

Diurnal moths have larger hearing organs: Evidence from comparative 3D morphometric study on geometrid moths (#116671)

1

First submission

Guidance from your Editor

Please submit by **2 Jun 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

6 Figure file(s)

2 Video file(s)

1 Other file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Diurnal moths have larger hearing organs: Evidence from comparative 3D morphometric study on geometrid moths

Pritha Dey^{Corresp., 1, 2}, Max Söderholm¹, Pasi Sihvonen¹

¹ Finnish Museum of Natural History, Helsinki, Finland

² National Centre for Biological Sciences, Bangalore, India

Corresponding Author: Pritha Dey
Email address: prithadey@ncbs.res.in

Tympanal organs, crucial for anti-bat defence in moths and key for taxonomy, are often overlooked due to their fragility during dissection. Using micro-CT, we analyzed the tympanal organs of 19 geometrid species, comparing diurnal and nocturnal species to understand how predators, like bats and diurnal birds or lizards, influence tympanal morphology and its allometric relationship with body size. We hypothesized that diurnal moths, with reduced anti-bat function, would have smaller tympanal organs, irrespective of body size.

Allometry was tested using phylogenetic linear regression and tympanal volume was compared across diurnal and nocturnal moths relative to the abdominal volume. We used 3D geometric morphometry, followed by comparative analysis of the shape and size of ansa, a unique “mechanical” for geometrids.

Contrary to our hypothesis, diurnal moths had significantly larger tympanal organs, with no allometric relationship with body size. Activity patterns had no significant effect on ansa shape and size, but nocturnal species exhibited convergence, suggesting potential auditory functions.

This study shows how daily activity patterns and predator-prey interactions shape sensory adaptations, with larger tympanal organs of diurnal species potentially reflecting adaptations to detect lower “non-bat” frequency. It also highlights non-invasive imaging techniques for studying delicate anatomical features in museum specimens.

1 **Diurnal moths have larger hearing organs: Evidence from comparative 3D morphometric
2 study on geometrid moths**

3 **Pritha Dey^{1,2}, Max Söderholm¹, Pasi Sihvonen¹**

4 1 LUOMUS-Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland

5 2 Current affiliation: National Centre for Biological Sciences, Bangalore, India

6 Pritha Dey: prithadey@ncbs.res.in; ORCID: <https://orcid.org/0000-0003-3586-9235>

7 Max Söderholm: max.salvador@helsinki.fi ; ORCID: <https://orcid.org/0009-0003-2877-1341>

8 Pasi Sihvonen: pasi.sihvonen@helsinki.fi ; ORCID: <https://orcid.org/0000-0003-2237-9325>

9 **Abstract:**

10 Tympanal organs, crucial for anti-bat defence in moths and key for taxonomy, are often overlooked
11 due to their fragility during dissection. Using micro-CT, we analyzed the tympanal organs of 19
12 geometrid species, comparing diurnal and nocturnal species to understand how predators, like bats
13 and diurnal birds or lizards, influence tympanal morphology and its allometric relationship with
14 body size. We hypothesized that diurnal moths, with reduced anti-bat function, would have smaller
15 tympanal organs, irrespective of body size.

16 Allometry was tested using phylogenetic linear regression and tympanal volume was compared
17 across diurnal and nocturnal moths relative to the abdominal volume. We used 3D geometric
18 morphometry, followed by comparative analysis of the shape and size of ansa, a unique
19 “mechanical” for geometrids.

20 Contrary to our hypothesis, diurnal moths had significantly larger tympanal organs, with no
21 allometric relationship with body size. Activity patterns had no significant effect on ansa shape
22 and size, but nocturnal species exhibited convergence, suggesting potential auditory functions.

23 This study shows how daily activity patterns and predator-prey interactions shape sensory
24 adaptations, with larger tympanal organs of diurnal species potentially reflecting adaptations to
25 detect lower “non-bat” frequency. It also highlights non-invasive imaging techniques for studying
26 delicate anatomical features in museum specimens.

27 **Keywords:** predation pressure, hearing organs, Geometridae moths, bats, micro-CT

28

29 **Introduction:**

30 The animal world is either diurnal, nocturnal, or crepuscular; as the adaptations to function in one
31 temporal activity pattern reduce the efficiency of functioning and survival in another [1].
32 Nocturnality is presumed to be associated with adaptations to function in low-light and low-
33 temperature conditions. However, in predominantly nocturnal taxa, like geckoes and moths, some
34 clades have shifted to diurnality and have distinct adaptations to diurnal conditions like camouflage
35 [2], photopic vision [3,4] aposematic wing colouration [5] and hearing sensitivity to lower 'non-
36 bat' frequency [6]. The factors that cause a shift in the individual clades could largely be predators,
37 climate, and competition [7], due to changes in information transmission in the sensory
38 environment [8].

39

40 Predators are an important selective force in all terrestrial food webs. Prey species may invest
41 proportionally more in defence, avoid interactions with their predators or follow alternative
42 strategies for survival. For moths, the predation pressure from their most formidable predator, bats,
43 vary in a predictable manner among nocturnal and diurnal species, influencing their daily activity
44 pattern and hearing sensitivity [9]. This is reflected in the positive correlation between nocturnal
45 flight activity and hearing sensitivity to ultrasound frequencies [10].

46

47 Diurnal moths show marked degeneration of the ultrasonic hearing, and some of them are reported
48 to be 'bat-deaf' [6]. There are reports of predator released moths with no ears, e.g. the Polynesian
49 Pyralid *Lathrotele obscura* [11]; and [12] described extremely poor sensitivity in female wingless
50 geometrids. Hearing sensitivity is often closely linked to body size, with larger animals generally
51 having larger hearing organs and lower frequency hearing, as observed in lizards, frogs, mammals,
52 and birds [13–15]. It is plausible that similar patterns might be observed in moths, where larger
53 species may possess more developed hearing organs but exhibit lower sensitivity to ultrasound
54 frequencies. In fact, studies suggest that larger moth species, such as those in the Noctuidae family,
55 tend to have larger tympanal organs, but their sensitivity to higher frequency bat calls may be
56 reduced compared to smaller moth species [16]. However, the evolution of hearing sensitivity in

57 moths is not solely dictated by size. Other factors, including ecological niche, temporal and
58 geographical isolation from bats, and the presence of other predators, could also influence hearing
59 organ development and functionality.

60 Hearing organs in insects have diverse functions, such as intraspecific communication, parasitic
61 host localization, and predator avoidance [17]. One specialized form of these organs, the
62 tympanal organs, typically consists of a thin membrane or tympanum backed by an air-filled sac,
63 and has evolved independently in at least seven different insect orders [18]. In most tympanate
64 insects, the highest sensitivity is between 30-60KHz, i.e within the bat calling frequencies
65 [19,20]. This evolutionary pressure is particularly evident in nocturnal moths, where the multiple
66 origins of hearing organs are thought to be a defense mechanism against insectivorous bats[19–
67 22]. Most moths including Noctuoidea, Geometroidea and Pyraloidea possess ultrasound
68 sensitive ears [23]. As such, we would expect moths that are isolated from bats geographically or
69 temporally to exhibit lower sensitivity to ultrasound.

70 We chose geometrid moths as our model group due to well-documented diel activity patterns
71 [24] and their use in testing hearing sensitivity in diurnal moths [25]. While adult geometroid
72 moths are primarily nocturnal, several unrelated lineages across families Uraniidae, Sematuridae,
73 and Geometridae, exhibit diurnal activity[26–28]. This transition has occurred independently in
74 Lepidoptera multiple times [3,27,29]. The strictly diurnal geometrid moth *Archiearis parthenias*,
75 which is temporally isolated from bats, is sensitive to around 12KHz and practically deaf beyond
76 25 KHz [25], comparable to sympatric noctuid moths [12,30]. The tympanal organ is an
77 important taxonomic character for geometrids, with ansa being a prominent unique character of
78 the family [31,32] (Fig.1c, and Supplementary Video 1). The ansa, thought to protect the
79 tympanum from mechanical damage caused by pressure from surrounding organs, particularly
80 the oesophagus and flight muscles, has a wide base that strengthens the inner wall of the cavus,
81 helping maintain tension across the tympanum [31]. The variation in ansa shape and size at the
82 species and higher taxonomic level suggests it may serve functions beyond just a mechanical
83 structure. However, research on diel activity in moths, function of hearing organ anatomy and
84 predator pressures, remains limited.

85 In the above context, we wanted to ask, using a non-destructive 3D morphometry: 1) Does the size
86 of the tympanal organ show an allometric relationship with body size? 2) Is there a difference in
87 the size of the tympanal organs between diurnal and nocturnal moths? 3) How do the shape and
88 size of the ansa vary between diurnal and nocturnal species? The overarching question guiding
89 this study is whether these differences are linked to specialized hearing adaptations for detecting
90 predators. We hypothesize that the structure of the tympanal organs is driven more by diel activity
91 patterns than by body size, with tympanal organs being smaller in diurnal moths due to reduced
92 anti-bat function. Also, we hypothesize that the ansa plays a crucial role in auditory function—not
93 just for mechanical strength—meaning its size and shape should vary depending on the moth's
94 activity pattern.

95

96 **Material and Methods:**

97 We selected 19 geometrid species (7 diurnal, 1 cathemeral and 11 nocturnal) from eight different
98 subfamilies based on their relatedness in the phylogenetic tree [33,34] from different geographical
99 locations. Listed in Table (S1).

100 *Micro-CT Imaging and Image Processing:*

101 All the specimens were imaged using a Nikon XT H 225 micro-CT scanner. Specimens were
102 positioned in the sample holder following the method described by [35] to minimize noise caused
103 by the insect pin.

104 All imaging was performed using a molybdenum target. The first four specimens were imaged
105 with the following parameters: 74 kV beam energy, 94 μ A beam current, 500 ms exposure time,
106 9,998 projections, and 8-frame averaging per projection. Each scan required 11 hours. The
107 remaining 15 specimens were imaged using adjusted settings: 80 kV beam energy, 84 μ A beam
108 current, 1.4 s exposure time, 4,476 projections, and 4-frame averaging per projection, reducing the
109 scan time to 7 hours. Further testing showed that lowering the frame averaging to 2 did not
110 significantly affect image quality, allowing the scan time to be further reduced to 3.5 hours.

111 The voxel size of the reconstructed datasets ranged from 5 μ m to 18 μ m. To enhance image quality
112 and minimize deformation caused by desiccation, staining and critical point drying should be

113 considered for future studies, although these methods require fresh specimens. Reconstructions
114 were generated from the projection images using Nikon CT Pro 3D Version XT 6.9.1.

115 Segmentation was performed using VGSTUDIO MAX 2024.3. A spherical region of interest
116 (ROI) was used for segmentation, as this approach facilitates the extraction of the tympanal organs
117 due to their roughly spherical shape. When possible, excess material was manually removed from
118 the ROI. The voxel-based 3D datasets were then converted into high-quality mesh models by first
119 generating an isosurface model, customized for each dataset to achieve optimal results. To
120 facilitate further analysis and manage file sizes, the final mesh models were reduced to 300,000
121 vertices and were exported as WRL and PLY files

122 *Morphometric measurement and analyses*

123 The body length was used as a proxy for body size, as commonly used in morphometric
124 studies[36,37]. We used ImageJ software [38] for this purpose. Further we measured abdomen
125 width and abdomen length using Leica S9D stereo microscope, using Leica Flexacam C5 camera
126 and Leica Microsystems 's Enersight software v. 2024. For volumetric measurement of the
127 tympanal organ, we used landmark based method on the 3D reconstructed model in the software
128 AGMT-3D [39]. We performed a phylogenetically informed linear regression to understand the
129 relationship between body size and tympanal organ volume, while considering the relatedness of
130 the species. To analyze the shape and size of the ansa, we used the *Geomorph* package in R [40],
131 to do landmark-based 3D geometric morphometry on the 3D models of the tympanal organs. We
132 digitized 10 homologous landmarks on the ansa of the tympanal organs of all the species (Fig. S2).
133 Then we performed a General Procrustes Analysis, to remove the effects of scale on the landmarks,
134 followed phylogenetic Principal Component analysis to compare and visualize the patterns the
135 shape of ansa and compared the centroid size of the 3D model to compare the size of ansa, among
136 the diurnal, cathemeral and nocturnal species. For the above analysis, we considered the
137 relatedness of the species in our study based on the established phylogeny of geometrid moths
138 [33,34]. We used Wilcoxon signed rank test, for pairwise comparisons in the analyses. We did not
139 include the measurements for the cathemeral species *Dysphania percota* for any comparative
140 analysis between diurnal and nocturnal taxa.

141

142 **Results:**

143 The phylogenetic linear regression revealed no significant allometric relationship of tympanal
144 organ volume with body size in geometrid moths (Adjusted R-square = 0.06, $p > 0.05$) (Fig. 2a).
145 This suggests that the size of the tympanal organ does not scale proportionally with the overall
146 body size in this group. Notably, the diurnal moths were found to be significantly smaller in body
147 size compared to their nocturnal counterparts (Fig. 2b). Despite the absence of a significant
148 allometric relationship, we observed that diurnal moths possess significantly larger tympanal
149 organs than nocturnal species ($p < 0.05$) (Fig. 3).

150 In terms of the ansa, no significant differences were found in the overall shape or size across taxa
151 (Fig. 4). However, we did observe some evidence of convergence in the size of the ansa among
152 the nocturnal species. The inter-quartile range for the ansa size in diurnal moths was 0.197, while
153 for nocturnal moths it was 0.09 (Fig. 5). The micro-CT scans also reveal that the ansa is a hollow
154 with a narrow tube-like structure in the middle (Fig. 6 and Supplementary video 2). This indicates
155 that while the ansa size does not vary significantly across all species, there may be a trend towards
156 similar size characteristics within nocturnal geometrid moths, possibly reflecting a shared
157 evolutionary adaptation related to hearing sensitivity.

158 **Discussion:**

159 In this study, we investigated how auditory structures in moths change as a function of body
160 size, and the extent to which certain morphological traits predict hearing sensitivity. Our findings
161 revealed several interesting patterns in the tympanal organ and ansa characteristics of geometrid
162 moths. Despite no significant allometric relationship between tympanal organ volume and body
163 size, we found that diurnal moths tend to have larger tympanal organs—despite being smaller
164 overall—pointing to potential evolutionary adaptations that help them navigate different abiotic
165 and biotic factors, such as avoiding diurnal predators like birds and lizards. In essence, our result
166 means that the tympanal organ, originally assumed to function as an anti-bat hearing organ in
167 nocturnal species, has adapted a new function in diurnal environment. The structure could still
168 have a hearing function, potentially being adapted to different predator pressure on lower “non-
169 bat” frequency and the larger size could serve more effectively this purpose.

170 Interestingly, the shape and size of the ansa do not differ significantly across taxa, though there is
171 some evidence of convergence in the size of the ansa among nocturnal moth species. This suggests
172 that the ansa may be playing a previously unexplored role in auditory function.

173 These findings highlight the complex evolutionary dynamics between predator-prey interactions
174 and morphological adaptations in moths. Moths seem to be fine-tuning their auditory systems in
175 response to their specific ecological niches, whether to optimizing hearing for bat evasion or
176 adapting to the demands of diurnal activity. This research deepens our understanding of the role
177 sensory organs play in survival and reveals how predators drive the evolution of highly specialized
178 traits.

179 *Relationship between tympanal organ size and body size*

180 Geometridae moths, being winged insects, rely more on their hearing based defence system to
181 avoid bats [12]. The shift from nocturnal to diurnal behaviour has occurred independently multiple
182 times across different subfamilies of geometrids, demonstrating parallel evolution. Diurnal
183 species, though exposed to different environmental pressures, face similar predation threats, which
184 may drive independent evolutionary trends such as the increase in the tympanal organ size, but
185 decrease in body size. This phenomenon has been observed in Geometridae and other Lepidoptera
186 families, where the transition from nocturnal to diurnal flight suggests convergent adaptation to
187 similar selective pressures [27,29,41]. Preliminary data from the Uraniidae family show that the
188 diurnal species have visually bigger tympanal organs also (our observation). Smaller body sizes in
189 day-flying moths have been observed in temperate areas, and those could be an adaptation to evade
190 bird predation [42]. This, however, needs to be tested in a wider geographical context. While the
191 auditory systems of diurnal moths might be used for intraspecific competition or defense against
192 birds, there is not yet sufficient evidence to confirm either of these suggestions.

193 *Tympanal organ size and hearing sensitivity*

194 In anurans and lizards, larger tympanic membranes generally produce peak vibration amplitudes
195 at lower frequencies than do smaller tympanic membranes [13,14] like how the area of a drum
196 head affects its pitch [43]. Our approach in scaling of auditory structures and how their
197 dimensions relate to hearing performance, gives valuable insights into how body size influences
198 both the morphology of hearing organs and auditory capabilities. Different taxonomic groups
199 may have developed unique adaptations to address size-dependent constraints on hearing. For
200 example, larger moths may also rely on other defense mechanisms like increased flight speed or
201 improved camouflage to evade bat predation [44]. Additionally, examining deviations from

202 proportional scaling between key auditory structures across insect species can reveal major
203 evolutionary divergences and highlight instances of convergence in the evolution of the insect
204 ear.

205 *Variation in the shape and size of the ansa*

206 Auditory structures are shaped by a combination of phylogenetic, developmental, and physical
207 constraints. Phylogenetic preconditions, such as the presence of ossicles in mammals and the
208 columella in non-mammalian vertebrates, limit the available auditory structures. Developmentally,
209 there are internal relationships between features, like how the dimensions of the bulla in rodents
210 align with earlier tympanic membrane growth [45]. Physical constraints, such as the material
211 properties of structures like the tympanic membrane and ossicles, also play a role. For evolutionary
212 analysis, it is essential to consider both ontogenetic and phylogenetic factors, as structural changes
213 result from a balance of adaptation and inherent constraints, with ontogeny ultimately reflecting
214 phylogenetic history.

215 This framework can be extended to the convergent evolution of auditory mechanisms in insects
216 and mammals [46]. The ansa in geometrid moths may function similarly to the middle ear ossicles
217 in mammals, with variations in the ossicles influencing hearing sensitivity across mammalian
218 species[47,48]. Similarly, the convergent shape and size of the ansa in nocturnal geometrid moths,
219 and the fact that it is a hollow structure, could suggest that the ansa does not only have a mechanical
220 function, but could also be an adaptation for enhanced sensitivity to higher frequencies in the
221 tympanal organ. However, further investigation is needed to fully understand the relationship
222 between these structures and their evolutionary implications.

223 To evaluate the adaptation versus constraints hypothesis, a comparative and functional analysis of
224 various insect auditory systems is essential. Only by examining a broad range of species can we
225 identify the shared acoustic properties as well as the functional differences between them, shedding
226 light on the diversity of hearing systems in terms of size and frequency sensitivity.

227 *Conclusion*

228 In conclusion, as the first study to use 3D geometric morphometry on insect cuticular structures

229 the results of this study highlight the complex interplay of ecological pressures, evolutionary
230 constraints, and morphological adaptations in geometrid moths. The lack of a significant allometric
231 relationship between tympanal organ size and body size, alongside the larger tympanal organs in
232 diurnal moths, suggests that environmental factors, such as predator-prey interactions, may drive
233 adaptations in auditory structures. The potential for convergent evolution, especially in the size
234 and shape of the ansa across nocturnal species, further underscores the role of selective pressures
235 in shaping auditory morphology. We gain valuable insights into how body size influences both
236 hearing capabilities and evolutionary trends. Ultimately, our study emphasizes the importance of
237 considering environmental and phylogenetic constraints when interpreting the evolution of
238 auditory structures and opens avenues for further investigation into the convergent mechanisms of
239 hearing across taxa.

240 **Acknowledgement:** The authors are thankful to the National Biodiversity Authority, India for
241 permitting to export and study specimens collected from India at the Finnish Museum of Natural
242 History (Permit no: NBA/Tech Appl/9/INBA1202203315/22/22-23/132S). We also extend our
243 sincere thanks to the members of the Forum Herbulot, a consortium of Geometrid moth experts,
244 for their valuable feedback, which significantly enhanced the study's conclusions and predictions.

245 **Funding:** This research was funded by the Research Council of Finland (decision # 331995,
246 funding period 2020–2024).

247 **References:**

- 248 1. Fraser NHC, Metcalfe NB, Thorpe JE. 1997 Temperature-dependent switch between diurnal
249 and nocturnal foraging in salmon. *Proceedings of the Royal Society of London. Series B:
250 Biological Sciences* **252**, 135–139. (doi:10.1098/rspb.1993.0057)
- 251 2. Fulgione D, Buglione M, Rippa D, Trapanese M, Petrelli S, Monti DM, Aria M, Del Giudice
252 R, Maselli V. 2019 Selection for background matching drives sympatric speciation in Wall
253 Gecko. *Sci Rep* **9**, 1288. (doi:10.1038/s41598-018-37587-3)
- 254 3. Sondhi Y, Ellis EA, Bybee SM, Theobald JC, Kawahara AY. 2021 Light environment drives
255 evolution of color vision genes in butterflies and moths. *Commun Biol* **4**, 1–11.
256 (doi:10.1038/s42003-021-01688-z)
- 257 4. Kojima K, Matsutani Y, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y,
258 Yamashita T. In press. Evolutionary adaptation of visual pigments in geckos for their photic
259 environment. *Sci Adv* **7**, eabj1316. (doi:10.1126/sciadv.abj1316)

260 5. Fiedler K, Brehm G. 2021 Aposematic Coloration of Moths Decreases Strongly along an
261 Elevational Gradient in the Andes. *Insects* **12**, 903. (doi:10.3390/insects12100903)

262 6. Fullard JH, Dawson JW, Otero LD, Surlykke A. 1997 Bat-deafness in day-flying moths
263 (Lepidoptera, Notodontidae, Dioptinae). *J Comp Physiol A* **181**, 477–483.
264 (doi:10.1007/s003590050131)

265 7. Gamble T, Greenbaum E, Jackman TR, Bauer AM. 2015 Into the light: diurnality has
266 evolved multiple times in geckos. *Biological Journal of the Linnean Society* **115**, 896–910.
267 (doi:10.1111/bij.12536)

268 8. Sih A, Ferrari MCO, Harris DJ. 2011 Evolution and behavioural responses to human-induced
269 rapid environmental change. *Evolutionary Applications* **4**, 367–387. (doi:10.1111/j.1752-
270 4571.2010.00166.x)

271 9. Rydell J, Jones G, Waters D. 1995 Echolocating Bats and Hearing Moths: Who Are the
272 Winners? *Oikos* **73**, 419–424. (doi:10.2307/3545970)

273 10. ter Hofstede HM, Ratcliffe JM, Fullard JH. 2008 Nocturnal activity positively correlated
274 with auditory sensitivity in noctuoid moths. *Biology Letters* **4**, 262–265.
275 (doi:10.1098/rsbl.2007.0617)

276 11. Clarke JFG. 1971 The Lepidoptera of Rapa Island.

277 12. Rydell J, Skals N, Surlykke A, Svensson M. 1997 Hearing and bat defence in geometrid
278 winter moths. *Proc. R. Soc. Lond. B* **264**, 83–88. (doi:10.1098/rspb.1997.0012)

279 13. Hetherington TE. 1992 The Effects of Body Size on the Evolution of the Amphibian Middle
280 Ear. In *The Evolutionary Biology of Hearing* (eds DB Webster, AN Popper, RR Fay), pp.
281 421–437. New York, NY: Springer New York. (doi:10.1007/978-1-4612-2784-7_25)

282 14. Werner YL, Igic PG. 2002 The middle ear of gekkonoid lizards: interspecific variation of
283 structure in relation to body size and to auditory sensitivity. *Hearing Research*

284 15. Gleich O, Langemann U. 2011 Auditory capabilities of birds in relation to the structural
285 diversity of the basilar papilla. *Hearing Research* **273**, 80–88.
286 (doi:10.1016/j.heares.2010.01.009)

287 16. Fullard JH. 1988 The tuning of moth ears. *Experientia* **44**, 423–428.
288 (doi:10.1007/BF01940537)

289 17. Strauß J, Lakes-Harlan R. 2014 Evolutionary and Phylogenetic Origins of Tympanal Hearing
290 Organs in Insects. In *Insect Hearing and Acoustic Communication* (ed B Hedwig), pp. 5–26.
291 Berlin, Heidelberg: Springer Berlin Heidelberg. (doi:10.1007/978-3-642-40462-7_2)

292 18. Hoy RR, Robert D. 1996 Tympanal Hearing in Insects. *Annu. Rev. Entomol.* **41**, 433–450.
293 (doi:10.1146/annurev.en.41.010196.002245)

294 19. Roeder KD, Treat AE. 1970 An acoustic sense in some hawkmoths (Choerocampinae).
295 *Journal of Insect Physiology* **16**, 1069–1086. (doi:10.1016/0022-1910(70)90199-X)

296 20. Kawahara AY, Barber JR. 2015 Tempo and mode of antibat ultrasound production and sonar
297 jamming in the diverse hawkmoth radiation. *Proc Natl Acad Sci USA* **112**, 6407–6412.
298 (doi:10.1073/pnas.1416679112)

299 21. Scoble MJ. 1992 The Lepidoptera. Form, function and diversity. *The Lepidoptera. Form,*
300 *function and diversity*.

301 22. Ratcliffe JM, Fullard JH. 2005 The adaptive function of tiger moth clicks against
302 echolocating bats: an experimental and synthetic approach. *Journal of Experimental Biology*
303 **208**, 4689–4698. (doi:10.1242/jeb.01927)

304 23. Fullard JH. 1998 The Sensory Coevolution of Moths and Bats. In *Comparative Hearing: Insects* (eds RR Hoy, AN Popper, RR Fay), pp. 279–326. New York, NY: Springer.
305 (doi:10.1007/978-1-4612-0585-2_8)

306 24. Lee KM, Murillo-Ramos L, Huemer P, Hausmann A, Staude H, Mayr T, Sihvonen P. 2024
307 Complex evolution in thin air: Investigating female flightlessness and diel behaviour in
308 geometrid moths (Lepidoptera). *Systematic Entomology* **49**, 1–14. (doi:10.1111/syen.12633)

309 25. Surlykke A, Skals N, Rydell J, Svensson M. 1998 Sonic Hearing in a Diurnal Geometrid
310 Moth, *Archiearis parthenias*, Temporally Isolated From Bats. *Naturwissenschaften* **85**, 36–
311 37. (doi:10.1007/s001140050449)

312 26. Hausmann A. 2001 *The Geometrid Moths of Europe*. Apollo Books.

313 27. Kawahara AY, Plotkin D, Hamilton CA, Gough H, St Laurent R, Owens HL, Homziak NT,
314 Barber JR. 2018 Diel behavior in moths and butterflies: a synthesis of data illuminates the
315 evolution of temporal activity. *Org Divers Evol* **18**, 13–27. (doi:10.1007/s13127-017-0350-
316 6)

317 28. Ōunap E, Viidalepp J, Truuverk A. 2016 Phylogeny of the subfamily Larentiinae
318 (Lepidoptera: Geometridae): integrating molecular data and traditional classifications.
319 *Systematic Entomology* **41**, 824–843. (doi:10.1111/syen.12195)

320 29. Kawahara AY, Breinholt JW. 2014 Phylogenomics provides strong evidence for
321 relationships of butterflies and moths. *Proceedings of the Royal Society B: Biological
322 Sciences* **281**, 20140970. (doi:10.1098/rspb.2014.0970)

323 30. Surlykke A, Filskov M. 1997 Hearing in Geometrid Moths. *Naturwissenschaften* **84**, 356–
324 359. (doi:10.1007/s001140050410)

325 31. Cook MA, Scoble MJ. 1992 Tympanal organs of geometrid moths: a review of their
326 morphology, function, and systematic importance. *System Entomol* **17**, 219–232.
327 (doi:10.1111/j.1365-3113.1992.tb00334.x)

328

329 32. Rajaei H, Hausmann A, Scoble M, Wanke D, Plotkin D, Brehm G, Murillo-Ramos L,
330 Sihvonen P. 2022 An online taxonomic facility of Geometridae (Lepidoptera), with an
331 overview of global species richness and systematics. *sbna.2* **5**, 145–192.
332 (doi:10.18476/2022.577933)

333 33. Brehm G *et al.* 2022 New World geometrid moths (Lepidoptera: Geometridae): Molecular
334 phylogeny, biogeography, taxonomic updates and description of 11 new tribes.
335 (doi:10.26049/ASP77-3-2019-5)

336 34. Murillo-Ramos L, Twort V, Wahlberg N, Sihvonen P. 2023 A phylogenomic perspective on
337 the relationships of subfamilies in the family Geometridae (Lepidoptera). *Systematic*
338 *Entomology* **48**, 618–632. (doi:10.1111/syen.12594)

339 35. Moraes SS, Söderholm MS, Aguiar TMC, Freitas AVL, Sihvonen P. 2023 Micro-CT
340 imaging in species description: exploring beyond sclerotized structures in lichen moths
341 (Lepidoptera: Erebidae, Arctiinae, Lithosiini). *PeerJ* **11**, e15505. (doi:10.7717/peerj.15505)

342 36. Araújo Foerster SÍ, Javoviš J, Holm S, Tammaru T. 2024 Predicting insect body masses based
343 on linear measurements: a phylogenetic case study on geometrid moths. *Biological Journal*
344 *of the Linnean Society* **141**, 71–86. (doi:10.1093/biolinnean/blad069)

345 37. Brehm G, Zeuss D, Colwell RK. 2019 Moth body size increases with elevation along a
346 complete tropical elevational gradient for two hyperdiverse clades. *Ecography* **42**, 632–642.
347 (doi:10.1111/ecog.03917)

348 38. Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH Image to ImageJ: 25 years of image
349 analysis. *Nat Methods* **9**, 671–675. (doi:10.1038/nmeth.2089)

350 39. Herzlinger G, Grosman L. 2018 AGMT3-D: A software for 3-D landmarks-based geometric
351 morphometric shape analysis of archaeological artifacts. *PLOS ONE* **13**, e0207890.
352 (doi:10.1371/journal.pone.0207890)

353 40. Adams DC, Otárola-Castillo E. 2013 geomorph: an R package for the collection and analysis
354 of geometric morphometric shape data. *Methods Ecol Evol* **4**, 393–399. (doi:10.1111/2041-
355 210X.12035)

356 41. Huemer P, Hausmann A. 2009 Huemer, P. & A. Hausmann (2009): A new expanded
357 revision of the European high mountain Sciadia tenebraria species group (Lepidoptera,
358 Geometridae). - *Zootaxa* 2117: 1-30. *Zootaxa* **2117**, 1–30. (doi:10.5281/zenodo.188004)

359 42. Tammaru T, Johansson NR, Ōunap E, Davis RB. 2018 Day-flying moths are smaller:
360 evidence for ecological costs of being large. *Journal of Evolutionary Biology* **31**, 1400–1404.
361 (doi:10.1111/jeb.13306)

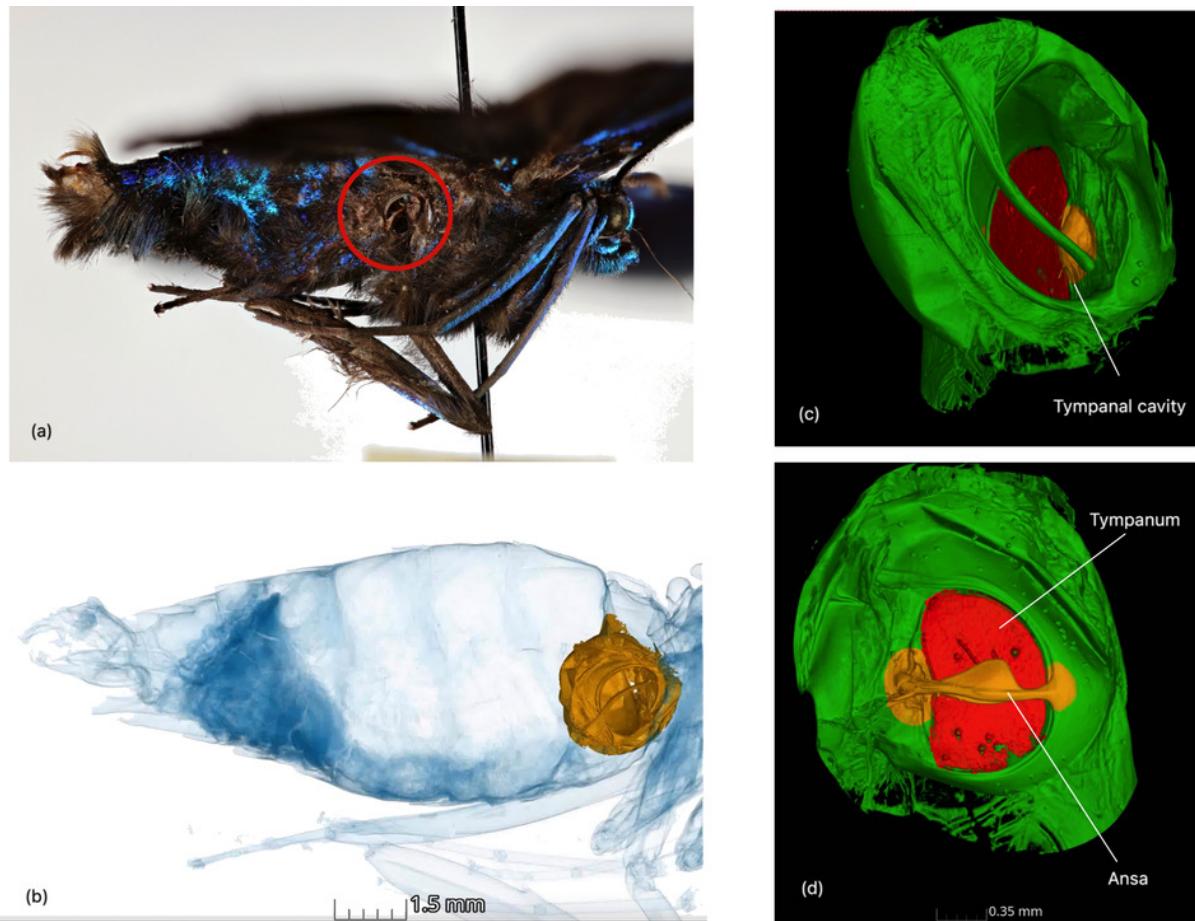
362 43. Plassmann W, Brändle K. 1992 A Functional Model of the Auditory System in Mammals
363 and Its Evolutionary Implications. In *The Evolutionary Biology of Hearing* (eds DB Webster,
364 AN Popper, RR Fay), pp. 637–653. New York, NY: Springer New York. (doi:10.1007/978-
365 1-4612-2784-7_40)

366 44. Simon R, Dreissen A, Leroy H, Berg MP, Halfwerk W. 2023 Acoustic camouflage increases
367 with body size and changes with bat echolocation frequency range in a community of
368 nocturnally active Lepidoptera. *Journal of Animal Ecology* **92**, 2363–2372.
369 (doi:10.1111/1365-2656.14016)

370 45. van den Berge H, van Geest A, Rensem JW, Drukker J. 1990 Three-dimensional graphic
371 reconstruction of the tympanic bulla of the rat with special reference to the middle ear
372 muscles. *Acta Otolaryngol* **110**, 253–261. (doi:10.3109/00016489009122545)

373 46. Montealegre-Z. F, Jonsson T, Robson-Brown KA, Postles M, Robert D. 2012 Convergent
374 Evolution Between Insect and Mammalian Audition. *Science* **338**, 968–971.
375 (doi:10.1126/science.1225271)

376 47. Hemilä S, Nummela S, Reuter T. 1995 What middle ear parameters tell about impedance
377 matching and high frequency hearing. *Hearing Research* **85**, 31–44. (doi:10.1016/0378-
378 5955(95)00031-X)


379 48. Nummela S. 1995 Scaling of the mammalian middle ear. *Hearing Research* **85**, 18–30.
380 (doi:10.1016/0378-5955(95)00030-8)

381

Figure 1

Anatomy of the tympanal organs in geometrid moths

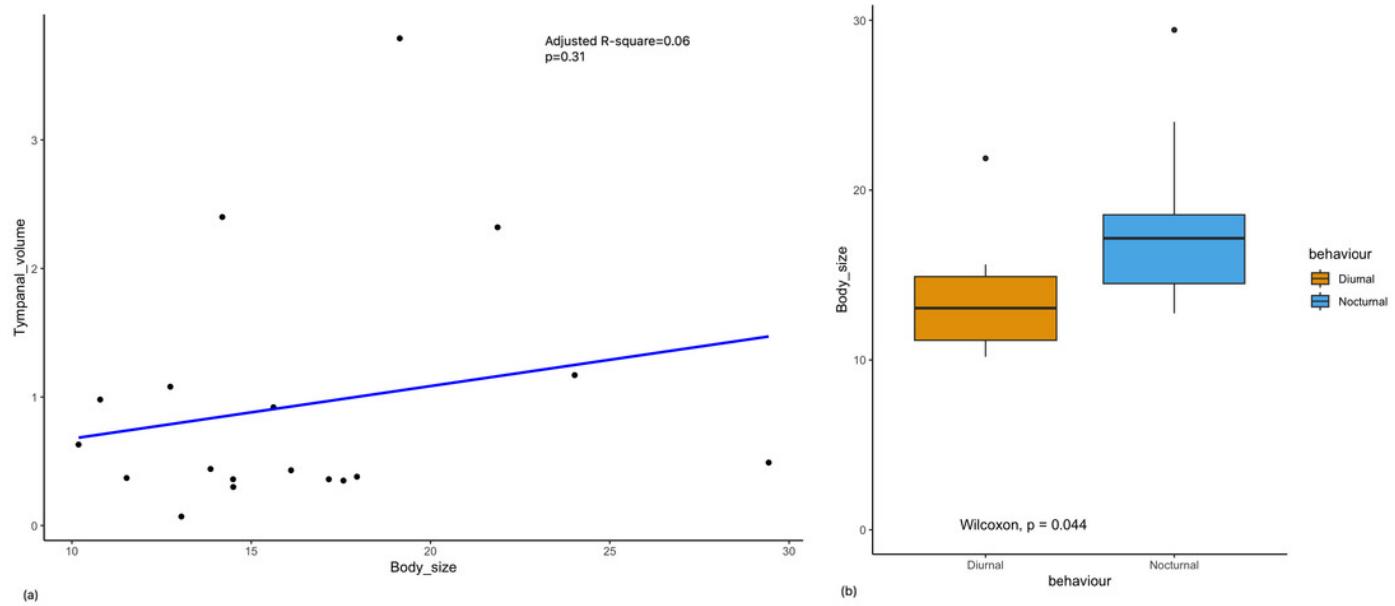

The tympanal organ of the diurnal geometrid moth, *Milionia delicatula*, a diurnal South-East Asian species in subfamily Ennominae where a) shows the lateral side of the specimen, which was scanned, showing the opening of the abdominal tympanal organ (red circle); b) shows the non-invasive micro-CT scan of the specimen clearly illustrating the tympanal organ (yellow) lodged in the abdominal cavity; c) is the 3D reconstruction of the tympanal organ, showing the tympanal cavity on the outer side and d) shows the ansa (yellow) on the inner wall of the tympanal cavity with the tympanic membrane or tympanum (red).

Figure 2

Allometry of body size with tympanal organ size and comparison of body size among diurnal and nocturnal taxa


a) The plot shows the results of a phylogenetic linear regression, where the relationship between Body size and Tympanal volume is assessed while accounting for phylogenetic relatedness. Each data point corresponds to a species, and the regression line shows the best fit for the relationship between the traits depicting the non-significant ($p>0.31$) allometric relationship; b) The graph shows comparison of the body size of diurnal and nocturnal moths, with diurnal moths being significantly smaller than the nocturnal species ($p<0.05$).

Figure 3

Comparison of the tympanal organ size between diurnal and nocturnal moths

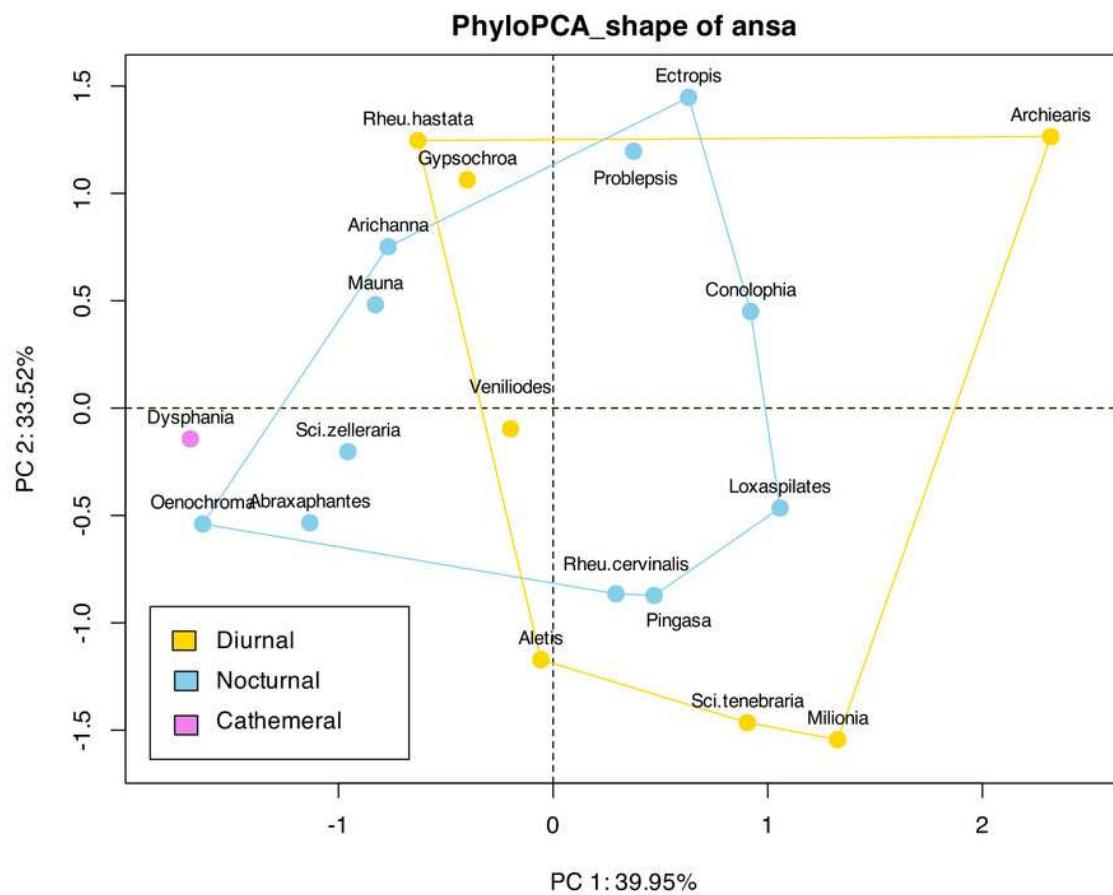

a) The graph shows the comparison of volume ratio (tympanal volume: abdomen volume) of the diurnal and nocturnal species. The diurnal species have significantly larger tympanal volume ($p<0.012$) than the nocturnal species; b) and c) shows the micro-CT images of a diurnal (*Aletis concolor*) and a nocturnal (*Ectropis crepuscularia*) species, to visually represent the size of the tympanal organs compared to the abdomen size respectively.

Figure 4

landmark based clustering of shape of ansa

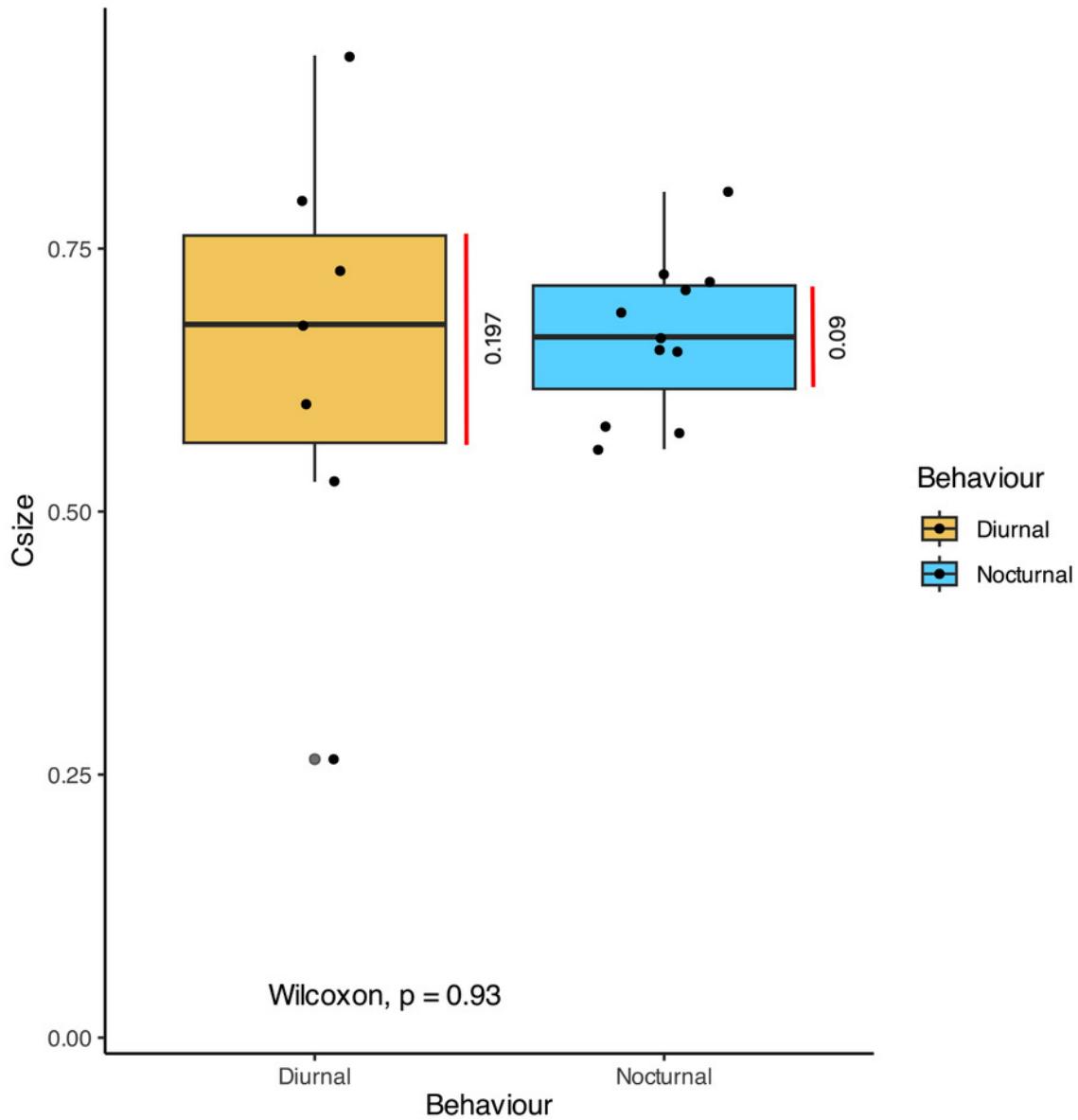

The plot shows the projection of the landmark-based shape parameters of each species onto the first two principal components (PC1 and PC2), which account for 39.95% and 33.52% of the total variance, respectively. Each point represents a species, and the colors indicate different categories or groups within the dataset. There is no significant clustering observed among the diurnal or nocturnal species

Figure 5

Comparison of the size of ansa in diurnal and nocturnal moths

The graph shows the comparison of Centroid size (Csize) of the 3D model of the ansa, which is an estimate of size of 3D model. There is no significant difference between the size of the ansa in diurnal and nocturnal taxa ($p>0.93$), but the nocturnal species point towards a convergence in size (Inter-quartile range=0.09).

Figure 6

Structure of ansa

Micro-CT scan of ansa of the tympanal organ of *Millonia delicatula*. The scan shows clearly that the structure is hollow (dark orange), being wider at the base, narrow in the middle, and slightly expanded on the apex. 3D video of the structure is available in Supplementary video

