Submitted 10 March 2025
Accepted 18 July 2025
Published 15 August 2025

Corresponding authors
Fuhai Bai, bth@tmmu.edu.cn
Hong Li, |h78553@tmmu.edu.cn

Academic editor
Matthew Parker

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peer;j.19873

© Copyright
2025 Zhang et al.

Distributed under

Creative Commons CC-BY-NC 4.0

OPEN ACCESS

UQCRC1 downregulation impairs
cognitive function in mice via AMPK
inactivation

Jing Zhang'?, Zuoxi Wu', Zonghong Long', Feng Ceng', Fuhai Bai' and
Hong Li'

! Department of Anesthesiology, The Xinqiao Hospital, Army Medical University, Chongging, China

? Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan,
China

ABSTRACT

Background. Ubiquinol-cytochrome ¢ reductase core protein 1 (UQCRC1) is an
essential subunit of complex I1I in the mitochondrial respiratory chain. Although earlier
studies have indicated that UQCRCI1 downregulation causes cognitive impairment, the
underlying mechanisms remain unclear.

Methods. To investigate its pathophysiological effects, we developed a mouse model
with downregulated UQCRCI expression. Hippocampus-dependent cognitive perfor-
mance was evaluated using a series of behavioral paradigms. Mitochondrial bioenergetic
status was assessed by measuring adenosine triphosphate (ATP) levels, while oxidative
stress was quantified through detection of reactive oxygen species (ROS). Molecular
analyses were performed to assess AMP-activated protein kinase (AMPK) signaling
dynamics and autophagic flux. Additionally, pharmacological interventions aimed
at activating AMPK and enhancing lysosomal function were employed to elucidate
mechanistic pathways.

Results. Downregulation of UQCRCI resulted in significant deficits in hippocampus-
dependent cognitive performance, accompanied by impaired mitochondrial bioen-
ergetics (lower ATP synthesis) and elevated oxidative stress (increased ROS levels).
Mechanistically, these phenotypes were associated with diminished AMPK activation
and disrupted autophagic flux. Importantly, pharmacological activation of AMPK or
enhancement of lysosomal activity in UQCRCI1-deficient mice effectively ameliorated
cognitive deficits and restored mitochondrial redox homeostasis .

Conclusions. This study identifies AMPK as a pivotal metabolic orchestrator of
mitochondrial-lysosomal functional crosstalk and reveals its non-canonical function
in maintaining neuronal homeostasis via coordinated regulation of autophagic flux
and redox balance. Our findings propose AMPK-driven interorganelle communication
as a modifiable therapeutic target for addressing cognitive decline resulting from
mitochondrial dysfunction.
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INTRODUCTION

Mitochondria are essential organelles in mammalian cells, functioning as central hubs for
energy metabolism and signal transduction. They play pivotal roles in a wide array of cellular
processes, including proliferation, differentiation, apoptosis, and autophagy (Zheng et al.,
2021; Zhou et al., 2018). A cornerstone of mitochondrial energy production is the electron
transport chain (ETC), composed of two electron carriers—ubiquinone and cytochrome
c—and four enzyme complexes (Complexes I-IV). Complex III (ubiquinol-cytochrome
c reductase), a symmetric dimer with eleven subunits per monomer, includes UQCRCI,
a protein essential for its assembly and function (Fernandez-Vizarra ¢ Zeviani, 2018).
Mitochondrial dysfunction, particularly in neurons, can result in excessive reactive oxygen
species (ROS) production, cytochrome c release, diminished adenosine triphosphate (ATP)
synthesis, and impaired activity of respiratory complexes. These disruptions ultimately lead
to neuronal apoptosis and cognitive deterioration (Fernandez-Vizarra ¢ Zeviani, 2018).
Mutations in UQCRC1 have been linked to mitochondrial respiratory chain deficiencies
and neurodegenerative disorders such as Parkinson’s disease, underscoring its critical role
in maintaining mitochondrial integrity and neuronal viability (Lin et al., 2020). Despite
growing evidence linking UQCRC1 to mitochondrial integrity and neurodegeneration,
the specific mechanisms by which UQCRCI1 influences cognitive function remain poorly
understood. In particular, how UQCRCI-mediated mitochondrial dysfunction contributes
to ROS accumulation, autophagy disruption, and neuronal apoptosis has not been fully
elucidated.

Importantly, mitochondria do not function in isolation but are closely integrated with
quality control mechanisms such as autophagy. Autophagy maintains cellular homeostasis
by degrading and recycling damaged organelles and proteins (Mizushima ¢ Komatsu,
2011). While autophagy generally promotes cell survival, apoptosis is activated when
cellular damage exceeds repair capacity. Apoptosis is a genetically regulated, physiological
form of cell death that occurs under specific physiological or pathological conditions
(Renehan, Booth ¢ Potten, 2001; Bredesen, 1995). Mitochondria are central to the apoptotic
pathway; their dysfunction can initiate apoptosis through multiple routes, including the
release of cytochrome ¢ and apoptosis-inducing factor (AIF), as well as excessive opening
of the mitochondrial permeability transition pore (mPTP). Lower ATP levels and elevated
ROS further sensitize neurons to apoptosis-related proteins, thereby accelerating the
apoptotic process (Nguyen et al., 2023; Bock & Tait, 2020; Wang et al., 2023; Picca et al.,
2023; Katayama et al., 2020; Kerr et al., 2017).

AMP-activated protein kinase (AMPK) is a key energy sensor and regulator of cellular
stress responses. It is activated under conditions such as energy depletion, increased
cytosolic Ca2+, and elevated ROS levels (Trefts & Shaw, 2021). AMPK not only modulates
mitochondrial dynamics by influencing fusion and fission but also promotes mitochondrial
biogenesis and supports lysosomal function (Virga et al., 2024; Herzig ¢» Shaw, 2018;
Paquette et al., 2021). Given its dual roles in regulating mitochondria and lysosomes,
AMPK acts as a crucial link between mitochondrial dysfunction and impaired autophagy
(Hu et al., 2021).
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This study aims to investigate the mechanistic role of UQCRCI1 in cognitive regulation.
We hypothesize that UQCRC1 deficiency induces mitochondrial dysfunction, characterized
by reduced ATP production and increased ROS generation. These changes are expected to
impair autophagy, promote neuronal apoptosis, and ultimately lead to cognitive deficits.
To test this hypothesis, we employed UQCRCI1*/~ mice and assessed hippocampus-
dependent cognitive function, mitochondrial bioenergetics, ROS levels, autophagy flux,
and neuronal apoptosis. Our findings highlight the importance of lysosomal function and
AMPK activation in mediating these pathological changes, offering novel insights into the
molecular underpinnings of UQCRCl1-related cognitive impairment.

MATERIALS & METHODS

Animals

C57BL/6 wild-type (WT) mice were obtained from Charles River Laboratories (Chengdu,
China), while UQCRC1%/~ heterozygous mice were generated by Professor Zhiyi Zuo
(Shan et al., 2019), with all animals housed under specific pathogen-free (SPF) conditions
at Army Medical University’s animal facility. Mice aged 8—12 weeks (weighing 20-30 g)
were maintained in standard cages (330 x 210 x 170 mm; 5 mice/cage) with ad libitum
access to food and water under controlled environmental parameters: 12-h light/dark cycle
(08:00-20:00), 20-23 °C ambient temperature, and 50-60% relative humidity.

In addition to 16 female animals (eight UQCRC1/~ and eight WT) designated for
behavioral assessments, this study included 36 male WT mice and 63 male UQCRCI11/~
mice. Following initial behavioral evaluations, eight WT and eight UQCRC1%/~ males
were each joined by 10 more genotype-matched males (for a total of n =18 per genotype)
for hippocampus collection at baseline. Six specimens per genotype were assigned to
ROS/ATP/caspase assays, six to Western blot analysis, and six to transmission electron
microscopy (TEM). For the therapeutic evaluation phase, 45 UQCRC1%/~ males were
randomly assigned into three treatment cohorts (solvent vehicle, A-769662, and LH2-
051). Eight mice per group received post-treatment behavioral assessment, while seven
additional mice per group were included for tissue analysis (six specimens per group were
assigned to ROS/ATP/caspase assays, three to Western blot analysis, and six to TEM). A
parallel study included 36 WT males following the same experimental timeline and tissue
distribution protocols. Animals were euthanized prior to the planned endpoint only if they
met predefined humane criteria, including (but were not limited to): severe weight loss
(>20% of baseline body weight) or failure to thrive; signs of irreversible distress or pain
(e.g., labored breathing, prolonged immobility, inability to access food/water); unexpected
complications directly related to the experimental intervention (e.g., neurological deficits).
No animals required early euthanasia in this study, as all subjects maintained stable health
metrics within predefined thresholds throughout the experimental timeline. No animals
were retained beyond the study period due to the terminal nature of the experimental
design. Males were euthanized via intraperitoneal injection of 1% sodium pentobarbital (50
mg/kg), while female cohorts were euthanized using gradual CO, asphyxiation (30%—-99%,
15 min) with confirmation of death. Group assignments were randomized using random
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number tables. Sample sizes calculated based on power analysis incorporating preliminary
data and literature benchmarks (Shan et al., 2019; Lin et al., 2020; Fernandez-Mosquera et
al., 2019; Chen et al., 2022; Kim et al., 2021). The experimental protocol was developed
prior to study commencement and conducted in compliance with guidelines approved
by the Army Medical University’s Laboratory Animal Welfare and Ethics Committee
(Approval No.: AMUWEC20245280; Approval date: 10/1/2024).

Behavioral testing

All mice were acclimated to their environment one week prior to the onset of behavioral
trials. All behavioral tests commenced at 10 a.m. To minimize environmental stress, mice
were transferred to the testing room two hours before each session. Behavioral assessments
were spaced one day apart to prevent interference from prior testing. After each test, all
equipment was thoroughly cleaned with 75% ethanol to eliminate olfactory cues. During
testing, examiners exited the room to reduce external influence. Behavioral data were
recorded and analyzed using EthoVision XT 11.5 (Noldus Inc., Wageningen, Netherlands).

Novel object recognition test

The ability of short-term memory in the hippocampus of mice was evaluated using the
novel object recognition (NOR) test (Bevins ¢ Besheer, 2006). The experimental setup
consisted of an acrylic rectangular enclosure (40 x 40 x 40 cm, Fig. 1A). The test comprised
three separate phases. Habituation Phase: mice were allowed to explore the empty apparatus
freely for 10 min. Familiarization Phase: conducted 24 h after habituation, two identical
objects (Familiar Object, F) were placed symmetrically within the apparatus. Mice were
reintroduced into the center of the apparatus and allowed to explore for 10 min. Test
Phase: two hours after the second stage, one of the familiar items was replaced with a novel
object of the same size but a different shape (Novel Object, N). Mice were again placed in
the center and given 10 min to explore. The time spent exploring the familiar object (tF)
and the novel object (tN) was recorded. The recognition rate (RR) was calculated as RR =
tN / (tF + tN).

Nest building test

The nest building test (NBT) was utilized to assess the impact of UQCRC1 knockdown on
hippocampus-dependent behavior. Mice were individually housed in standard cages with
a single 2.5 g, 5 cm? tearable cotton pad and a small amount of wood shavings on the day
of the test at 6:00 PM. Food and water were provided ad libitum. The following morning,
nesting activity was photographed, with particular attention to the degree of shredding
and use of the cotton pad (Fig. 1C). Nesting quality was subsequently scored according to
criteria defined in earlier research (Deacon, 2006). Data from mice whose nesting material
was moist were excluded from the analysis.

Barnes maze

The Barnes maze test was employed as a low-stress and effective way to evaluate spatial
learning and memory. The apparatus consisted of a circular platform with 20 evenly spaced
holes, only one of which led to an escape box (target box). The escape box provided a
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Figure 1 The downregulation of UQCRCI impaired cognitive function. (A) Schematic representation
of NOR, created in https:/BioRender.com. (B) The recognition rate of both male and female UQCRC1+/-
mice was lower than that of their conspecifics (n = 8). (C) Schematic representation of NBT, created in
https:/BioRender.com. (D) The nesting score of male UQCRC1+/- mice was lower (1 = 8). (E) Schematic
representation of the Barnes maze, created in https:/BioRender.com. (F) Compared to male WT mice,
male UQCRC1+/- mice exhibited longer escape latencies from day 3 during the training phase of Barnes
maze (n = 8). (G) Male UQCRC1+/- mice had prolonged escape latencies during the testing phase of the
Barnes maze (n = 8). (H) Both male and female UQCRC1+/- mice took more attempts to find the correct
hole (n = 8). Recognition rate in NOR and escape latencies in both the training and testing phases of the
Barnes maze were quantified and expressed as mean +standard error of the mean (SEM). Nesting score in
NBT and the numbers to identify target box during Barnes maze were recorded and presented using non-
parametric descriptors (median with interquartile range). ***p < 0.0001; **p < 0.01; *p < 0.05.

Full-size & DOI: 10.7717/peer;j.19873/fig-1

darkened refuge from aversive stimuli such as bright light and noise (Fig. 1E). The test
comprised two phases. Training phase: mice were placed in the center of the platform and
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allowed to explore freely. Trials ended when the mouse located and entered the escape box
or after three minutes had elapsed. If the mouse failed to locate the box, it was gently guided
to the correct location and allowed to stay there for one minute. Each mouse received three
training trials per day for four consecutive days. The primary outcome measure was latency
to enter the escape box. Testing phase: conducted 24 h after the training session, the testing
phase proceeded exactly like the training phase. Performance was evaluated based on the
latency to locate the escape box and the number of tries to find the box.

Transmission electron microscope

Mice were initially perfused with ice-cold phosphate-buffered saline (PBS). The
hippocampus was carefully dissected and sectioned into small fragments. The tissue
samples were subsequently fixed, dehydrated, infiltrated, and embedded according

to standard protocols. Ultrathin sections were prepared and stained with 2% uranyl
acetate. Quantitative analysis of the images was performed using Image] software (NIH,
https:/imagej.netfij/, version 1.54).

Western blotting

Hippocampal tissues were harvested and homogenized, and 20 pg of protein was
loaded onto the 4-20% gradient gels (CAT# ET15420LGel; ACE Biotechnology) and
then transferred to a PVDF membrane using the Bio-Rad system. The membranes were
subsequently blocked with rapid blocking buffer (CAT# HY-K1027; MedChemExpress) for
10 min. Primary antibodies were incubated overnight at 4 °C. The primary antibodies used
included rabbit polyclonal anti-LC3B (1:1000 dilution, Abcam, CAT# ab48394), rabbit
polyclonal anti-AMPKe (1:1000 dilution, CAT# 2532; Cell Signaling Technology, Danvers,
MA, USA), rabbit monoclonal anti-phospho-AMPKa (Thr172) (1:1000 dilution, CAT#
2535; Cell Signaling Technology, Danvers, MA, USA), and rabbit monoclonal anti-GAPDH
(1:3000 dilution, CAT# LF211; Epizyme Biotech, Cambridge, MA, USA). After incubation
with HRP-conjugated goat anti-rabbit IgG (1:3000 dilution, CAT# ZB-2301; ZSGB-BIO)
for one hour at room temperature, membranes were developed. Densitometric analysis was
conducted using Image] software (version 1.54). Protein expression levels were normalized
by dividing the signal intensity of the target protein by that of GAPDH. All wild-type (WT)
group values were set to 1.0 to establish baseline expression.

Quantitative PCR (qPCR)

Total RNA was extracted from murine hippocampal tissues using the Magbead RNA
Extraction Kit (CAT# W3711S; Cwbiotech), followed by genomic DNA removal using
RNase-free DNase I (CAT# EN0521; Thermo Fisher Scientific, Waltham, MA, USA).
Complementary DNA synthesis and amplification were performed using the PrimeScript
RT-PCR Kit (CAT# RR037A; Takara Bio). Quantitative analysis employed the AACT
method with normalization to GAPDH expression. Primer sequences are provided in
Table S1.

ATP assay
ATP content was measured following the protocol provided in the ATP content test kit
manual (CAT# G4309-48T; Servicebio). Extracted hippocampal tissues were homogenized,
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lysed, boiled, and cooled to room temperature, followed by centrifugation at 10,000x g
for 15 min at 4 °C. Subsequently, 20 pL of the supernatant was mixed with 100 wL of ATP
assay reagent. Bioluminescence intensity was subsequently measured using a luminometer
(Fig. 2A).

Assessment of reactive oxygen species

ROS levels were assessed using the reactive oxygen species (ROS) Detection Kit (Bestbio,
CAT# BB-47051). After hippocampal homogenization, the homogenate was centrifuged
at 1,000x g for 3 min at 4 °C. A volume of 2 pL dihydroethidium (DHE) probe was
added to 200 pL of the supernatant and incubated in the dark at 37 °C for 30 min.
Fluorescence intensity was measured using an excitation wavelength of 510 nm and an
emission wavelength of 610 nm. ROS levels were determined by calculating the ratio of
fluorescence intensity to protein concentration.

Assessment of caspase 3 and caspase 9

The Caspase 3/Caspase 9 Activity Assay Kit (CAT# APC03/APC09; MultiSciences Biotech
Co., Ltd.) was used to evaluate the activation of caspase 3 and caspase 9. Briefly,
homogenized hippocampal tissue was centrifuged at 12,000 rpm for 15 min at 4 °C.
The supernatant was collected and reaction mixtures were prepared according to the
manufacturer’s instructions. Following 4 h of incubation at 37 °C, absorbance was measured
at 405 nm.

Intraperitoneal injection

UQCRC1*/~ mice were randomly assigned to three groups: UQCRC1H/~ + A-769662,
UQCRCI/~ + LH2-051, and UQCRC1*/~ + solvent. Mice in the UQCRC1"/~ +
A-769662 and UQCRC1%/~ + LH2-051 cohorts received intraperitoneal injections of
A-769662 (30 mg/kg, MCE, CAT# HY-50662) or LH2-051 (10 mg/kg, MCE, CAT#
HY-161723), administered twice daily for 30 consecutive days (Fig. 3A). Mice in the
UQCRC1/~ + solvent group received an equivalent volume of solvent comprising 10%
DMSO, 40% PEG300, 5% Tween-80, and 45% saline.

Statistical analysis

All experiments and analyses were conducted under blinded conditions, with investigators
unaware of group allocations during both experimental procedures and data interpretation.
All acquired data were retained for statistical analysis without exclusion. The Shapiro—Wilk
test was employed to assess data normality. Parametric tests were applied to normally
distributed data, while non-parametric tests were applied when normality assumptions
were not met. For two-way ANOVA, no outliers were detected based on studentized
residuals exceeding £3. The Kruskal-Wallis H test, unpaired two-tailed ¢-tests, Mann—
Whitney U test, one-way ANOVA, and two-way ANOVA were used to assess differences
between groups. Statistical significance was defined as a p-value of less than 0.05. Data
analysis was performed using GraphPad Prism (version 9.5; GraphPad Software, Boston,
MA, USA) and SPSS (version 27.0; IBM, Armonk, NY, USA). Statistical significance was
indicated as *p < 0.05, **p < 0.01, **p < 0.001, and ****p < 0.0001.
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Figure 2 The downregulation of UQCRCI led to autophagy impairment. (A) Schematic illustration of
the experimental design for ATP assays, reactive oxygen species assessments, and caspase 3 and caspase
9 evaluations, created in https:/BioRender.com. (B) The ATP level in UQCRCI +/- mice was lower. (C)
The ROS level in UQCRCI +/- mice was higher. (D) Representative transmission electron microscope
(TEM) images of WT mice and UQCRCI +/- mice (red arrows indicate lipofuscin; scale bar: 2 jum). (E)
The density of lipofuscin was higher in UQCRC1 +/- mice. (F) Western blot images of LC3B I, LC3B II,
pAMPK, AMPK and GAPDH in WT mice and UQCRCI +/- mice. (G-J) Quantification of protein expres-
sion of LC3B II (G), pAMPK (H), AMPK (I) and pAMPK/AMPX ratio (J). Protein levels were normalized
to GAPDH as an internal loading control . (K) Increased mRNA expression of FLCN, FNIP1, and FNIP2
in UQCRCI +/- mice. (L) Activation of both caspase 3 and caspase 9 was higher in UQCRCI +/- mice.
Data are represented as mean =SEM. ***p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05.

Full-size Gl DOI: 10.7717/peer;j.19873/fig-2
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Figure 3 Both lysosomal function improvement and AMPK activity enhancement ameliorated au-
tophagy in UQCRCI mice. (A) Schematic illustration of the experimental design for Intraperitoneal injec-
tion, created in https:/BioRender.com. (B) The ATP level in UQCRCI1+/- mice increased after the (contin-

ued on next page...)
Full-size & DOLI: 10.7717/peerj.19873/fig-3
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Figure 3 (...continued)

administration of A-769662 or LH2-051. (C) The ROS levels in UQCRC1+/- mice diminished following
the treatment with A-769662 or LH2-051. (D) Representative transmission electron microscope (TEM)
images (red arrows indicate lipofuscin; scale bar: 2 um). (E) The density of lipofuscin in UQCRCI1+/-
mice reduced after the administration of A-769662 or LH2-051. (F) Western blot image of pAMPK,
AMPK, LC3B a and LC3B II, and GAPDH. (G-J) Quantification of protein expression of LC3B II (G),
pAMPK (H), AMPK (I), and pAMPK/AMPK (J). Protein levels were normalized to GAPDH as an internal
loading control . (K) Following administration of A-769662 or LH2-051, activation of caspase 3 and
caspase 9 in UQCRC1+/- mice was reduced. Data are represented as mean £SEM. **** p < 0.0001, ***

p <0.001,"* p < 0.01, *p < 0.05.

Al tool usage statement

The DeepSeek-R1 model (developed by DeepSeek) was employed exclusively for
grammatical error detection, spelling correction, and sentence structure refinement.
The tool did not contribute to data generation, conceptual development, or conclusion
formulation. All modifications suggested by the tool underwent rigorous manual
verification by the authors, who assume full responsibility for the perspectives, data
analysis, and scholarly argumentation presented herein.

RESULTS

The downregulation of UQCRC1 impairs cognitive function
In the NOR test, both male (Fig. 1 B; p < 0.0001) and female (Fig. 1B; p < 0.05) UQCRC1+/~
mice demonstrated a markedly reduced recognition rate compared to WT controls. In
the NBT, male UQCRC1*/~ mice exhibited impaired performance (Fig. 1D; p < 0.01).
Starting on day 3 of the Barnes maze training phase, male UQCRC1*/~ mice exhibited
substantially longer escape latencies (Fig. 1F; p < 0.05 on day 3; p < 0.01 on day 4). During
the testing phase, these mice also demonstrated significantly longer escape latencies (Fig.
1G; p < 0.05) and a notably higher number of attempts to find the target box (Fig. 1H;
p <0.05). Female UQCRC1%/~ mice also required more attempts to locate the target box
(Fig. 1H; p < 0.05).

These results suggested that mitochondrial dysfunction caused by UQCRC1
downregulation is strongly correlated with cognitive deficits in male mice, whereas
its impact on female mice appeared to be more variable. Consequently, subsequent
investigations focused primarily on male mice.

The downregulation of UQCRC1 leads to autophagy impairment

Our findings showed that the downregulation of UQCRCI significantly reduced
hippocampus-dependent cognitive functions. To further investigate this phenomenon, we
assessed cellular energy status and oxidative stress levels. A significant decrease in ATP levels
was observed in UQCRC1*/~ mice (Fig. 2B; p < 0.01), accompanied by an increase in ROS
levels (Fig. 2C; p < 0.05). Lipofuscin, a yellowish-brown granular pigment that accumulates
in ageing cells, is formed through the cross-linking of incompletely degraded lipids and
proteins. Its accumulation serves as an indicator of impaired lysosomal degradation
capacity. In our study, increased lipofuscin accumulation was detected (Figs. 2D, 2E;

p < 0.05), along with elevated expression of LC3B-II (Figs. 2F, 2G; p < 0.01). These results
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implied that UQCRCI1 downregulation results in defective autophagic flux. Consistent
with previous reports (Fernandez-Mosquera et al., 2019), our data showed a significant
reduction in pAMPK levels (Figs. 2F, 2H; p < 0.0001) and in pAMPK/AMPK ratio (Figs.
2F, 2J; p < 0.0001), whereas total AMPK levels remained unchanged (Figs. 2F, 2I). To
date, folliculin (FLCN), a known tumor suppressor, is the only identified direct negative
regulator of AMPK activity. FLCN forms a functional heterotrimeric complex with its
interacting proteins FNIP1 and FNIP2, which together inhibit AMPK signaling (Xiao ef al.,
2021). Notably, previous studies have demonstrated upregulation of FLCN, FNIP1, and
FNIP2 in UQCRCI knockdown cells (Fernandez-Mosquera et al., 2019). In alignment with
these findings, our study confirmed the transcriptional upregulation of FLCN (Fig. 2K;
p <0.05), ENIP1 (Fig. 2K; p < 0.05), and FNIP2 (Fig. 2K; p < 0.05). Together, these findings
indicate that UQCRC1 downregulation reduced AMPK activation in the hippocampus
and impaired autolysosomal degradation. Moreover, we observed increased activation of
caspase 3 (Fig. 2I; p < 0.0001) and caspase 9 (Fig. 2I; p < 0.001), suggesting enhanced
apoptotic activity as a consequence of UQCRC1 downregulation. Notably, no differences
were observed in ATP levels, ROS levels, or the expression of pAMPK, AMPK, and LC3B
between female UQCRC1+/— mice and female WT mice (Fig. S1).

Enhancing AMPK activity or improving lysosomal function ameliorates
autophagy in UQCRC1+/~ mice

A-769662 is a direct, allosteric activator of AMPK that increases its activity through
two complementary mechanisms: by inhibiting Thr-172 dephosphorylation and directly
inducing allosteric activation of AMPK (Cool et al., 2006; Goransson et al., 2007). LH2—051
improves lysosomal function through the DAT-CDK9-TFEB signaling pathway, thereby
promoting the degradation of toxic protein aggregates such as f-amyloid (Vin et al.,
2023a; Yin et al., 2023b). In this study, we investigated the effects of these compounds in
UQCRCI1/~ mice. Following intraperitoneal administration of A-769662, we observed
a significant restoration in ATP content (Fig. 3B; p < 0.001), a reduction in ROS levels
(Fig. 3C; p < 0.001), and decreased lipofuscin accumulation (Figs. 3D, 3E; p < 0.05).
Furthermore, AMPK activity (Figs. 3F, 3H-3]; p < 0.01) was notably increased, alongside
a marked reduction in the LC3B-II expression (Figs. 3F, 3G; p < 0.0001), activation of
caspase 3 (Fig. 3K; p < 0.0001) and caspase 9 (Fig. 3K; p < 0.001). In parallel, LH2-051
administration led to significant improvements in ATP content (Fig. 3B; p < 0.05),
reductions in ROS levels (Fig. 3C; p < 0.05), and decreased lipofuscin deposition (Figs.
3D, 3E; p < 0.05). LC3B-II expression (Figs. 3F, 3G; p < 0.0001) and caspase 9 activation
(Fig. 3K;5 p < 0.01) were also restored. Although caspase 3 levels showed partial recovery
(Fig. 3K; p < 0.0001), they did not return to the levels observed in the control group.
Notably, no significant changes were detected in AMPK expression, pAMPK expression,
or the pAMPK/AMPK ratio (Figs. 3F, 3H-3]).

Collectively, these findings confirm that lysosomal dysfunction is closely associated with
mitochondrial impairment in the hippocampal tissue of UQCRC1-deficient mice. Both
AMPK activation (via A-769662) and lysosomal enhancement (via LH2-051) alleviate
these deficits, highlighting their therapeutic potential. However, the incomplete functional
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rescue suggests the involvement of additional pathological mechanisms beyond AMPK
and lysosomal pathways.

Increasing AMPK activity or enhancing lysosomal function can both
rescue coghnitive deficits in UQCRC1+/~ mice

To investigate the potential causal relationship between autophagy dysfunction and the
cognitive abnormalities observed in UQCRCI1/~ mice, we performed a series of behavioral
evaluations following rescue therapies. The results demonstrated that augmenting AMPK
activity significantly improved the performance of UQCRC1+/~ mice in the novel object
recognition test (Figs. 4A, 4B; p < 0.001), the nest-building test (Figs. 4C, 4D; p < 0.01),
and the Barnes maze (Figs. 4E—4H).

Enhancing lysosomal function partially ameliorated the cognitive deficits in
UQCRC1*/~ mice. Specifically, treated mice exhibited a higher recognition rate in the
novel object recognition test (Figs. 4A, 4B; p < 0.01), as well as reduced latency during both
the training phase (Fig. 4F; p < 0.01) and testing phase (Fig. 4G; p < 0.05) of the Barnes
maze. However, no significant improvement was observed in the nesting score during the
nest-building test (Figs. 4C, 4D), nor in the number of attempts required to locate the
target box in the Barnes maze (Fig. 4H).

These findings indicate that AMPK plays a pivotal role in the cognitive impairments
associated with mitochondrial dysfunction, and that lysosomal dysfunction is also
implicated in this pathological process.

DISCUSSION

Because UQCRC1~/~ mice displayed embryonic lethality (Shan et al., 2019), heterozygous
UQCRCI1+/— mice were therefore chosen as the experimental model. In this study, our
results demonstrate that downregulation of UQCRCI expression led to decreased ATP
levels and increased oxidative stress in hippocampal tissue. Furthermore, this reduction
impaired autophagic flux by attenuating AMPK activity, which in turn increased neuronal
apoptosis and contributed to hippocampus-dependent cognitive dysfunction.

Sex differences in vulnerability to cognitive impairment due to mitochondrial
dysfunction have been well documented (Bigio ef al., 2025; Silaidos et al., 2018). Pre-
menopausal females often exhibit stronger antioxidant defenses, attributed to estrogen’s
protective effects (Vifia & Borrds, 2010; Mandal, Tripathi ¢ Sugunan, 2012; Grimm,
Mensah-Nyagan & Eckert, 2016). Consistent with these findings, we observed that UQCRC1
downregulation had a smaller and less consistent impact in female mice. Therefore,
to minimize confounding variables, only male mice were included in the mechanistic
investigations.

Mitochondrial dysfunction has been increasingly recognized as a key contributor
to cognitive decline in various human neurodegenerative disorders (Wen et al., 2025;
Kathiresan et al., 2025; Wang et al., 2020; Bishop, Lu & Yankner, 2010). Given the brain’s
high oxygen dependency and energetic demands, robust mitochondrial function is
essential, particularly for hippocampal neuron integrity and cognitive performance (Watts,
Pocock ¢ Claudianos, 2018; Khacho, Harris ¢ Slack, 2019; He et al., 2022). Our current
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Figure 4 The cognitive deficits in UQCRCI1+/- mice were ameliorated by augmenting AMPK activa-
tion and improving lysosomal function. (A) Representative heat maps showing the duration and location
of the subject during novel object recognition (“N” and “F” represent novel object and familiar object, re-
spectively). (B) The recognition rate of UQCRCI+/- mice increased after the administration of A-769662
or LH2-051. (C) Representative figures of the nest-building test. (D) The nesting score of UQCRC1+/-
mice increased after the administration of A-769662. (E) Representative trajectory chart during testing
phase of the Barnes maze (gray circle indicates the target hole). (F) Over the training phase of the Barnes
maze, the escape latencies of UQCRC1+/- mice were restored to levels similar to WT mice. (G) A-769662
or LH2-051 treatment lowered the escape latencies of UQCRC1+/- mice during the Barnes maze testing
phase. (H) UQCRC1+/- mice treated with A-769662 or LH2-051 showed fewer attempts to find the target
hole. Recognition rate in NOR and escape latencies in both the training and testing phases of the Barnes
maze were quantified and expressed as mean £SEM. Nesting score in NBT and the numbers to identify
target box during Barnes maze were presented as median and interquartile range. **** p < 0.0001, *** p <
0.01,** p < 0.01, *p < 0.05.

Full-size G4l DOI: 10.7717/peerj.19873/fig-4
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study highlights these concepts by demonstrating that the downregulation of UQCRCI,
a vital subunit of mitochondrial respiratory chain complex III, significantly impairs
hippocampal-dependent cognitive abilities in mice. Moreover, post-mortem analyses of
Alzheimer’s disease (AD) brains consistently reveal mitochondrial abnormalities and ROS
overproduction (Mutisya, Bowling ¢» Beal, 1994); these impairments mirror our model’s
bioenergetic deficit.

Our model specifically revealed mechanistic insights into the cognitive decline, showing
a critical role for reduced AMP-activated protein kinase (AMPK) activation and impaired
autophagic flux—both hallmark features observed in human Alzheimer’s disease (AD)
pathology (Cai et al., 2012; Orr ¢ Oddo, 2013). AMPK is a highly conserved kinase and
a critical responder to mitochondrial stress, sensitive to shifts in the AMP:ATP ratio.
Fernandez-Mosquera et al. (2019) reported that UQCRCI1 knockdown reduced AMPK
activity in HeLa cells, and similar findings were observed with ndufs4 (a subunit of
respiratory chain complex I) knockdown in brain tissue. Furthermore, prior research
has demonstrated that AMPK plays a pivotal role in lysosome formation and function
in vitro and in vivo (Cheng et al., 2021; Alers et al., 2012; Patra, Weerasekara ¢» Bardeesy,
2019). In the AD brain, diminished AMPK activity is associated with increased amyloid-
beta (AB) deposition and tau hyperphosphorylation (Cai ef al., 2012; Mary et al., 2025).
Simultaneously, compromised lysosomal degradation contributes to the accumulation of
damaged mitochondria. Collectively, these findings imply that dysregulation of the AMPK-
autophagy axis, driven by UQCRCI deficiency, could be a convergent pathway underlying
cognitive impairments in multiple etiologies. Therefore, our study not only elucidates
the AMPK-autophagy axis as a convergent mechanism for cognitive impairment but also
strengthens the rationale for developing therapies focused on restoring interorganelle
communication to address mitochondrial dysfunction-related cognitive disorders.

A-769662 (C,oH;,N,03S; molecular weight: 360.39 g/mol) is a synthetic compound
known for its potent and reversible AMPK activation. Due to its specificity and efficacy, A-
769662 is widely used in research exploring cellular energy regulation and potential AMPK-
targeted therapies. In animal models, typical dosages range from 10 to 60 mg/kg, with 30
mg/kg commonly used (Cool et al., 2006; Ma et al., 2017; Guma et al., 2015; Rameshrad et
al., 2016). In our study, although AMPK activity in UQCRC1*/~ mice remained lower
than in wild-type (WT) controls following A-769662 treatment, the difference was not
statistically significant. Concurrently, lysosomal dysfunction and cognitive impairment
were alleviated, supporting the potential of A-769662 as a treatment for mitochondrial
dysfunction-induced cognitive disorders.

LH2-051 (C,7H34N,03; molecular weight: 434.57 g/mol) is a small-molecule dopamine
transporter (DAT) inhibitor that promotes DAT translocation from the cell membrane to
lysosomal membranes. This process activates the protein kinase C (PKC) signaling pathway
and modulates transcription factors TFEB and ZKSCAN3, thereby promoting lysosomal
biogenesis. A 10 mg/kg dose of LH2-051 significantly improved learning, memory, and
cognitive function in AD mouse models by enhancing lysosomal degradation (Yin et al.,
2023a; Yin et al., 2023b). In our study, LH2-051 significantly mitigated cognitive deficits
in UQCRC1%/~ mice, while AMPK activity showed no significant changes, suggesting
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that lysosomal dysfunction is a key factor in mitochondrial damage-induced cognitive
decline. Notably, LH2-051 increased ATP levels by 57%, decreased ROS levels by 23%,
and reduced Caspase 3 levels by 65% in UQCRCI17/~ mice. These results indicate that
lysosomes are vital for maintaining cellular homeostasis through ROS regulation and ATP
production. However, due to persistent upstream mitochondrial damage, full functional
restoration was not achieved. Even after lysosomal function improved in the hippocampus
of UQCRC1%/~ mice, additional mechanisms may still drive cellular dysfunction.

Autophagy plays a nuanced and essential role in neurons. While it helps maintain
neuronal balance and function, excessive or dysregulated autophagy may be detrimental
(Nixon & Rubinsztein, 2024). LC3II, a structural protein formed during autophagy
initiation, associates with autophagosome membranes and is ultimately degraded in
autolysosomes (Iriondo et al., 2022). Its expression correlates with autophagosome/au-
tolysosome abundance. In this study, we observed increased LC3II expression in the
hippocampal tissue of UQCRC1%/~ mice. Consistent with this finding, transmission
electron microscopy revealed a significant accumulation of lipofuscin in the same region.
These observations indicate that autolysosomal degradation and recycling are impaired in
the hippocampus of UQCRC1*/~ mice, disrupting the autophagic process.

Limitation

This study has several limitations that warrant consideration. First, our findings suggest
sex-dependent differences in the effects of UQCRC1 downregulation on murine cognitive
function, yet the underlying mechanisms remain unclear. Second, although behavioral
assessments preliminarily identified the hippocampus as the primary region affected,
the extensive neuronal networks involved in cognition prevent the complete exclusion
of contributions from extra-hippocampal areas. Third, while we demonstrated that
UQCRCI1-mediated mitochondrial dysfunction impairs cognition through AMPK-
dependent autophagic dysregulation, two critical mechanistic gaps persist: (1) the precise
signaling cascades linking AMPK activation to autophagic modulation, and (2) the exact
neurobiological mechanisms through which autophagy perturbations mediate cognitive
deficits.

CONCLUSIONS

This study demonstrates that UQCRC1 deficiency in mouse models leads to hippocampus-
dependent cognitive impairment. Subsequent analyses revealed that UQCRCI
downregulation triggers a series of pathological changes in hippocampal neurons,
including reduced ATP production, decreased AMPK activation, increased ROS and
lipofuscin accumulation, and enhanced activation of caspase-3 and caspase-9. Through
pharmacological intervention in UQCRC1#/~ mice, we observed that lysosomal
enhancement via LH2-051 and AMPK activation through A-769662 effectively mitigated
cognitive deficits. Notably, AMPK activation significantly reduced lipofuscin accumulation,
whereas lysosomal enhancement had minimal impact on AMPK activity. These findings
outline a molecular pathway wherein UQCRCI deficiency-induced mitochondrial
dysfunction exacerbates neuronal apoptosis via lysosomal impairment, with AMPK
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functioning as a central regulatory hub. This cascade highlights a novel therapeutic target
for alleviating cognitive impairment associated with mitochondrial disorders.
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