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ABSTRACT
Background. The capacity of metagenomic sequencing-based diagnostics to fully
identify infections havemade themuseful instruments in clinical practice.We introduce
an interactive platform that runs on a local server-class hardware resource and
implements a number of open-source programs.
Results. RpNGS integrates an interactive tabular interface for the management of
experimental processes, patient metadata, and automated sequencing analysis. This
technology optimizes clinical reporting by autonomously generating standardized
reports in Word format. We have utilized the platform on an artificial microbial
community reference panel and several clinical metagenomics datasets from public
databases to demonstrate the efficacy of this workflow.
Conclusions. RpNGS is an innovative, user-friendly standalone application designed
to store laboratory data (including reagents, primers, contaminants and run config-
urations), manage clinical metadata, process FASTQ files and produce analytical and
comparative reports (including Word documents) that can be readily reviewed and
certified. Its interactive interface necessitates no programming expertise, rendering it
an invaluable instrument for clinical metagenomic pathogen identification.

Subjects Bioinformatics, Taxonomy, Infectious Diseases, Translational Medicine
Keywords Clinical metagenomics, Web app, Pathogen detection, Metagenomic diagnostics, Next
generation sequencing

BACKGROUND
The bacteria, fungi, viruses and parasites lead to virous infectious disease (Ma, Yang
& He, 2024; Kan et al., 2024). In contrast to traditional molecular diagnostic tests like
direct or multiplex PCR, clinical metagenomics utilizing next generation sequencing
(mNGS) possesses the ability to identify all possible pathogens (Zeng et al., 2022).
Currently, laboratory-developed mNGS is increasingly utilized in the diagnosis of
infectious diseases (Liu et al., 2021; Diao et al., 2023; Feng et al., 2024). With the broad
and successful application in clinical pathogen detection, serval bioinformatics software
has been developed for mNGS data analysis. For instance, Kraken2 suite (Lu et al.,
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2022), IDseq (Kalantar et al., 2020). However, bioinformatics pipeline is used for
mNGS analysis, usually without user-friendly interface, included a number of different
algorithms, developed for research purpose, focused on sequencing data analysis and
constantly updated by software developers (Chiu & Miller, 2019; Dhungel et al., 2021).
The purpose of this study was to provide a standardized workflow available to the public
(https://github.com/mj200921059/RpNGS) that would make the clinical metagenomics
application easier to execute, especially for non-expert users. The expert user can also
change the summary information table of general tab interface and switch version or
programs of the sequencing data analysis pipeline including classification algorithm and
reference databases.

Using Shiny, various R libraries, and Conda environment setup with Fastp, Bowtie2,
Kraken2 and Bracken, we constructed RpNGS to generate consistent analysis and reports to
our partners. Unlike other apps, ourworkflow is aweb application to gather the information
among sample processing, nucleic acid extraction, library preparation, patient’s biological
data and mNGS data analysis, which can be readily launched by users with minimum
expertise in shiny or R. Additionally, it features a set of strong and well-designed interactive
plot and table for visualization and clinical reports preparation.

MATERIALS & METHODS
RpNGS software overview
RpNGS was written in R programming language (https://www.R-project.org) as a modular
Shiny app (Chang et al., 2024), an R package for constructing interactive web applications.
The web interface of this application was developed using shiny, shinyFiles, shinycssloaders,
shinydashboard, shinyWidgets, and shinyBS libraries. This interface runs in a web browser
and provides dynamic changes lab data and clinical metadata through interactive JavaScript
tables powered by the DT package. In addition, RpNGS also delivers a set of sophisticated
and well-designed interactive visualizations based on the plotly and leaflet package.

Analysis workflow
A typical clinical metagenomic next-generation sequencing bioinformatics pipeline usually
comprises quality control, host reads removal, taxonomic categorization and validation
(Miller et al., 2019). The RpNGS analysis methodology automates metagenomic processing
in a series of replicable stages by click ‘‘Confirm and Analyze’’ button after loading raw
FASTQ files of one sequencing run into working directory and fill the related lab data.

Given these processes are conducted by R scripts that connect with external tools
within a Conda environment (Fig. S1). The preparation of analysis workflow involves
the Conda environment set-up and reference databases. We firstly constructed a Fastp
conda environment and installed Fastp, Bowtie2, Kraken2, and Bracken programs before
executing analysis pipeline (Lu et al., 2017; Chen et al., 2018; Wood, Lu & Langmead, 2019;
Bush et al., 2020). The Bowtie2 index of each microbes was built by the bowtie2-build
command with default parameters, while the reference database (PlusPFP.tar.gz) of
kraken2 and bracken and human bowtie2 index were download from their websites
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(https://benlangmead.github.io/aws-indexes/k2 and https://bowtie-bio.sourceforge.net/
bowtie2/index.shtml, respectively).

The backend computational pipeline can be conducted within an R environment or
delivered on a server for automated processing. The analytic pipeline utilizes Fastp for
getting high-quality clean FASTQ file with read length >36 bp. Considering the genomic
size disparity between humans and microorganisms, the majority of metagenomic read
sets pertained to human DNA, even in samples with a similar number of cells. To better
focus on the microbe’s identification, the host reads should be removed before run
classification analysis (Bush et al., 2020). Therefore, the cleaned FASTQ file are aligned to
the hg37dec_v0.1 reference genome using Bowtie2 with -U, –very-sensitive parameters to
obtain the filtered data. Reads categorization and abundance estimate is independently
created by Kranken2uniq with –minimum-hit-groups 3 and Bracken with -r 50 -l S against
a reference database. After that, we mapping taxonomy list to our pathogen list to acquire
the potential pathogens.

In order to exclude the background influences such as microbial nucleic acid residing in
reagents, sampling and lab settings, RpNGS construct a z-score for each species. The taxon
with z-score >1 was classified as actually detected, which suggests the abundance of species
in sample is higher than the controls. The z-score approach was first described in Wilson
et al. (2018) and is applied in the IDseq and Pavian metagenomic platform (Breitwieser &
Salzberg, 2020) to reflect the significance of relative abundance estimations in a sample as
compared to the water controls. The z-score value of each taxon in one sample is calculated
as follow:

z =
x−µ

σ

where x stands for rpm of taxon in samples, µ is the average of rpm of taxon in control
samples, and σ means the of rpm of taxon in control samples.

Reads for candidate pathogen are independently extracted from the filtered FASTQ file
of each sample. To validate the pathogen detection results, we run Bowtie2 to map the
pathogen specific reads to its matching reference genome for coverage detection, which
illustrate by Gviz, Rsamtools and GenomicAlignments R packages in the third tab of RpNGS.
The pathogen with greater mapped reads but less coverage will be removed from candidate
pathogen list.

Report workflow
R packages flextable and officer were used to generate a pathogen report each sample by
exporting a reactive table from shiny into a pre-existing word template.

External benchmarks-datasets and metrics
To evaluate the efficacy of in-house pathogen identification pipeline in RpNGS, we
benchmarked it to previously published metagenomic pathogen identification results
(Diao et al., 2023). A total of 23 respiratory pathogens at varied concentrations were
individually mixed to create 14 microbial mixtures (samples S1–S13 and one negative
control), which were then disseminated to 122 laboratories as part of a multicenter mNGS
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quality assessment study (see Table S1). The raw FASTQ files from these samples were
deposited in the Genome Warehouse of the National Genomics Data Center under project
PRJCA015554. For benchmarking, we evaluated a total of 28 raw FASTQ files generated
by lab005 using IDseq, with the host filter set to ‘‘human’’ and the background set to
‘‘none’’ (see Table S2). The IDseq was selected because it is well-known cloud-based, open-
source bioinformatics platform developed for clinical metagenomic study. The sequence
analysis procedure of IDseq platform involves three primary steps: host filtering and QC,
assembly-based alignment, and taxonomy reporting and visualization. The computed
metrics including the precision (P), the recall (R), and the F-score (F1) were calculated
based on below formula: P=TP/(TP+FP), R= TP/(TP+FN), and F1=2/((1/R) + (1/P)),
where TP are true positives, FP stands for false positives, FN represents false negatives.

Application for pathogen identification
For the comparison with IDseq, we additionally downloaded real clinical metagenomics
sequencing files of CHRF0000, CHRF0094 andCHRF0002 from theNCBI under BioProject
PRJNA516582 and re-analysis on our in-house system. Samples CHRF0000, CHRF0094
and CHRF0002 in the original study, which contained 91 CSF samples and six water
control (Saha et al., 2019), are a water control, Streptococcus pneumoniae, chikungunya
virus infection, respectively.

RESULTS
RpNGS offers intuitive web interfaces with summary datasets, analyzing dataset and test
report tabs. The primary process of the program is illustrated in Fig. S1.

Key functionalities
The summary page (Fig. 1) permits users to visually assess the achieved mNGS test. The
interactive visualization choice is a map, pie chart, and bar plot to illustrate the sales
volume among locations, proportion of each sample type and samples size distribution
between months in one year, respectively. RpNGS employ primary data table to display
detail information of processed mNGS test for feasible searching and double checking the
clinical reports.

In the RpNGS second tab (Fig. S2), the trained experimenter should update the
information of each batch including flow cell ID, sample ID, nucleic acids concentration
after extraction and library preparation processes, adaptor ID, and file name of sequencing
data. Then start the process step by click the process button. There are six steps inside
the process pipeline include detecting and copying the sequencing data from sequencer to
server, quality control, host reads removal, and classification, abundance estimate, mapped
reads extraction. To assist with distinguishing reads from microbes existing in the reagent
and lab’s environment, RpNGS produced z-scores of taxons in each sample by comparison
relative abundance estimations of species to water-only or other control sample collections.
The progress log will show the status of five critical operations during data analyze.

Multiple detected pathogens are presented in the candidate pathogen list obtained
by analysis process (Liu et al., 2021). As a clinical level pathogen detection test, it is
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Figure 1 Interactive image illustrating sequencing samples, including test volume across various loca-
tions, sample types, and test volume per month. The main table gives full information on these samples,
including the report status of each.

Full-size DOI: 10.7717/peerj.19849/fig-1

important for subset pathogens from the candidate pathogen list depending on their
clinical significance. However, identifying whether the detected microbe is the causing
pathogen requires a full examination integrating the patient’s symptoms, epidemiological
context, and other relevant aspects, that should be done by certified clinician, consular
or medical doctor. Results are displaced in the third tab (as in Fig. S3) based on user
selection of a number of criteria, including z-scores, mapped reads, average coverage for
a particular pathogen, gender, age, sample types, clinically relevant pathogen types, and
anti-infection treatment, and interface allow user to select the pathogen for a particular
patient from the list of microbes. The user should input the flow cell ID for getting test
samples in a status table with three columns, flow cell ID, sample ID and status columns.
The clinical information and raw microorganisms list for the sample are activated based on
the selection in the report status table. To assist with pathogen detection, the background
color of microbes indicated in all putative pathogen candidates extracted from 132 clinical
metagenomics reports, generated by Shaanxi Lifegen Co., Ltd, are filled with green. The
alignment view and related data of specific species will emerge by choosing one of these
colored pathogens in raw microorganism list table. Finally, the pathogen table will be
formed by repeated selections in the raw microbe’s table. An important feature is the
ability to export experiment data, patient basic information, confirmed pathogens and
related aspects of corresponding pathogen in a Word document as clinical pathogen test
report for each sample.
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Pathogens identification pipeline validation
The presence of diverse amounts and types of bacteria, fungi, DNA viruses, RNA viruses,
and human cells in the S1–S12 samples, majority of laboratories performed DNA and
RNA extraction and sequencing individually for all samples, including NC and S13. The
DNA sequencing data were largely utilized used to calculate precision, recall, and F1-score
based on the detection of bacteria, fungi, and DNA viruses in each sample, while the RNA
sequencing data were used to evaluate the corresponding metrics for RNA viruses. The
detection of low-abundance taxa by IDseq may contribute to a drop in precision compared
to the precision acquired by RpNGS (Fig. 2).

We also note that low precision (<0.1) among all instruments that caused by significant
number of false positive microbes based on precision formula. As shown in Fig. S4,
the recall of DNA sequencing data for samples S11, S12, S3, S4, S6, and S9 analyzed by
RpNGS are lower than those acquired by IDseq_NR and IDseq_NT. This mismatch is
likely due to Bracken’s default filtering threshold (Lu et al., 2017), which requires the read
count to exceed 10. Compared to IDseq, RpNGS did not detect certain pathogens, as
shown in Table S3. For example, in sample S11, Kraken2uniq identified only six reads
for Haemophilus influenzae, which is comparable with the number of reads allocated
to Haemophilus influenzae by IDseq_NT. These results indicate that the threshold of
taxonomic reads also critical for DNA-based pathogen detection, special for bacteria. For
the RNA sequencing data of samples, RpNGS exhibited an equivalent recall rate for RNA
virus detection compared to IDseq.

To further remove false positive caused by factors such as reagents and environmental
contamination, we employed Z-score normalization to correct the microbial abundance
in the samples. With the removal of contaminant-derived false-positive microorganisms,
the precision of RpNGS and IDseq in detecting bacteria, fungus, DNA viruses, and RNA
viruses improved while maintaining recall rates (Figs. S5, S6). Additionally, this method
greatly boosted the F-score of IDseq comparing it with non-correction (Figs. S7, S8).

Use case: RpNGS for pathogen detection in cases of pediatric
meningitis
The RpNGS pipeline was developed for microbial species identification within a human
genetic background. However, finding the true causative pathogens of a disease remains
problematic due to several influencing factors, including the choice of metagenomic
shotgun sequencing analytic methodologies, categorization databases, microbial genetic
similarity, and environmental contamination.

To boost pathogen detection, we integrate many components into a single panel,
including read categorization tables, clinical metadata, pathogen lists, and associated
genome coverage data. To illustrate RpNGS’s capability in clinical pathogen identification,
we re-evaluated three cerebrospinal fluid (CSF) samples from a study investigating pediatric
meningitis in Bangladesh, which were also analyzed using IDseq.

Figure 3 illustrates the production of a clinical report following data analysis section.
Clinical information for sample CHRF0002 is given in an editable table, allowing users to
alter patient and sample details (Fig. 3A). Users can pick pathogens from the raw microbial
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Figure 2 The precision of IDseq_nt, IDseq_nr and RpNGS for DNA and RNA sequencing datasets
among 14 samples.

Full-size DOI: 10.7717/peerj.19849/fig-2

list depending on clinical significance (Fig. 3B). Microbes with the greatest mapping reads
in the raw table, indicated in green according to the specified pathogen list, undergo genome
coverage visualization to assess read alignment with reference genomes. For instance, the
genome coverage of Streptococcus pneumoniae reached 81.52%, increasing the evidence for
its pathogenic role (Figs. 3C, 3D).

Additionally, we observed a considerably larger number of reads mapping to
Streptococcus pneumoniae in CHRF0002 and Chikungunya virus in CHRF0094 compared
to other detected microorganisms (Fig. 4). Based on these data, we identified Streptococcus
pneumoniae and Chikungunya virus as the primary pathogens for these two samples,
which fits with prior studies (Fig. S9, Table S4) (Saha et al., 2019; Kalantar et al., 2020).
These results highlight the amount of categorized reads as critical evidence for infection
detection.

DISCUSSION
RpNGS, developed as a diagnostic tool, was evaluated since the RpNGS clinical
metagenomic data analysis pipeline achieved the best F-scores compared with IDseq.
It was also the only tool, integrate several criteria into one panel for useful to decide about
clinical pathogens and monitor the trend of infection pathogens.

Metagenomic sequencing is a complex process requiring both wet-lab and computer
analyses. Various parameters, including sequencing platforms, nucleic acid extraction
kits, library preparation procedures, and sequencing strategies, can effect microbial
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A
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Figure 3 Pathogens found in the sample CHRF0002 acquired from patient with pediatric meningitis.
(A) Clinical info update area. (B) Detected pathogens via analytical workflow. (C) The detail info about
coverage of Streptococcus pneumoniae reference genome. (D) The coverage illustration for the coverage of
Streptococcus pneumoniae genome.

Full-size DOI: 10.7717/peerj.19849/fig-3

identification (Szóstak et al., 2022). Unlike research-oriented metagenomic data analysis,
clinical metagenomic testing must balance cost, turnaround time, and accuracy. While
research sequencing techniques typically use paired-end 150 bp reads, clinical sequencing
often depends on single-end 50–100 bp reads, with each sample generating approximately
10–20 million reads (Li et al., 2024). Moreover, clinical metagenomic testing necessitates
creating an infection report identifying possible pathogens within 20 h.

The computational analysis pipeline consists of several essential processes, including
quality control, host sequence elimination, taxonomy classification, and pathogen filtering.
Each phase offers virous software solutions with comparable functionality, making it vital
to determine the most accurate tools for clinical application (Liu et al., 2021). To do this,
we evaluated the performance of our pipeline using external quality assessment (EQA) data.
Additionally, to demonstrate its clinical value, we validated the pipeline using previously
sequenced clinical metagenomic datasets.
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CHRF0000_1 CHRF0002_1 CHRF0094_1

Figure 4 Heatmap review of microbials abundance among samples.
Full-size DOI: 10.7717/peerj.19849/fig-4

Different taxonomic approaches to classification, such as MetaPhlAn (Beghini et
al., 2021), Centrifuge (Govender & Eyre, 2022) and Kraken2 utilize their own standard
databases. However, these standard databases may not necessarily include a comprehensive
set of archaea, bacteria, fungus, and viruses by default. For instance, the Centrifuge
database (h+p+v+c, released 03/29/2020) lacks fungal species, whereas the Kraken2
standard database (PlusPFP, released 12/28/2024) does not include Pneumocystis jirovecii, a
clinically significant opportunistic pathogen (Zhang et al., 2021). This omission can result
in false-negative diagnoses for Pneumocystis jirovecii infections. Differences in taxonomic
names, particularly for RNA virus, are used in these standard databases (Table S1).
Moreover, the microbial composition and abundance in different biological specimens
vary significantly, further underlining the importance of developing a customized clinical
microbial classification database adapted to specific clinical applications.

False positives are a critical issue in metagenomic data analysis, influenced by both
experimental and computational factors. Various methods have been employed to
mitigate false positives, including calculating the Z-score for each taxon in sample
(Breitwieser & Salzberg, 2020), evaluating pathogen genome coverage, reassigning reads
using Bracken (Garrido-Sanz, Senar & Piñol, 2022), and setting RPM (reads per million)
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thresholds based on pathogen type (Liang et al., 2023). The use of Z-score can help
eliminate false positives introduced by contamination, but its effectiveness depends on
the number of control samples available. In RpNGS, Kraken2uniq combined with Bracken
is implemented for microbial classification. Our analysis revealed that while Bracken
effectively removes false positives, it can also eliminate low-abundance viruses and fungi.
Using an abundance threshold alone only filters out low-abundance false positives, but
integrating genome coverage data can further reduce false positives caused by single-
region alignments. Additionally, read misassignment between species with high genomic
similarity remains a major contributor to false positives in metagenomic detection. For
instance, in sample S11, Haemophilus influenzae was detected with only six reads, whereas
Haemophilus parainfluenzae had 21 reads assigned by Kraken2uniq and 23 reads by
Bracken, indicating read misclassification. To address this, we propose integrating results
from multiple classification algorithms to reduce false positives arising from genomic
similarity. Furthermore, removing phage genome sequences from custom-built pathogen
detection databases could help minimize false-positive identifications.

CONCLUSION
RpNGS is a novel open source application that can save clinical fundamental information
and experimental data, extract FASTQ data from sequencers and process it, and then
manually examine the results to provide a word-type clinical report. Its features enable
clinical microbiologists and researcher without bioinformatics or programming expertise
to quickly analyze their mNGS data and obtain a deeper comprehension of pathogen
detection.
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