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Abstract

Total mercury was evaluated in the mangrove oyster Crassostrea [rhizophorag, in sediments and
seston from the Ciénaga Grande de Santa Marta (CGSM) and Cispata Bay (BhC) in two climatic
seasons (rainy and dry). Composite samples of sediments, seston and oysters in juvenile and adult
sizes were collected at six stations (three in each ecosystem) and Hg was quantified by atomic
absorption spectrophotometry (EPA method 7473 PLTX-017). BhC had the highest Hg
concentrations in sediment, seston and oysters compared to CGSM, with values close to the
tolerable threshold for the ecosystem and associated biota (TEL) of 0.13 pg/g Hg and with a low
risk of Hg contamination in the mangrove oyster. Although at CGSM Hg was below the TEL in
sediment and was considered safe in the oyster, significant bioaccumulation was evident with the
metal content in the seston, indicating a potential risk to the ecosystem and humans. The
variables organic matter and temperature influenced metal availability in the sediment and seston,
respectively; in contrast, they had no significant relationship in the oyster. In CGSM, higher Hg
concentration was recorded in adult sizes, while in BhC the highest accumulation occurred in
juveniles, especially during the dry season. These results emphasize the need for continuous
monitoring of Hg contamination in both ecosystems. In addition, they highlight the importance of
considering the size of oysters when assessing Hg contamination, as they may vary according to
specific ecosystem and climatic conditions.

Subjects: Marine Biology, Aquatic and Marine Chemistry, Environmental Contamination and
Remediation.

Comentado [chs1]: It would be very interesting to observe the
molar ratio (Selenium:Mercury) in the oyster Crassostrea
rhizophorae. Selenium has been documented to neutralize the toxic
Hg effect if its Se/Hg molar ratio is > 1 (Burger and Gochfeld 2013).
Selenium intervenes in the Hg demethylation process through the
selenocysteine protein, transforming the metal to its inorganic and
less toxic form. In this manner, Hg can be excreted more easily
through pseudofeces and spawning (Medina-Morales et al. 2020;
Vega-Sanchez et al. 2020).
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Introduction

Mercury (Hg) pollution is a global environmental problem due to its ability to bioaccumulate and
biomagnify in food webs, with potentially devastating effects on ecosystems (Mountouris et al.
2002; Driscoll et al. 2013). Catastrophic events related to Hg pollution have been recorded
throughout history, with the Minamata disaster in Japan being the most emblematic example.
Mercury is extensively used in the gold amalgamation process, leading to its release into rivers,
soils, and coastal ecosystems (Bolafios-Alvarez et al. 2024). Colombia ranks among the countries
with the highest per capita Hg emissions globally, with annual discharges reaching up to {150 tons
of Hgmereury (Cordy et al. 2011). This widespread contamination has caused serious
environmental and health problems, particularly in regions like Bolivar, Antioquia, Chocd, and
the Bajo Cauca. In these areas, exposure to Hgmereury has resulted in neurological damage and
renal dysfunction in local communities that consume contaminated fish (Marrugo-Negrete et al.
2008; Alvarez et al. 2012). Additionally, contamination of major rivers such as the Atrato, Cauca
and Magdalena has led to elevated Hgmereury levels in sediments and fish, with adverse effects
on biodiversity and fish populations due to reproductive and developmental toxicity (Guisa and
Avristizabal 2013; Wesche 2021).

In the Colombian Caribbean, the presence and impact of Hg on coastal ecosystems, particularly
in bivalves, has only recently gained attention. Studies conducted near Cartagena Bay and Santa
Marta, in areas such as Brujas Island, Baru Island, and Taganga, have documented seasonal
variations in Hg concentrations in the mangrove oyster Crassostrea rhizophorae. In Cartagena
Bay, higher Hg levels were observed during the rainy season compared to the dry season.
Conversely, in Santa Marta, Hg concentrations were slightly lower in the rainy season compared
to the dry season (Aguirre-Rubi et al. 2017). These fluctuations are likely influenced by
environmental factors such as temperature, salinity, pH, dissolved oxygen, and sediment
composition, which also affect the bioaccumulation process depending on the organism's size
(Cogua et al. 2012; Valdelamar-Villegas and Olivero-Verbel 2018). Seasonal variations and
environmental factors highlight the complexity of understanding Hg bioaccumulation in bivalves,
particularly as these factors interact with the bivalve life cycle from juvenile to adult stages
(Romero-Murillo et al. 2023).

Despite the ecological and socioeconomic importance of key areas like the Ciénaga Grande de
Santa Marta (CGSM) and Cispata Bay (BhC), there is a lack of data on Hg contamination in
commercially important species such as C. rhizophorae. They are also impacted by various
natural and anthropogenic pressures. In CGSM, untreated wastewater and pollutants from
agricultural runoff degrade water quality and increase the risk of metal contamination (Alvarez et
al. 2012). Additionally, illegal mining activities upstream of the Magdalena River introduce Hg
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into the aquatic system (Espinosa et al. 2011). In BhC, agricultural runoff, aquaculture, and urban
development contribute to eutrophication, leading to the accumulation of contaminants such as
Hg in sediments and biota (Marrugo-Negrete et al. 2020).

Mercury's impact on aquatic organisms varies based on species, the form of mercury, and local
environmental conditions (Masson et al. 1995). Methylmercury disrupts the reproduction and
development of aquatic species, causing detrimental effects on egg and larval formation, and
leading to neurological impacts that affect behaviors such as feeding and predator avoidance
(Richter et al. 2014). Bivalves, like oysters, are especially vulnerable to Hg accumulation due to
their filter-feeding behavior, which can impact their growth, reproduction, and the quality of their
edible tissues for human consumption (Gagnaire et al. 2004). These characteristics make
bivalve’s valuable indicator species for monitoring Hg contamination in marine ecosystems
(Phillips 1977).

Based on the hypothesis that mercury bioaccumulation in bivalves is significantly influenced by
environmental factors and organism size, leading to seasonal variations in Hg concentrations, this
study aims to assess mercury bioaccumulation in C. rhizophorae in the coastal ecosystems of
CGSM and BhC in the Colombian Caribbean. It will compare Hg concentrations across different
climatic seasons and oyster sizes, evaluate the influence of key environmental variables on this
process.

Materials and Methods

Study area

The Colombian Caribbean region is characterized by a bimodal climatic regime with a rainy and
dry season influenced by the Intertropical Convergence Zone (ITCZ), generating periodic
patterns (Restrepo and Lépez 2008). Trade winds predominate from December to April (dry
season), changing direction to the southeast between April and November (rainy season) (Vega-
Sequeda et al. 2019).

The Ciénaga Grande of Santa Marta (CGSM) covers an area of 450 km? (Gonzélez and Ricaurte-
Villota 2023), and was declared a Ramsar Wetland and Biosphere Reserve (UNESCO 2001).
Consiting of interconnected lagoons and a sandbar to the northeast separating it from the
Caribbean Sea (Restrepo Martinez 2004) (Fig. 1A). The exchange of fresh and brackish water
supports the development of Rhizophora mangle (red mangrove), providing substrate for the
mangrove oyster (C.rassestrea rhizophorae) (Rodriguez-Rodriguez et al. 2018). CGSM is a
productive tropical ecosystem, yielding significant commercial catches of fish, crustaceans, and
mollusks (Romero-Murillo et al. 2023).
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Cispata Bay (BhC), an estuarine system within the Sint River delta, features fine to very fine
sediments primarily influenced by the Sinl River (Ruiz-Ochoa et al. 2008). The 130 km? estuary
is predominantly covered by mangroves (Castafio et al. 2010; Fig. 1A). Rainfall averages 66 mm
in the dry season and 150 mm in the rainy season, with sediment discharge increasing from 3.1
kg/day to 11.5 kg/day during the rainy period (Rangel-Ch and Arellano 2010). BhC salinity
fluctuates seasonally due to rainfall, droughts, and the mixing of fresh and brackish water
(Cortés-Castillo and Rangel-Ch 2011).

Field phase

Oyster samples were collected from three stations in CGSM and BhC, selecting sites that
represented gradients of water inflow from the sea and freshwater sources that might carry
contaminants. A single sampling was conducted during each period: the rainy season (November
2021) and the dry season (March 2022). At each oyster collection site, in situ measurements of
temperature, salinity, pH, and dissolved oxygen were taken at a depth of 0.5 m using WTW 3110
and Y'SI Pro1030 multiparameter probes.

277 individual oysters were collected from CGSM, and 237 from BhC under the collection permit for wild
species specimens of biological diversity for non-commercial scientific research purposes, granted by the
Autoridad Nacional de Licencias Ambientales (ANLA) through Resolution 1271 of October 23th 2014,
modified by resolutions 1715 of December 30th 2015 and 00213 of January 28th 2021, to the University
de Bogota“Jorge Tadeo Lozano (UTADEO). The samples were divided into six groups per station in
each climatic season, with three groups consisting of juveniles (22.0-32.0 mm) and three groups
of adults (35.0-56.5 mm) (Pacheco Urpi et al. 1983; Madrigal Castro et al. 1985). Juveniles were
more abundant, allowing for a larger sample size to meet the dry biomass required for analysis.
The result was a total of 71 composite samples across both ecosystems and climatic periods
(Table 1).

At each station, specimens were primarily collected from the roots of mangrove trees. oysters
were placed in plastic containers, were cleaned to remove any particles adhering to their shells
(Fig. 1B), stored in pre-labeled, airtight polyethylene bag, and preserved in coolers with gel ice
packs (~4 °C).

To determine mercury content in seston, and to serve as food for filter-feeding organisms like
bivalves, three water samples were collected at each station in 2.8 L amber flasks and kept cold
(~4°C). After homogenization, samples were filtered through two Whatman GF/C glass fiber
filters (47 mm diameter) per sample using a manual vacuum pump. Filters were then stored in
hermetically sealed, pre-labeled polyethylene bags, dried in an oven at 45°C for 24 hours, and
weighed on an analytical balance (Cogua et al. 2012).
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each station, three sediment samples were collected using a van Veen dredge. From each
composite sample per station, 600 g of sediment was separated for mercury analysis, 75 g for
organic matter determination, and 75 g for redox potential measurement. Samples were stored in
airtight polyethylene bags using a silicone scoop to avoid contamination, ensuring no contact
with the dredge edges. Samples were kept chilled (~4 °C) (Cogua et al. 2012).

Laboratory phase

To determine organic matter content, 5 g of dry sediment were placed in pre-weighed porcelain
crucibles, subjected to calcination in a muffle furnace at 550 °C for 5 hours, and then left in a
desiccator for 2 hours. Organic matter content was calculated based on the difference between the
dry weight and the weight after calcination (Kenny and Sotheran 2013).

For redox potential quantification, sediment samples were dried at 40 °C for 24 hours. A portion
of 25 g of sediment was then homogenized in 50 mL of deionized water using a VELP
Scientifica magnetic stirrer for 30 min. Redox potential was measured with a YSI Pro1030
multiparameter probe equipped with an oxidation-reduction potential electrode, at a standard
temperature of 25 °C (Aldridge and Ganf 2003).

For the chemical analyses, all materials were pre-treated by purging with 5% nitric acid (HNOs)
and deionized water for 24 hours to prevent contamination. Samples were handlered with gloves,
glass, or plastic materials to avoid contamination. samples were then transferred to the
Toxicology and Environmental Management laboratory at the University of Cérdoba, preserved
at ~4 °C, for mercury (Hg) quantification.

The anteroposterior length (APL) was measured on the inner side of the ventral valve using a
Vernier caliper (precision of 0.05 mm). soft tissues were removed and weighed using an
analytical balance (+ 0.1 mg). For each sample, organisms of similar size were pooled, and soft
tissues were placed in pre-weighed and labeled 30 mL glass vials. The vials were then
lyophilized, and the final dry weight was recorded.

For mercury analysis, samples of seston, sediment, and oyster tissue underwent a pre-digestion
process. Approximately 20-40 mg of dry material was subjected to calcination at \450 °C with a
ramp of 50 °C over 8 hours. Following calcination, 1 mL of concentrated HNO3s was added, and
the sample heated on a hot plate to volatilize remaining residues. The sample was then subjected
to microwave-assisted acid digestion at 180 °C for 20 minutes with 25 mL of deionized water to
complete the digestion and prepare the sample for mercury quantification.

Sediment and seston fractions smaller than 65 um were digested with 5% nitric acid (HNO3) for
the subsequent determination of total Hg concentration using atomic absorption spectrometry

Comentado [chs4]: It is best to freeze-dry the samples, mainly
the tissues of aquatic organisms, to perform mercury analyses.
Remember that mercury is volatile, so when subjected to high
temperatures it can be released, and this leads to errors in the
technique.
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(EPA 2007). Hg analysis was conducted following EPA Method 7473 PLTX-017, which
involves thermal decomposition, amalgamation, and atomic absorption spectrometry (Fernandez-
Martinez et al. 2015).

For analytical control, triplicate analyses of Hg solutions at different concentrations were
performed. Calibration curves were established for three concentration ranges in all matrices:
0.005-0.02 pg Hg, 0.02-0.05 pg Hg, and 0.05-0.5 g Hg. The coefficients of determination (R2)
were 0.9993, 0.9986, and 0.999 for sediment; 0.9973, 0.9962, and 0.9979 for seston; and 0.9996,
0.9996, and 0.9989 for oyster tissue. Error percentages were kept below 15% for all three
matrices, and TORT-1 (lobster hepatopancreas) used as a reference material from the National
Research Council of Canada (NRCC). Recovery percentages were 100 + 1.4% for sediments
(limit of detection, LOD = 0.00073 pg/g Hg), 100 * 5.4% for seston (LOD = 0.000015 pg/g Hg),
and 100 + 1.4% for oysters (LOD = 0.00073 pg/g Hg) (Romero-Murillo et al. 2023).

Data analysis

The bioconcentration factor (BCF) was calculated as the ratio of Hg concentration in oyster tissue
to its presence in sediment (sd) and seston (st), expressed in parts per million (ppm, pg/g) in dry
weight (d.w.). BCF was used to evaluate the efficiency of Hg accumulation in oyster soft tissue.
Mountouris et al. (2002), BCF < 1 suggests no metal accumulation, BCF > 1 and < 10 indicates
accumulation and BCF > 10 indicates hyperaccumulation of metal. The calculation was based on
Mountouris et al. (2002) and Romero-Murillo et al. (2023).

BCFSd — [Metal]organism, CFst — [Metal]organism
[Metal]segiment [Metal]seston

Permutation analysis of variance (PERMANOVA) was applied to compare Hg concentration in
oyster tissue and its BCF between the two ecosystems (k=2), the two climatic seasons (k=2), the
six stations (k=6) and the two categorized size classes (k=2). 9 999 permutations were performed
using Euclidean distance and type III sum of squares. p-values were computed using Monte Carlo
(MC) permutation testing only when unique permutations were less than 100 (Anderson et al.
2008).

Relationships between mercury (Hg) concentrations in sediment and seston were examined using
Pearson's and Spearman's correlation analyses based on data distribution. Normality tests
(Shapiro-Wilk) were performed on each dataset prior to analysis (Zar 2010). Influences of
environmental predictor variables on the oyster Hg concentration and Hg BCF in relation to
seston were evaluated using a distance-based linear model (DistLM) with adjusted R? criterion
and 9999 permutations (Anderson et al. 2008).

Comentado [chs5]: They obtained very good values for the
percentage of recovery using the TORT-1 (lobster hepatopancreas).
However, it is convenient to use more specific reference materials,
for example oyster or mussel tissue and another of sediments.
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To evaluate mercury contamination in bivalves, the Nemerow integral contamination index -Pc-
was used (Ding et al. 2022). Calculations of Pc are based on the average value of the individual
pollution index (Pavg), the maximum value (Pmax) and the minimum value (Pmin). Cavg average
concentration value, recorded in the data set evaluated, Cmax and Cmin are the maximum and
minimum concentration values from the same data set, and S is the maximum concentration
allowed in marine organisms (mollusks) with Hg (0.5 pg/g) (FAO/WHO 2010). The individual
index values were calculated using the following formula:

Once the historical values of Pavg, Pmax and Pmin were obtained for each country by year, the
calculation of Pc was performed establishing (i) Pc < 0.7 considered no risk, (ii) 0.7 <Pc < 1 low
risk, (iii) 1 <Pc <2 medium risk, (iv) 2 < Pc <3 high risk and (v) Pc > 3 very high risk of
contamination (Ding et al. 2022). ZP. is the sum of all Pc values divided by "n", the total number
of years evaluated per country in its historical record, ensuring that the values of Pmax and Pmin do
not overestimate or underestimate the calculation of the contamination index for each metal
evaluated, respectively. It was calculated using the following equation:

NP _ |Phg+ PRax+ Prin 2
3

n

A hierarchical clustering analysis was carried out using the squared Euclidean distance with
Ward's linkage, minimizing variability and producing uniformly sized clusters (Tudor et al. 2002;
Tudor and Williams 2004).

Human health risk assessment (Target Hazard \Ouotientb

Results
Environmental conditions in both coastal lagoons

In CGSM, the temperature during the rainy season was 31.17 + 0.48 °C (n=3), while in dry
season it was 30.53 £ 0.84 °C (n=3). In BhC the temperature during the rainy season was 28.97 +
0.43 °C (n=3), and in dry season it was 29.75 + 0.03 °C (n=3) (Fig. 2A, Supplementary Table
S1).

During the rainy season, CGSM had a higher pH value (8.77 £ 0.12, n=3) compared to BhC (7.84
+ 0.09, n=3), while during the dry season, were a decrease in pH in CGSM (8.44 + 0.16, n=3) and
an increase in BhC (8.19 + 0.003, n=3). (Fig. 2A, Supplementary Table S1).

Comentado [chs6]: In this manuscript they evaluated many very
interesting variables, however, it is necessary to evaluate the Target
Hazard Quotient to strengthen the work a lot. In the THQ formula,
the concentration of the element (in this case mercury) is used
converted into wet weight. They did not specify the percentage of
moisture in the oyster; if they did not calculate this value, they can
use 80%.

Comentado [chs7]: Do not specify the sample value (n=3) in
each physicochemical parameter, that was explained in the
methodology.




276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

The average dissolved oxygen content was higher in CGSM during both climatic seasons, with
values of 7.83 + 0.66 mg/L (n=3) in rainy season and 7.39 + 2.4 mg/L (n=3) during dry season. In
BhC, the contents were 4.32 + 0.5 mg/L (n=3) in rainy season and 5.52 + 1.28 mg/L (n=3) along
the dry season (Fig. 2A, Supplementary Table S1).

In CGSM, salinity values varied significantly between seasons, ranging from 2.47 + 1.01 (n=3)
during the rainy season to 18.53 + 6.33 (n=3) in the dry season. In contrast, BhC showed less
seasonal fluctuation, with average salinity levels from 24.9 £ 1.01 (n=3) to 30.83 £ 0.56 (n=3)
across the two seasons (Fig. 2A, Supplementary Table S1).

Organic matter in CGSM was also seasonally variable, with contents during the rainy season at
11.67 + 3.27% (n=3), approximately double the levels observed in the dry season (5.97 + 2.4%,
n=3). BhC, on the other hand, exhibited minor seasonal differences in organic matter, ranging
from 5.6 + 0.5% (n=3) to 6.06 + 1.28% (n=3) (Fig. 2A, Supplementary Table S1).

In sediments the redox potential, both in CGSM and BhC, reducing conditions were recorded
with a range of values from 28 to 77 mV between both sectors. Increases in redox potential were
observed in BhC (52 + 3, =3 to 65 + 4, n=3), and decreases in CGSM (50 + 11, n=3 t0 35 + 4,
n=3) from rainy season to dry season (Fig. 2A, Supplementary Table S1).

Concentration of Hg in sediments, seston and C.rassestrea rhizophorae

Hg concentration in sediments and seston varied markedly between the two ecosystems. In BhC,
in both sediments and seston, Hg concentrations are consistently higher than in CGSM in both
climatic seasons (Fig. 2B, Supplementary Table S2).

In the rainy season, the highest concentration of Hg in sediments was found in CIS-1 (BhC) with
0.128 pg/g Hg dry weight (d.w.) which is double the highest content detected in CGSM (0.059
Mg/g Hg aw. in CGS-1). Hg content in sediments at BhC was slightly lower in the dry season but
remained above 0.08 pg/g Hg dw. indicating a possible constant source of Hg contamination. In
CGSM, during the dry season, lower Hg was observed in CGS-1 and higher in CGS-2 (Fig. 2B,
Supplementary Table 2).

The Hg available in the seston presented similar values in the stations of each ecosystem and in
the two climatic seasons. However, as in sediments, a lower concentration was detected in the dry
season. In BhC, the concentration went from 0.032 + 0.005 pg/g Hg d.w. in the rainy season to
0.022 = 0.001 pg/g Hg aw. in the dry season. Lower concentrations were found in CGSM, with
values ranging from 0.01 + 0.001 pg/g Hg dw. in the rainy season to 0.004 + 0.001 pg/g Hg dw. in
the dry season (Fig. 2B, Supplementary Table S2).
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In BhC the highest Hg content in seston was positively and significantly related to temperature
(Pearson, r = 0.933, df = 11, p-value = 0.006) and in sediments Hg was significantly related to
organic matter (Pearson, r = 0.845, df = 11, p-value = 0.039) (Fig. 2, Supplementary Table S3).

Hg concentrations in oyster tissue show distinct accumulation patterns in CGSM and BhC,
varying as a function of climatic seasons. However, a pattern similar to that of sediment and
seston was maintained, with a higher Hg content in oyster soft tissue in BhC (Fig. 2B). In the
rainy season, Hg in the oyster was 0.083 + 0.007 pg/g dw. (n=17) in CGSM and of 0.135 + 0.015
Ha/g dw. (n=18) in BhC showing significant differences between the two ecosystems (Permanova,
p-value<0.01). In dry season, these differences were maintained, given the decrease in oyster Hg
content in CGSM (0.066 + 0.007 pg/g Hg d.w., n=18) and increased in BhC (0.154 + 0.019 pg/g
Hg d.w.,, N=18) (Table 1 and 2, Fig. 3A, Supplementary Table S4).

With respect to Hg BCF, both in sediments and seston, both ecosystems presented accumulation
to hyperaccumulation of Hg in the oyster tissue, with the highest values in the dry season. In this
same climatic season, at CGSM, the oyster presented an accumulation of Hg with the sediment
(BCF>1) and a hyperaccumulation of the metal with the seston (BCF>10), as opposed to the
accumulation condition in both matrices during the rainy season. In BhC, the oyster maintained
the accumulation condition in both matrices (BCF>1) as in rainy season (Table 1 and 2). These
results notably emphasize the capacity of the oyster to accumulate Hg in its tissues, especially in
CGSM through the seston in the dry season. Significant differences in BCF were determined
between CGSM and BhC ecosystems, with higher concentrations in BhC (Permanova, p-
value<0.05). However, no significant differences in concentrations were observed between
climatic seasons, since the values measured at two of three stations in both CGSM (CGS-2 and
CGS-3) and BhC (CIS-1 and CIS-3) were similar in both climatic seasons (Table 1 and 2, Fig.
3B).

In the two ecosystems evaluated, there were significant differences in the Hg contents between
stations (Permanova, p-value<0.05; Table 2). In the rainy season at CGSM the differences
occurred between stations CGS-1 and CGS-2 and at BhC between CIS-2 and CIS-3. In the dry
season, significant differences were found between CIS-1 and CIS-2 in BhC, with the lowest
concentrations in CIS-1 (Table 1, Fig. 2B, Supplementary Table S4 and S5).

There were significant differences in the length of juveniles and adults (Permanova, p-
value<0.05) between stations (Table 2). In CGSM in the dry season, concentrations were higher
in adult sizes at station CGS-3 (0.121 + 0.016 pg/g Hg dw.) with respect to juveniles (0.039 +
0.009 pg/g Hg aw.). In BhC, in both rainy and dry seasons, the highest concentration of juvenile
lengths was at station CIS-2 (Table 1, Fig. 3A, Supplementary Table S4 and S5).
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Importance of seston in the bioconcentration of Hg

High Hg bioconcentration factor values reflected a significant correlation with seston content
(Pearson, r = 0.718, df = 11, p-value = 0.008), with conditions of accumulation (BCF>1) in BhC
where an average concentration between both climatic periods was observed in the seston of
0.027 + 0.003 pg/g Hg dw. (n=6) and in the oyster of 0.144 + 0.012 pg/g Hg aw. (n=36). While in
CGSM hyperaccumulation conditions (BCF>10) were reached with an average content in the
seston of 0.007 + 0.001 pg/g Hg aw. (n=6) and in the oyster of 0.074 + 0.005 pg/g Hg d.w. (n=35)
(Table 1, Supplementary Table S4).

Differences in Hg bioconcentration between CGSM and BhC were determined (Permanova, p-
value<0.05; Table 2). These differences were also observed as a function of climatic seasons,
with an increase during the dry season in each CGSM season, and significant in the CIS-2 season
in BhC compared to the rainy season. When the factors ecosystem and climatic season were
combined, significant differences were still present, with higher values of Hg bioconcentration in
CGSM in both climatic seasons compared to BhC (Table 1, Fig. 3B, Supplementary Table S5).
These results indicate that the oyster in CGSM is accumulating higher concentrations of Hg in its
tissues compared to the BhC oyster, although the accumulation is also considerably higher in the
BhC oyster.

Significant differences between juvenile and adult sizes were determined with the Hg BCF,
which was maintained when considering the climatic season (Table 2). In BhC, the highest values
of Hg BCF were observed in juvenile sizes in both climatic seasons. In CGSM, the highest BCF
occurred in adult sizes during the dry season, while they were similar in both sizes during the
rainy season (Spearman, r = 0.25, p-value>0.05; Table 1, Fig. 3B, Supplementary Table S4).

Relationship between environmental variables and Hg bioconcentration in oysters

Between the Hg concentration in the mangrove oyster tissue and its BCF by oyster in relation to
the metal content in the seston, it was not possible to find a positive or negative relationship with
the environmental variables analyzed. The relationship between physicochemical variables with
Hg concentration and BCF in the mangrove oyster were not significant (DistLM; p-value>0.05;
Table 3). This suggests that environmental variables did not play a determining role in the
differences in oyster Hg content and bioconcentration at CGSM and BhC (Fig. 3). Other factors,
such as Hg content in the seston and local transport and sedimentation processes, may be playing
a more influential role in Hg accumulation.

Hg contamination status of bivalves in a global context during the last decade
Considering Hg contamination levels in global monitoring studies over the past 12 years across

different bivalve species, and using the adapted Nemerow comprehensive contamination index
10
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explained in the methodology, both ecosystems fall within Clade 1. CGSM shows no risk of Hg
contamination for oyster consumption, similar to levels observed in Taganga. In contrast, BhC
approaches a low risk of Hg contamination, comparable to levels found in Isla Cayo El Pigeon
(Nicaragua); all these sites were monitored using the oyster C.rassestrea rhizophorae. However,
these values exceed those reported in regions such as China, Italy, and Montenegro, which
presented the lowest risk of Hg contamination in bivalves like Magallana gigas, Ruditapes
philippinarum, and. This underscores the importance of considering the potential risk of Hg
contamination in the Colombian Caribbean, which has shown the highest risk of Hg
contamination in bivalves globally over the past decade (Fig. 4, Table 4).

Discussion

The higher concentrations of Hg in sediments, seston, and oysters in BhC compared to CGSM
(Fig. 2B, Supplementary Table S1) highlight significant concerns regarding environmental
quality and ecosystem health. The elevated Hg levels in BhC are primarily linked to the Sinu
River’s input through the Sicara stream, which carries water and sediments contaminated by
agricultural runoff (Campos et al. 2015). Among these, the application of fungicides containing
phenylmercury (CeHsHg) and the extensive spraying of rice fields with agrochemicals rich in
mercury-based compounds (Marrugo-Negrete et al. 2020) are particularly significant sources.
These practices contribute to the continual release of Hg into the estuarine system, exacerbating
contamination levels over time. Additional sources of Hg in BhC include regional artisanal and
small-scale gold mining operations, discharges of untreated municipal and industrial wastewater,
the historical use of Hg-based paints as anti-corrosion agents on ships, and atmospheric
deposition from regional emissions (Burgos et al. 2014, 2017).

In CGSM, the sources of Hg contamination are less well-defined. However, the entry of Hg into
this system is associated with atmospheric deposition and anthropogenic activities, such as
industrial discharges and gold mining in areas connected to the Magdalena River (Alonso et al.
2000; Mancera-Rodriguez and Alvarez-Ledn 2006). Given CGSM's status as a Ramsar Wetland
and Biosphere Reserve, identifying and mitigating potential contamination sources is crucial to
preserving its ecological integrity and the socioeconomic benefits it provides to local
communities.

While Hg levels in sediments in BhC and CGSM remain below the tolerable ecological threshold
of 0.13 pg/g Hg aw. (TEL) (Buchman et al. 2008), they are significantly lower than those
observed in more heavily impacted regions, such as Cartagena Bay, Colombia (0.094-10.293
Mg/g Hg aw.) (Alonso et al. 2000), and San Vicente Bay, Chile (0.37-0.95 pg/g Hg a.w.) (Diaz et
al. 2001). However, it is important to note that BhC exhibits a higher contamination risk
compared to CGSM, as previous assessments have reported Hg concentrations exceeding the
TEL threshold in sediments along the Sind River and near the mouth of BhC by Feria et al.
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(2010), Campos et al. (2015), and Marrugo-Negrete et al. (2020) reported Hg concentrations
exceeding the TEL threshold in sediments along the Sind riverbed and at the mouth of BhC. In
contrast, in CGSM, Hg concentrations in sediments have remained below 0.11 pg/g Hg dw.,
similar to the findings of this study (Fig. 2B, Supplementary Table S4).

The slight increase in Hg content in sediment and seston during the rainy season compared to the
dry season (Fig. 2B), may be attributed to increased metal transport from terrestrial sources.
Rainfall-induced sediment flushing and freshwater inflow during this period mobilize Hg from
upstream sources into the estuarine systems, highlighting the critical role of hydrological
dynamics in shaping contamination patterns (Baraj et al. 2003; da Silva Ferreira et al. 2013). This
phenomenon is particularly pronounced in BhC, where contributions from the Sinl River amplify
Hg loading (Marrugo-Negrete et al. 2020). Similarly, in CGSM, the Magdalena River serves as a
major pathway for metal transport, emphasizing the interconnectedness of terrestrial and aquatic
systems in driving contamination processes (Mancera-Rodriguez and Alvarez-Le6n 2006; Table
3, Fig. 3A). These results highlight the importance of the sediment-seston interaction and local
conditions in influencing Hg availability for oysters in the coastal areas of the Colombian
Caribbean (Aguirre-Rubi et al. 2017).

Environmental factors, including temperature and organic matter content, appear to play a pivotal
role in influencing Hg concentrations in sediments and seston. In BhC, significant correlations
were observed between elevated Hg concentrations in seston and higher water temperatures
during the rainy season (Fig. 2). This relationship aligns with findings that temperature
accelerates chemical reaction rates, such as the methylation of Hg, thereby increasing its
bioavailability (Richard et al. 2016). Additionally, higher Hg concentrations in sediments were
associated with increased organic matter content during the rainy season, emphasizing the role of
organic matter in retaining metals in sediments, particularly in fine sediments and sulfate-
reducing environments (Cogua et al. 2012), as observed in both CGSM (Espinosa et al. 2021) and
BhC (Fig. 2A).

Although no direct correlation was identified between pH and Hg concentrations in sediments
and seston (Supplementary Table S3), slightly acidic to neutral pH conditions are known to
enhance Hg precipitation in sediments (Para and Espinosa 2008). This mechanism likely
contributes to the observed higher Hg concentrations in BhC sediments, which exhibited lower
pH values compared to CGSM (Fig. 2). Furthermore, seasonal fluctuations in pH, particularly
during the transition between rainy and dry seasons, may influence the solubility and availability
of Hg, adding another layer of complexity to its distribution patterns.

Additionally, variations in sulfate to sulfide conversion processes may increase the flux of
reactive phosphate and ammonium at the sediment-water interface (Uwah et al. 2013). This
process favors the precipitation of Hg in sediments as insoluble hydroxides, oxides, carbonates,
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or phosphates (\Volety et al. 2008; Azizi et al. 2018a). The interaction of these processes could
account for the observed variations in Hg content in sediments, especially when considering
seasonal pH fluctuations. This pattern is particularly evident in BhC due to the pH differences
between the rainy and dry seasons (Fig. 2).

The role of salinity in modulating Hg methylation and sediment retention also warrants attention.
Elevated salinity levels, such as those observed in BhC during the dry season and at CGS-3 in
CGSM, can inhibit Hg?" methylation through the production of hydrogen sulfide (H-S). This
compound forms mercury sulfide (HgS), a mineral that is poorly available for methylation
processes, thereby limiting the bioavailability of Hg (Compeau and Bartha 1984). These findings
highlight the intricate interplay of physicochemical factors in shaping Hg dynamics in estuarine
ecosystems.

Regarding the mangrove oyster, the influence of environmental variables on Hg concentration
and bioconcentration factor (BCF) was not significant (Table 1 and 2, Fig. 3). This aligns with
findings from other studies where the effects of variables such as temperature, salinity, and pH on
Hg uptake and accumulation in bivalves remain complex and not fully understood (Volety et al.
2008), unlike the clearer dynamics of Hg in sediments and seston, where processes such as
accumulation, uptake, toxicity, and speciation are well-documented (Curtius et al. 2003; Suryanto
Hertika 2021), the factors influencing Hg bioaccumulation in oysters are less understood and may
be influenced by the organism's unique physiological and ecological traits.

Despite the lack of significant correlations, it is worth considering the potential role of high
dissolved oxygen concentrations observed in CGSM. Elevated oxygen levels, coupled with
variations in sediment chemical composition, can influence the metabolic activity of bivalves,
potentially altering their ability to absorb and excrete Hg (Silva et al. 2003; Griscom and Fisher
2004). These findings suggest that while direct correlations may not be evident, indirect effects
mediated through environmental and physiological interactions could still play a role in Hg
bioaccumulation.

Mangrove oysters are known for their ability to filter large volumes of water during feeding
(Restrepo and L6pez 2008), capturing particulate matter from sediments (Coimbra 2003).
Therefore, the Hg concentrations in oysters are closely related to the metal content in their
environment (Fig. 2B). Hg bioconcentration was significantly associated with seston, which is
expected given that oyster collection was primarily from mangrove roots submerged to depths
greater than half a meter. As with seston, metal accumulation and hyperaccumulation were
observed in relation to Hg concentrations in sediment (Table 1 and 2). These findings underscore
the importance of measuring metal concentrations in sediments and seston to assess Hg
availability and uptake by bivalves, providing a comprehensive understanding of the interaction
between these organisms and their contaminated environments.
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Interestingly, the bioconcentration patterns observed in BhC, where adult oysters showed lower
Hg concentrations than juvenile oysters (Fig. 3B), align with previous studies. For example,
Coimbra (2003) in Sepetiba Bay, Brazil, with Mytela guyanensis and Diaz et al. (2001) in San
Vicente Bay, Chile, with Tagelus dombeii, reported inverse correlations between Hg content and
species size. They suggested that metal assimilation rates decrease as the excretion rate increases
in larger individuals, likely due to reduced metabolism and less water filtration with bivalve
growth (Azizi et al. 2018b).

Several mechanisms regulate the accumulation of toxic metals such as Hg in bivalve tissues
during their growth. One such mechanism is the formation of mineralized granules, which allows
for Hg storage and potential detoxification (Cossa 1989). Bivalves also regulate Hg
concentrations through excretion mechanisms via urine and feces, maintaining appropriate Hg
levels (EI-Moselhy and Yassien 2005). The development of new gill systems in bivalves plays a
crucial role in filtering particles, including metals, from the aquatic environment (Kumar Gupta
and Singh 2011). As bivalves grow, this gill development enhances their ability to capture and
regulate Hg in their tissues.

Another important strategy for mitigating the accumulation of toxic metals in bivalves is the
release of gametes during reproduction (Cossa 1989; Monsefrad et al. 2012). In both CGSM and
BhC, the highest BCF values in oysters were observed during the dry season (Table 2, Fig. 3B).
During gamete release, which typically occurs in the rainy season and includes several
reproductive peaks in the Colombian Caribbean (Lépez-Séanchez and Mancera-Pineda 2019),
mineralized granules stored in lysosomes may be expelled along with the gametes (Costa et al.
2000). This exocytosis process releases lysosomal contents, including metals like Hg, into the
aquatic environment (Cossa 1989). This possible release of Hg granules during gametogenesis
may explain the lower BCF values observed in the rainy season.

Conversely, the highest BCF values were observed during the dry season, particularly in CGSM,
where adult oysters exhibited greater Hg concentrations and BCF values than juveniles. These
findings are consistent with previous research by Costa et al. (2000) and De Gregori et al. (1996),
who documented similar trends in other estuarine ecosystems. The contrasting patterns between
CGSM and BhC highlight the complexity of environmental and organismal factors that influence
Hg bioaccumulation and bioconcentration dynamics.

Hg intake risk in C. rhizophorae at CGSM and BhC

Variability in contamination sources and Hg concentrations between CGSM and BhC stands out
as a key factor influencing contamination risk. In particular, BhC shows values close to the
permissible limit for Hg in bivalves for human consumption (0.5 pg/g Hg body weight)
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(FAO/WHO 2010), raising concerns about the health of the ecosystem. This situation mirrors
findings in Cayo el Pigeon Island, Nicaragua, and Santa Marta, Colombia, as reported by
Aguirre-Rubi et al. (2017) (Fig. 4). However, both ecosystems remain far below the Hg levels
reported for this species in coastal areas of the Dominican Republic, where Sbriz et al. (1998)
recorded one of the highest Hg concentrations in the mangrove oyster (7.02 pug/g Hg d.w.).

When comparing Hg concentrations in mangrove oysters with other bivalve species globally over
the last decade, CGSM and BhC maintain low to no risk of Hg contamination. This contrasts with
findings from coastal areas in China (Wang et al. 2018; Liu et al. 2019; Wang et al. 2021), Italy
(Squadrone et al. 2016), and Montenegro (PeroSevi¢ et al. 2018), which show lower Hg
contamination risks. These comparisons serve as a reference point for assessing the potential risk
of Hg contamination in CGSM and BhC (Fig. 4).

Nevertheless, the current state of Hg contamination in Colombia, particularly in Cartagena Bay,
highlights the need for vigilance. Cartagena Bay has recorded some of the highest global Hg
contamination risks for bivalves in the past decade (Aguirre-Rubi et al. 2017), attributed to
historical discharges from industrial facilities like the Alcalis chlorine plant (Mancera-Rodriguez
and Alvarez-Leén 2006; Bolafios-Alvarez et al. 2024). Similar trends have been observed in other
regions, including San Vicente Bay, Chile (Diaz et al. 2001), and the Adriatic Sea, Croatia
(Kljakovi¢-Gaspi¢ et al. 2010), underscoring the global relevance of monitoring Hg
contamination in estuarine ecosystems.

The results of this study provide essential insights into Hg dynamics in CGSM and BhC. By
identifying key drivers of contamination and assessing risk, these findings contribute to the
development of targeted management strategies aimed at mitigating Hg pollution and
safeguarding ecosystem health.

Conclusions

Cispata Bay (BhC) had the highest concentrations of Hg in sediments, seston, and oysters
compared to Ciénaga Grande de Santa Marta (CGSM) across both climatic seasons. However, the
highest bioconcentration factor (BCF) values were observed in oysters from CGSM, especially
with respect to seston, suggesting a higher potential for Hg accumulation in this ecosystem.
Temperature in the water column and organic matter in sediments significantly influenced Hg
concentrations in seston and sediments but showed no significant relationship with Hg
bioconcentration in the oysters. Adult oysters accumulated more Hg in CGSM, whereas juvenile
oysters accumulated more Hg in BhC, underscoring the importance of considering the bivalve
size when assessing Hg contamination in different ecosystems. While the Hg levels in CGSM
oysters remained below the permissible limit for human consumption (0.5 pg/g body weight),
indicating no significant risk, while the oysters in BhC showed Hg concentrations more high,
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coming to consider a potential low risk of contamination. These findings highlight the need for
continued monitoring of Hg levels in both ecosystems, with particular attention to oyster size and
environmental conditions that may influence metal accumulation.
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