (Korves ¢ Bergelson, 2003). These changes were linked to a notable
increase in IAA accumulation (Fig. 1C) (O’Donnell et al., 2003). Inoculation with two
PGPR strains, Bacillus sp. and Mucilaginibacter sp. (Fig. 2), was found to promote flower
production and enhance axillary bud outgrowth (Lyu, Backer ¢» Smith, 2022). More
recently, three PGPR strains, namely B. velezensis RI3 and SC6 and P. psychrophila P10
(Fig. 2), were shown to significantly boost flower number, flowering rate, seed quality, and
yield in peanut (Arachis hypogaea L.). These enhancement effects were attributed to
elevated concentrations of IAA, cytokinin, GA, ABA, SA, and JA (Fig. 1C) (Bigatton et al,
2024). Additionally, rhizosphere microbial communities that enhance and prolong
nitrogen bioavailability have been found to convert tryptophan to IAA, a process
that can delay flowering (Lu et al., 2018; Lyu, Backer ¢ Smith, 2022). It is important to
note that while certain phytohormones may predominantly regulate specific
reproductive processes, the coordination and balance among multiple hormones are
essential for their coordinated functions to ensure proper reproductive development
(Mukherjee et al., 2022).

Endophytic bacteria improve flowering

Endophytic bacteria, which reside within plant tissues and can be isolated from
surface-sterilized plant tissues without causing disease, play a significant role in enhancing
nutrient uptake and promoting plant growth, particularly in accelerating flowering (Afzal
et al., 2019). In Arabidopsis, inoculation with Burkholderia phytofirmans Ps]N, a
well-known plant endophytic bacterium and a plant growth-promoting rhizobacterium
(PGPR) (Fig. 2), was shown to shorten the time to flowering and induce early signs of
senescence compared with the non-inoculated controls. Transcriptome analysis further
revealed that PsJN inoculation triggers the upregulation of GA30xI and early activation of
the meristem identity genes LFY and API (Poupin et al., 2013; Esmaeel et al., 2018).
Similarly, switchgrass (Panicum virgatum L.) inoculated with Ps]N also exhibits earlier leaf
senescence and accelerated flowering (Wang, Seiler ¢» Mei, 2015). Another example
includes the plant endophytic bacterium B. seminalis strain 869T2 (Fig. 2), which
enhances flower and fruit production in pepper and promoted both earlier flowering
and increased fruit weight in okra (Abelmoschus esculentus (L.) Moench) (Hwang et al.,
2021). Although these findings underscore the potential of endophytic bacteria to
influence the timing of flowering (Fig. 1C), the underlying mechanisms remain largely
unexplored.
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IMPACTS OF PARASITIC PLANTS ON SEXUAL
REPRODUCTION PROCESS

Many parasitic plants constitute important agricultural weeds, and these weeds, such as
dodders (Cuscuta spp.), witchweed (Striga spp.), and broomrapes (Orobanche spp.), pose a
serious threat to crop productivity worldwide (Zagorchev et al., 2021). Recent estimates
indicate that there are approximately 4,750 known parasitic plant species within the
angiosperms, spanning 292 genera (Nickrent, 2020). These species employ a wide range of
parasitic strategies, ranging from hemiparasitism with retained photosynthetic capability
to holoparasitism characterized by an absolute nutritional reliance on the host organisms
for survival. Through specialized adaptations, parasitic plants form intimate connections
with their hosts to extract water, nutrients, and photosynthates, often weakening host
vitality and reproductive performance (Cruz et al., 2017).

Parasitic plants impair host flower and fruit production

Parasitic plants employ a specialized structure called a haustorium to attach to and
penetrate host tissues, establishing vascular connections. This allows them to siphon off
water, nutrients, and even secondary metabolites and proteins from the hosts. Such
resource diversion can severely impair the host’s vegetative growth and reproductive
output, resulting in fewer, smaller, and less viable flowers and seeds (Teixeira-Costa ¢
Davis, 2021). Both hemiparasitic and holoparasitic plants can significantly impede the
development of reproductive organs in host plants (Hibberd et al., 1996; Fernandes et al.,
1998; Puustinen ¢ Salonen, 1999; Irving & Cameron, 2009; Mourdo et al., 2009; Bahia
et al., 2015). For example, parasitism of Mimosa calodendron by the hemiparasitic plant
Struthanthus flexicaulis was found to result in a substantial reduction in host leaf area,
lower fruit production, and decreased seed weight (Mourdo et al., 2009). Phoradendron
californicum, a desert mistletoe, can reduce fruit yield in desert trees by limiting both the
nutrition and photosynthetic area of the host plant (Yule, 2018). Similarly, Linum
usitatissimum and B. rapa ssp. oleifera infected with the hemiparasitic plant Rhinanthus
serotinus also exhibit reduced flower and fruit numbers, shortened petals, and increased
floral asymmetry (Salonen ¢ Lammi, 2001). These changes can lead to decreased
pollination efficiency and ultimately affect the reproductive success of the host plants.
Interestingly, while Cassytha filiformis negatively impacts the flower and fruit production
in three host species (Suriana maritima, Scaevola plumieri, and Tournefortia gnaphalodes),
it enhances reproductive success in S. maritima—an exception that suggests host-specific
outcomes (Parra-Tabla et al., 2024). In another case, parasitism of Zornia diphylla by the
holoparasitic plant Cuscuta partita can also significantly undermine both the vegetative
and reproductive characteristics of the host, including fewer branches, leaves, and flowers;
reduced quantities of pollen and ovules; and lower pollen viability (Cruz et al., 2017). In
addition, parasitic plants may indirectly influence seed dispersal. For instance, fruits of the
mistletoe P. juniperinum can enhance bird-mediated seed dispersal of its host Juniperus
monosperma, highlighting the complex ecological interactions involving parasitic plants,
hosts, and animal vectors (Ommeren ¢ Whitham, 2002).
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Parasitic plants and hosts interact reciprocally in flowering

In ecological systems, parasitic plants and their hosts exist in an involuntary state of
coexistence. When the plants attract the same pollinators during flowering, their
pollination niches may overlap. This overlap includes factors such as flowering time,
pollinator species, and the timing of pollen and stigma availability (Heithaus, 1974;
Hansen, Armbruster & Antonsen, 2000; Ollerton et al., 2003, 2007). For example, the
specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea
scabiosa (Asteraceae) flower at roughly the same time, resulting in a shared pollination
niche. This overlap can lead to competition for pollinators such as Bombus pascuorum,
ultimately reducing pollination efficiency and seed production (Ollerton et al., 2007). In the
case of chrysanthemums (Chrysanthemum morifolium), infection by dodder leads to
stunted growth, yellowing and drying of leaves, and, in severe cases, plant death. Prolonged
parasitism often results in delayed flowering or complete floral suppression, severely
diminishing the ornamental value of chrysanthemums (Liu ef al., 2021). The immune
response of chrysanthemum to dodder was speculated to possibly involve complex
signaling pathways related to ROS, calcium, ethylene, and SA signaling (Liu et al., 2021),
although the precise interaction mechanisms are not yet fully understood.

Interestingly, host plants can also influence the flowering behavior of parasitic plants.
Notably, certain dodder species, such as C. australis, can synchronize their flowering with
that of their hosts. In crops like soybean and tobacco, this synchronization is driven by the
ability of C. australis to “eavesdrop” on the host-derived FT proteins. These proteins
migrate into the dodder’s stem, where they interact with the FD transcription factor to
activate flowering in the dodder (Shen et al., 2020). However, this mechanism is not
universal among dodder species. For instance, C. campestris does not exhibit the same
floral response after parasitizing its host. A recent study in tobacco further demonstrated
that the host’s flowering status, specifically in Ntft4 Ntft5 -double-knockout mutants and
NtFT5-overexpressing plants (35S:NtFT5;,//SRIANtFTS5), does not significantly change
the flowering time of C. campestris, suggesting that C. campestris does not rely on the host’s
FT signaling pathway to initiate flowering (Mdckelmann et al., 2024). It is hypothesized
that host-mediated effects contribute to reproductive phenological asynchrony in parasitic
plants, which can influence pollination success, seed dispersal, offspring quality, and the
animals that depend on these plants (Li, Chen ¢» Zhang, 2022). For instance, a study on the
host-mediated effects on the generalist mistletoe Dendrophthoe pentandra (Loranthaceae)
found that different host species can alter the duration of mistletoe flowering and fruiting,
leading to phenological mismatches (Li, Chen ¢ Zhang, 2022). Similarly, a study on the
desert mistletoe (Phoradendron californicum) revealed that plants parasitizing mesquite
(Prosopis velutina) produce more pollinator rewards per flower and receive more pollen
grains per flower compared with those parasitizing catclaw acacia (Senegalia greggii),
although fruit production remains similar across hosts (Yule ¢ Bronstein, 2018). These
host-driven variations in the reproductive phenology of parasitic plants can either promote
or diminish reproductive isolation among populations, highlighting the complex
ecological interactions between parasitic plants and their hosts.
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THE MULTIFACETED INFLUENCE OF HERBIVORES ON
PLANT REPRODUCTION

Herbivory is intricately linked to plant reproduction. Herbivores can directly reduce the
reproductive success of a plant by damaging flowers (florivory) or indirectly influence it
through damage to the vegetative parts such as leaves, stems, or roots (folivory and other
forms of vegetative herbivory) (Poveda et al., 2003; McCall & Irwin, 2006). These forms of
damage can alter key floral traits, affecting the plant’s overall floral display. As a result,
pollinator visitation patterns may shift, ultimately affecting the efficiency of pollination
and the success of the plant’s reproduction.

Herbivores directly damage floral tissue through florivory

Flowers, being one of the plant’s primary nutritional reservoirs, often have higher
nutritional value than leaves, making them particularly attractive to herbivorous animals
(Haan, Bowers & Bakker, 2021). As a result, florivory can directly impact seed production
by damaging key reproductive structures (Alabi, Odebiyi ¢ Tamo, 2006). For instance,
thrips (Megalurothrips sjostedti) are a major pest of cowpea (Vigna unguiculata (L.)
Walp.), attacking the crop from the pre-flowering to flowering stages (Fig. 2). Their feeding
causes necrosis and/or abscission of buds and flowers, ultimately preventing pod
formation and causing substantial yield losses (Alabi, Odebiyi ¢» Tamo, 2006; Ngakou et al.,
2008). The larvae of cabbage white butterflies (Pieris brassicae) also exhibit specific feeding
behaviors. Starting in the late second instar stage, they feed exclusively on the flower buds
and flowers of black mustard (B. nigra L.) (Fig. 2), likely due to the higher concentration of
glucosinolates in these tissues (Smallegange et al., 2007). Florivory is also common in
Sagittaria lancifolia, where insects like the weevil Tanysphyrus lemnae damage flowers
(Fig. 2), reducing their attractiveness and lowering seed production per fruit
(Rodriguez-Morales, Aguirre-Jaimes ¢ Garcia-Franco, 2024). In other species, florivores
directly consume ovules, as seen in Isomeris arborea, where this leads to decreased seed
output (Krupnick ¢» Weis, 1999). Other examples include beetles from the Chrysomelidae
and Scarabaeidae families, which consume floral parts such as the corolla, anthers, and
stamens in S. rostratum (Fig. 2) (Gilmar-Moreira et al., 2022). The larvae of Anthonomus
signatus feed on the pollen of wild strawberry (Fragaria virginiana), while Cionus
nigritarsis larvae consume the floral and reproductive tissues of Verbascum nigrum

(Fig. 2) (Penet, Collin & Ashman, 2009; Sober, Moora & Teder, 2010). These examples
illustrate the widespread and varied nature of florivory. The impact on plant
reproduction depends on both the specific floral organs consumed and the plant’s
reproductive system (Cdrdenas-Ramos & Mandujano, 2019). In hermaphroditic and
self-compatible plants, the removal of petals by florivorous insects may increase the
chances of self-pollination (Penet, Collin ¢ Ashman, 2009). However, in insect-pollinated
species such as dioecious or monoecious species, florivory can significantly decrease
reproductive success (Hillier, Evans ¢ Evans, 2018; Boaventura et al., 2022;

Jabbour et al., 2022).
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Herbivores impact reproductive processes through vegetative
herbivory

Herbivores can affect plant reproductive processes not only by consuming floral parts but
also through vegetative herbivory, which targets non-reproductive structures such as leaves
and roots (Fig. 2). Damage to these vegetative organs disrupts energy accumulation and the
synthesis of vital compounds (Barber et al., 2015; de Vries et al., 2018), ultimately limiting
the plant’s ability to support reproductive development (Strauss, Conner ¢» Rush, 1996;
Poveda et al., 2005). These indirect effects can influence key aspects of reproduction,
including reductions in flower number and size, changes in floral morphology, shifts in
flowering phenology, and a decrease in the production of floral rewards like nectar and
pollen, ultimately impacting pollinator behavior (Strauss, Conner & Rush, 1996; Lehtildi ¢
Strauss, 1999; Mothershead & Marquis, 2000; Poveda et al., 2003; Hanley & Fegan, 2007,
Samocha & Sternberg, 2010; Kessler, Halitschke & Poveda, 2011; Schiestl et al., 2014;
Bruinsma et al., 2014). For example, in B. nigra, leaf feeding by larvae of P. brassicae and
the aphid Brevicoryne brassicae during the vegetative stage reduces the number of flowers
and promotes earlier flowering (Fig. 1D), thereby lowering pollinator attraction (Rusman
et al., 2020). Similarly, in tomato and black mustard plants that have not yet flowered, leaf
damage by bumblebees (Bombus terrestris) significantly accelerates flowering when pollen
is limited (Fig. 1D) (Pashalidou et al., 2020). In contrast, in cowpea, herbivory by the
cowpea aphid (Aphis craccivora Koch) can significantly impede plant growth, delay the
onset of flowering (Fig. 1D), and, in severe cases, reduce yield by over 50% (Obopile, 2006;
Obopile & Ositile, 2010). In Sinapis arvensis, leaf herbivory by cabbageworms (P. rapae)
reduces photosynthetic capacity, decreasing resource allocation to inflorescences and
delaying flowering (Fig. 1D). Interestingly, root herbivory by wireworms (Agriotes sp.) in
the same species increases nectar production, thereby attracting more pollinators.
However, when both roots and leaves are simultaneously subjected to herbivory, severe
losses in photosynthetic and root function lead to a shortened flowering period (Poveda
et al., 2003). Some herbivory responses may even increase reproductive output. For
instance, Raphanus plants attacked by P. rapae tend to produce more flowers, which can
enhance their male fitness (Strauss, Conner ¢ Lehtild, 2001). Furthermore, in cucumber
(Cucumis sativus), intense root herbivory by Acalymma vittatum reduces both leaf and
fruit production and leads to decreased pollinator visitation (Barber et al., 2015).

Herbivore-induced plant volatiles increase the reproductive success
When florivorous animals damage plants, they often trigger the release of
herbivore-induced plant volatiles (HIPVs), which serve as airborne chemical signals that
can influence the behavior of neighboring plants, herbivores and the natural enemies of
herbivores (Whitman, 1990; Smallegange et al., 2007; Dicke, 2009; Hopkins, Dam & Loon,
2009; Zangerl & Berenbaum, 2009). For example, when larvae of the cabbage white
butterfly (P. brassicae) feed on the flowers and leaves of wall rocket (Diplotaxis erucoides)
(Fig. 2), the plant markedly increases its release of three volatile organic compounds
(VOCs): methanol, 3-butenenitrile, and ethyl acetate. These VOCs serve a dual
purpose—attracting pollinators to enhance pollination efficiency, while simultaneously
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luring natural enemies of the herbivores to limit floral damage (Farré Armengol et al.,
2015). Similarly, when Helicoverpa zea larvae feed on the flower buds of cotton (Gossypium
hirsutum L.) (Fig. 2), they induce the release of a variety of terpenoid compounds from
both the damaged buds and from nearby undamaged leaves. These VOCs attract the
natural enemies of H. zea larvae, protecting the flower buds from further damage (Rdse ¢
Tumlinson, 2004). In N. attenuata, when Manduca sexta feeds on the leaves during the
flowering stage (Fig. 2), the plant releases the volatile compound (E)-a-bergamotene from
both its leaves and flowers. Leaf release attracts predatory insects that prey on M. sexta
larvae, whereas flower release attracts pollinators, thereby enhancing both defense and
pollination success (Zhou et al., 2017). In addition, herbivore frass can also influence floral
scent. In wild parsnip (Pastinaca sativa), the frass of the parsnip webworm (Depressaria
pastinacella) contains n-octanol, a metabolite of octyl ester metabolism. This compound
alters the composition of the plant’s floral volatiles, affecting how attractive the flowers are
to pollinators (Zangerl ¢» Berenbaum, 2009). These examples highlight how HIPVs, while
initially triggered by damage, can have adaptive benefits—both by defending reproductive
structures and enhancing pollination.

Just as plants release HIPVs in response to florivory, they also release these HIPV's
following vegetative herbivory. In B. rapa, for instance, leaf feeding by P. brassicae and
Spodoptera littoralis (Fig. 2) reduces the content of floral VOCs, making the flowers less
attractive to pollinators and ultimately diminishing seed production (Schiest] et al., 2014).
When herbivores feed on the leaves of brassicaceous plants and tomatoes, the plants
release large amounts of the homoterpene 4,8-dimethyl-1,3,7-nonatriene during the
flowering stage (Kant et al., 2004; Soler et al., 2007; Abel et al., 2009). This important HIPV
plays a dual role: it not only attracts the natural enemies of herbivores, protecting the
plants against further damage, but can also potentially influences the behavior of
pollinators (Kappers et al., 2005; Mumm ¢ Dicke, 2010). In S. peruvianum, leaf feeding by
M. sexta larvae causes significant changes in the VOC profile of floral tissues, notably
altering the release of (E)-a-bergamotene and benzylacetone (BA). Similarly, when
M. quinquemaculata and M. sexta feed on N. attenuata leaves, BA release from the flowers
decreases, which paradoxically increases flower attractiveness to nocturnal hawkmoths
(M. quinquemaculata and M. sexta), serving as both pollinators and herbivores (Kessler,
Diezel ¢ Baldwin, 2010). These examples illustrate how HIPVs triggered by vegetative
herbivory can protect plant reproductive structures by attracting predators of herbivores
while also modulating pollinator interactions. This multi-layered defense ultimately
enhances the plant’s reproductive success (Kessler ¢» Halitschke, 2009).

CONCLUSIONS AND PROSPECTS

Plant reproductive development is precisely regulated by a complex network of
environmental cues and internal factors. In recent years, there has been considerable
interest in understanding how biotic stresses such as fungi, bacteria, viruses, parasitic
plants, and herbivores affect this critical process. Here, our review reveals distinct yet
overlapping mechanisms through which these stressors influence plant reproduction.
Fungal pathogens demonstrate remarkable tissue specificity in their attacks.
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Root-colonizing species like P. indica and P. chlamydosporia systemically accelerate
flowering through phytohormonal manipulation and direct regulation of flowering genes
(Cheng et al., 2004; Zavala-Gonzalez et al., 2015, 2017; Kim et al., 2017; Pan et al., 2017). In
contrast, floral-infecting fungi such as U. virens and C. purpurea employ more localized
strategies, directly disrupting gametophyte development and seed formation through
effector proteins and physical replacement of reproductive structures (Sun et al., 2020; Li
et al., 2022c). Viruses exhibit unique transmission strategies that differentiate them from
other biotic stressors. While most are excluded from meristematic tissues, viruses like
PNRSV and ToBRFV exploit pollen as transmission vectors, often impairing pollen
viability and tube growth (Amari et al., 2007, 2009; Avni et al., 2022). Their systemic nature
allows them to alter flowering time through disruption of phytohormone signaling
pathways. Bacterial pathogens, represented by species such as P. syringae and

X. campestris, typically cause broad physiological disturbances rather than targeted
reproductive attacks (Korves ¢ Bergelson, 2003). Their impact on reproduction is often
secondary to systemic effects on plant health, though some species like E. amylovora have
evolved specialized mechanisms for floral infection and pollen-mediated transmission
(Wilson, Sigee & Epton, 1989). Bacterial effectors frequently manipulate auxin signaling,
creating imbalances that affect flowering time and floral development. Parasitic plants
occupy a unique ecological niche, with species like Cuscuta and Striga employing haustoria
to directly tap into host vascular systems (Zagorchev et al., 2021). This intimate association
allows for sophisticated manipulation of host physiology, including synchronization of
flowering times through interception of FT signals. The resource drain imposed by
parasitic plants often leads to dramatic reductions in flower number and seed set.
Herbivores exert their influence through both direct consumption and induced
physiological changes. Florivores such as thrips and lepidopteran larvae cause immediate
damage to reproductive structures, while folivores induce systemic changes in floral traits
and volatile profiles that alter pollinator behavior (Alabi, Odebiyi & Tamo, 2006; Ngakou
et al., 2008; Schiestl et al., 2014; Barber et al., 2015; de Vries et al., 2018). The production of
HIPVs represents a sophisticated defense mechanism that can simultaneously attract
natural enemies of herbivores while modifying pollinator attraction (Schiest! et al., 2014
Zhou et al., 2017). Despite these differences, common themes emerge across stress
categories. All biotic stressors ultimately influence reproductive success through
modulation of phytohormone pathways, particularly GA, auxin, and JA. Additionally,
many have evolved mechanisms to either accelerate or delay flowering time to align with
their life cycles. The convergence on these core regulatory networks suggests they represent
vulnerable nodes in plant reproductive development that are frequently targeted by diverse
biotic stressors.

While current research has made significant progress in elucidating the effects of these
biotic stresses on sexual reproduction in flowering plants, the underlying molecular
mechanisms remain largely unclear. These knowledge gaps present critical research
directions for future investigations, particularly in elucidating how biotic stressors
influence reproductive development through transcriptional and epigenetic regulation.
Emerging evidence highlights the importance of non-coding RNAs (e.g., IncRNAs and
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miRNAs) in mediating plant responses to biotic stresses (Yajnik, Singh ¢» Singh, 2024). The
Arabidopsis IncRNA SABCI, for instance, fine-tunes SA biosynthetic pathway during

P. syringae infection, balancing defense responses with growth requirements (Liu et al.,
2022). Another compelling case involves Osa-miR535 in rice, which regulates blast disease
resistance by targeting the OsSPL4-GH3.2 regulatory module, demonstrating how miRNAs
can orchestrate immunity through post-transcriptional control (Zhang et al., 2022). In
wheat, an extensive network comprising 590 miRNA-IncRNA interactions coordinates
defense against Puccinia graminis f. sp. tritici (Pgt) infection by modulating
resistance-related genes (Jyothsna, Nair & Alagu, 2025). Nonetheless, the specific roles of
these regulatory elements in reproductive development, such as the onset of flowering,
formation of floral organs, and development of gametophytes under biotic stresses, remain
poorly understood and warrant systematic investigation.

These mechanistic insights inform practical strategies for crop improvement. For
instance, Fungal and bacterial pathogens often interfere with reproductive success by
manipulating key flowering genes such as FLC, FT, and SOCI, suggesting CRISPR-based
editing of these loci could generate stress-resilient varieties. The success of Pijx
gene-introgressed blast-resistant rice, which increased yields up to 79% (Xiao et al., 2023),
demonstrates the potential of such strategies. For viral pathogens, RNA interference
(RNAI) strategies targeting viral genomes or host susceptibility factors like NbGAI in GA
signaling pathways could block transmission while maintaining reproductive capacity.
Parasitic plants and herbivores pose unique challenges through resource hijacking or direct
floral damage. The synchronization of Cuscuta flowering with host FT protein expression
suggests tissue-specific modulation of flowering regulators could disrupt parasitic
associations. Similarly, engineering HIPVs through targeted overexpression of terpene
synthase genes may simultaneously enhance pollinator attraction while deterring pests.
Integrating these approaches into breeding programs will be crucial for developing crops
that withstand biotic stresses without compromising reproductive success. Future research
should prioritize functional validation of candidate genes identified from transcriptomic
and GWAS studies. By bridging mechanistic insights with innovative breeding
technologies, we can enhance global food security in the face of mounting environmental
challenges.
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