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ABSTRACT
Agrilus planipennis is an invasive species that inflicts substantial harm on ash trees
(Fraxinus spp.) globally. Elucidating its olfactory mechanisms is essential for devising
effective pest management approaches. In this research, we identified chemosensory
protein 4 (AplaCSP4) in A. planipennis, which is highly expressed in the antennae of
both male and female individuals. Notably, the mRNA expression level of AplaCSP4
in females is 1.9 times higher than that in males. Fluorescence competition binding
assays revealed that recombinant AplaCSP4 has a broad binding spectrum, capable
of interacting with 11 compounds from various chemical classes such as esters,
alkanes, terpenes, terpenoids, and terpenols. The dissociation constants (KD) for these
binding affinities range from 0.25 to 11.47 µM. AplaCSP4 shows binding affinity for
volatiles from Fraxinus species, including dodecane, myrcene, ocimene, farnesene,
(+)-limonene, and nerolidol, with the highest affinity observed for farnesene (KD =

0.25 µM). Molecular docking and dynamics simulation were employed to elucidate
the binding mode of farnesene, which exhibited the strongest binding affinity with
AplaCSP4. The results indicated that farnesene binds within the hydrophobic pocket of
AplaCSP4, with a binding energy of −31.830 ± 2.015 kcal/mol and −32.585 ± 2.011
kcal/mol in dual-replicatemolecular dynamics simulations, and primarily driven by van
der Waals interactions. Importantly, during the two molecular dynamics simulations,
the centroid distances between farnesene and the key residues in the binding pocket
of AplaCSP4 were maintained relatively stable. The combined results from in vitro
experiments and computational modeling suggest that AplaCSP4 is critically involved
in plant volatile detection. This study offers insights into themolecular basis of olfactory
perception in A. planipennis and may provide a foundation for developing novel
olfactory-based pest control strategies targeting chemosensory proteins.

Subjects Biochemistry, Ecology, Entomology, Molecular Biology, Forestry
Keywords Agrilus planipennis, Chemosensory proteins, Plant volatiles, Olfactory mechanism

INTRODUCTION
Insects rely heavily on their olfactory system to navigate their environment, locate
food sources, find mates, and avoid predators. The olfactory system of insects is highly
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specialized, with antennae serving as the primary sensory organs for detecting chemical cues.
The detection of these cues is mediated by a range of proteins, including odorant-binding
proteins (OBPs) and chemosensory proteins (CSPs), which play crucial roles in the initial
steps of olfactory perception (Jia et al., 2023; Leal, 2013; Pelosi et al., 2018; Tu et al., 2024).
Among these, CSPs are involved in the binding and transport of hydrophobic odorants
through the aqueous sensillum lymph to olfactory receptors (ORs) on the dendrites of
olfactory receptor neurons (ORNs) (Hansson Bill & Stensmyr Marcus, 2011; Pelosi et al.,
2014; Pelosi et al., 2018).

CSPs are a class of small, soluble proteins that are distinct from OBPs in terms of
their structure and sequence (Brito, Moreira & Melo, 2016; Cheema et al., 2021; Wanchoo
et al., 2020). CSPs typically contain four conserved cysteine residues and are involved in
a variety of functions, including chemosensation, development, immune response, and
insecticide resistance (Gaubert et al., 2020; Li et al., 2020; Li et al., 2025; Qu et al., 2020;
Tomaselli et al., 2006). CSPs are broadly expressed in insects, and their specific expression
in antennae is typically linked to the recognition of volatile compounds, contributing to
host recognition and mating behaviors. For example, the CSP6 and CSP7 of Aleurocanthus
spiniferus (Quaintance) (Hemiptera: Aleyrodidae) are associated with the recognition of
host plant volatiles, including (E)-2-hexenal, linalool, 3-carene, and hexanol (Jia et al.,
2024).

The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a
highly destructive invasive pest of ash trees, native to Asia but now widespread in North
America and Europe (Herms & McCullough, 2014; Liebhold et al., 2024;Morin et al., 2017).
A. planipennis has caused significant ecological and economic damage, leading to the
death of millions of ash trees. Understanding the molecular mechanisms underlying its
olfactory perception is crucial for developing effective management strategies. Although
previous studies have identified several OBPs showing specific expression in the antennae
of A. planipennis, suggesting their involvement in olfactory processes (Andersson, Keeling
& Mitchell, 2019; Shen et al., 2021; Wang et al., 2020), the specific roles of CSPs in the
olfactory system of A. planipennis remain poorly understood.

In this study, the functional characterization of chemosensory protein 4 inA. planipennis
(AplaCSP4) was validated, and it showed enriched expression in the antennae of both
female and male compared with other CSP genes. We aim to determine the expression
profile of AplaCSP4 in different tissues, investigate its binding affinity to various plant
volatiles, and explore its potential role in the olfactory perception of A. planipennis. By
combining molecular, biochemical, protein structure prediction, and molecular docking
approaches, we seek to elucidate the role of AplaCSP4 in the detection of plant volatiles. This
research will not only enhance our understanding of the olfactory mechanisms underlying
plant volatiles identification in A. planipennis but also may provide a foundation for the
development of novel olfactory-based pest management strategies.
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MATERIALS & METHODS
Insect culture
The collection of samples referred to the method ofWang et al. (2020), which is specifically
described as follows. In April 2019, Fraxinus trees affected by the larvae of A. planipennis
were felled in the suburban ash forests of Beijing and cut into approximately 50 cm
segments. These segments were then brought indoors and placed within rearing cages.
After the larvae pupated and the adults emerged, they were transferred to rearing boxes
and fed with ash tree leaves for experimental purposes. The adult rearing conditions were
maintained at a temperature of 25 ± 0.5 ◦C, a relative humidity of 60% ± 5%, and a
photoperiod of 16L:8D.

RNA isolation and first-strand cDNA synthesis
Tissues from 100 antennae, six heads (without antennae), and four bodies (a mixture of
thoraces, abdomens, legs, and wings) were dissected from 1- to 3-day-old female and male
beetles, separately. RNA extraction and reverse transcription were performed according to
the method of Wang et al. (2021), as detailed below. The tissues were immediately frozen
in liquid nitrogen and stored at −80 ◦C until RNA isolation. Total RNA from different
tissues was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according
to the protocol. The integrity and purity of RNA were assessed using 1.2% agarose gel
electrophoresis and a NanoPhotometer N60 (Implen, München, Germany), respectively.
First-strand cDNA was synthesized from 1 µg of RNA using the PrimeScript™ RT reagent
Kit with gDNA Eraser (Takara, Beijing, China), following the manufacturer’s instructions.

Sequence and multiple sequence alignment
Gene-specific primers (Table S1) for amplifying the open reading frame (ORF) of the
A. planipennis chemosensory protein 4 (AlpaCSP4) were designed using the Primer 3
program (http://primer3.ut.ee/) according to the reference sequence (accession: XM_
018478165.1). Cloning of the sequences was carried out following the method described
by Wang et al. (2021). Specifically, polymerase chain reaction (PCR) amplification was
conducted using one unit of KOD DNA polymerase (Taihe, Beijing, China) and 200 ng of
cDNA template. The PCR cycling parameters were as follows: initial denaturation at 94 ◦C
for 2 min, followed by 30 cycles consisting of denaturation at 94 ◦C for 20 s, annealing at
58 ◦C for 30 s, and extension at 68 ◦C for 1 min. A final extension step was performed
at 68 ◦C for 5 min. The resulting PCR products were inserted into the pClone EZ-Blunt
vector (Taihe, Beijing, China). Subsequently, the cloned products were sequenced using
the M13 primer for further analysis.

The amino acid sequence of AlpaCSP4 was aligned with those of CSPs from Agrilus mali
(AXG21596.1), Helicoverpa armigera (AIW65103.1), Glossina morsitans (CBA11330.1),
Encarsia formosa (QJT73564.1), and Subpsaltria yangi (AXY87875.1) using Clustal Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo/). The result of the multiple sequence alignment
was visualized using ESPript 3.0 (https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi).
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Reverse transcription PCR
RT-PCR was completed according to the method of Wang et al. (2020), as follows. The
spatial distributions of AplaCSP4 across the head (without antennae), body (mixtures of
thoraxes, abdomens, legs, andwings), and antennae inmales and females were characterized
by semiquantitative RT-PCR, employing Taq DNA polymerase (Biomed, Beijing, China).
Each PCR was performed in 25 µL reaction volume, containing 200 ng of cDNA from
different tissues. The thermal cycling conditions for the PCR were initiated with an initial
denaturation at 94 ◦C for 4 min, followed by 30 cycles comprising a denaturation step at
94 ◦C for 30 s, an annealing step at 55 ◦C for 30 s, and an extension step at 72 ◦C for 45 s. A
final extension was conducted at 72 ◦C for 5min to complete the amplification process. The
integrity of the cDNA samples was assessed using β-actin (accession: XM_018479924.1)
as a reference gene. For each amplification, negative controls with a water template were
included to ensure specificity. The resulting amplification products were electrophoresed
on 1.2% agarose gels to verify their size and integrity. To authenticate the identity of each
gene, one amplification product per gene was subjected to sequencing. The gene-specific
primers utilized in these reactions are detailed in Table S1.

Quantitative real-time PCR
Quantitative real-time reverse transcription PCR (qRT-PCR) was performed following
the protocol described by Wang et al. (2021), with specific details as follows. The relative
mRNA expression level of AplaCSP4 in the antennae of males and females was measured
by qRT-PCR. The qRT-PCR was conducted using the ABI Prism 7500 System (Applied
Biosystems, Carlsbad, CA,USA) and SYBRGreen SuperReal PreMix Plus (TianGen, Beijing,
China) in a 20 µL reactionmixture. Themixture comprised 10 µL of 2× SuperReal PreMix
Plus, one µL (200 ng) of sample cDNA, 0.4 µL of 50 × ROX Reference Dye, 0.4 µL of
each forward and reverse primers, and 7.8 µL of sterilized ultrapure water. Each qRT-PCR
experiment was performed with three biological replicates, and each replicate was assessed
in triplicate. Both β-actin and elongation factor 1-α (EF-1α, accession: XM_018476784.2)
EF-1α served as endogenous controls to normalize the target gene expression and account
for sample-to-sample variability. Primers for performing the qRT-PCR were listed in
Table S1. The specificity of each primer set was confirmed through melting curve analysis,
while the amplification efficiency was determined by evaluating the standard curves
generated from a 5-fold dilution series of cDNA. The expression level of AplaCSP4 in
the antennae of female was compared relative to the antennae of male using the 2−11CT

method. The AplaCSP4 gene expression level in antennae of male and female individuals
was compared using T -test of GraphPad prime 10 software (GraphPad Software, San
Diego, CA, USA).

Expression and purification of recombinant AplaCSP4
AplaCSP4 was amplified by PCR using specific primers (Table S1). The resulting PCR
products were inserted into a T vector (Taihe, Beijing, China) and subsequently cloned
into the bacterial expression vector pET30a (+) (Novagen, Madison, WI, USA), and
the sequence was verified by sequencing. The plasmids of harboring the correct insert

Li et al. (2025), PeerJ, DOI 10.7717/peerj.19812 4/19

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/XM_018479924.1
http://dx.doi.org/10.7717/peerj.19812#supp-8
http://www.ncbi.nlm.nih.gov/nuccore/XM_018476784.2
http://dx.doi.org/10.7717/peerj.19812#supp-8
http://dx.doi.org/10.7717/peerj.19812#supp-8
http://dx.doi.org/10.7717/peerj.19812


sequence were transferred into BL21 (DE3) competent cells for subsequent protein
expression. Protein expression was induced in LBmedium at 18 ◦C for 16 h by the addition
of one mM isopropyl-β-D-thiogalactopyranoside (IPTG). The bacterial cultures were
harvested through centrifugation and subsequently resuspended in a 50 mM Tris–HCl
buffer (pH 7.4). Following sonication and centrifugation, the recombinant proteins were
predominantly present in the supernatant, and were purified by a standard Ni column (GE
Healthcare, Waukesha, WI, United States). The His-tag was selectively cleaved from the
recombinant proteins using a recombinant enterokinase (Novagen, Madison, WI, USA)
according to the manufacturer’s protocol. Purified AplaCSP4 was dialyzed in a 50 mM
Tris, and the protein concentration was then accurately determined using the Bradford
protein assay.

Fluorescence competitive binding assays
Fluorescence competitive binding assayswere conducted according to themethod described
byWang et al. (2021). Specifically, the binding affinities of AplaCSP4 for 43 volatile organic
compounds were determined using F-380 fluorescence spectrophotometer (Tianjin, China)
with a 10 nm slits and a 1 cm light path. These 43 substances are common green leaf volatiles,
among which 16 volatiles originate from the ash tree. As the fluorescent probe, N-phenyl-
1-naphthylamine (1-NPN) was excited at the wavelength of 337 nm, and emission spectra
were recorded between 390 and 530 nm. Utilizing N-phenyl-1-naphthylamine (1-NPN) as
the fluorescent probe, excitation was set at 337 nm, with emission spectra captured in the
range from 390 nm to 530 nm. To quantify the binding affinity of 1-NPN to AplaCSP4,
a 2 µM solution of the purified protein in 50 mM Tris–HCl buffer (pH 7.4) was titrated
with aliquots of 1-NPN (one mM in methanol) to achieve final concentrations between 2
and 16 µM.

Competitive binding assays were conducted by titrating a solution containing both
AplaCSP4 protein and 1-NPN, each at a concentration of two µM, with aliquots of a
1 mM methanol solution of the ligand, achieving final concentrations ranging from 2 to
20 mM. The dissociation constants of the competitors were determined using the equation
KD = IC50/(1 + [1-NPN]/K1−NPN), in which IC50 represents the concentration of the
ligand required to reduce the initial fluorescence intensity of 1-NPN by half, [1-NPN]
denotes the free concentration of 1-NPN, and K1−NPN indicates the dissociation constant
characterizing the AplaCSP4/1-NPN complex. The experiments were executed in triplicate
for ligands that demonstrated significant binding affinity, while those ligands exhibiting
minimal binding were subjected to a single experiment.

Molecular docking and dynamic simulation
The signal peptide of AplaCSP4 was removed and subsequently used to construct
a 3D protein model using AlphaFold3 (https://alphafoldserver.com/). The AplaCSP4
structure minimization was performed using the ff14sb force field on Wemol (https:
//wemol.wecomput.com/ui/#/). A Ramachandran plot was generated using the online tool
PROCHECK to assess the quality of the constructed 3D model. Molecular docking of
AplaCSP4 with farnesene was performed using CB-Dock 2 (https://cadd.labshare.cn/cb-
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dock2/php/index.php). The conformation with the highest score is used for molecular
dynamics simulation. The GROMACS 2024 was used to perform the protein-ligand
complex molecular dynamics simulation, and the AMBER03 force field was selected in
conjunction with the TIP3P water model. Energy minimization was performed using
the steepest descent method (Steep), with the energy convergence threshold set at 10
kJ/mol/nm. The simulation was conducted under the NPT ensemble, with a coupling
reference pressure of one bar and a temperature maintained at 300 K. The simulation
time step was 0.002 ps, and the total simulation duration was 200 ns. MMPBSA was used
to calculate the binding energy. With different initial velocity random assignments,
the molecular dynamics simulation was repeated using the same parameters. The
conformation of the last frame was used for the analysis of the interactions between
the protein and the ligand by applying PyMOL 2.6.0 (https://pymol.org/) and Maestro 14.1
(https://www.schrodinger.com/).

RESULTS
Sequence analysis of AplaCSP4
The nucleotide sequence of AplaCSP4 was verified by molecular cloning and sequencing.
Analysis of the AplaCSP4 sequence revealed a full-length ORF consisting of 390 nucleotides
that encode 130 amino acid residues (Fig. S1). The results of multiple sequences alignment
displayed that the AplaCSP4 possessed the typical chemosensory protein conserved domain
of C1-X6-C2-X18-C3-X2-C4 and contained seven α helices (Fig. 1).

The expression level of AplaCSP4 in various tissues
RT-PCR was employed to assess the expression of AplaCSP4 in the antennae, heads,
and bodies of both female and male individuals. The findings revealed that AplaCSP4 was
specifically and prominently expressed in the antennae of both sexes (Fig. 2). The qRT-PCR
results demonstrated that the mRNA expression level of AplaCSP4 in female antennae was
1.91-fold higher than that in male antennae (P = 0.0002) (Fig. 2).

Binding characteristic of recombinant AplaCSP4
AplaCSP4 was expressed in a bacterial system and subsequently utilized to screen for
potential ligands of AplaCSP4. The protein was purified using affinity chromatography
on Ni columns and employed for ligand-binding experiments. The size and purity of the
recombinant protein were assessed by SDS-PAGE (Fig. 3).

The binding affinities of AplaCSP4 for 43 volatile compounds were quantified using
fluorescence competition binding assays, employing 1-NPN as a fluorescent probe. The
binding affinity constant (KD) between 1-NPN and AplaCSP4 was determined to be 9.36
µM, thereby validating 1-NPN as a suitable fluorescent reporter (Fig. 4). The binding
experiments demonstrated that AplaCSP4 exhibited binding interactions with 11 volatile
compounds, encompassing esters, alkanes, terpenes, terpenoids, and terpenols, with KD

values ranging from 0.25 to 11.47µM.Among the 11 plant volatiles, six are derived from the
ash tree, including dodecane, myrcene, ocimene, farnesene, (+)-limonene, and nerolidol.
Notably, farnesene displayed the strongest binding affinity, with a KD value of 0.25 µM
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Figure 1 Multiple sequence alignment of Agrilus planipennis CSP4 (AplaCSP4) with different species.
The signal peptide is marked by a black line. The four conserved cysteines are indicated by the blue arrow.
The seven α helices are represented with α1-7 according to the AplaCSP4 structure.

Full-size DOI: 10.7717/peerj.19812/fig-1

(Fig. 4 and Table 1). Additionally, AplaCSP4 exhibited moderate binding affinities with
cis-3-hexenyl benzoate, n-octane, decane, dodecane, myrcene, nerolidol, and β-ionone,
with KD values ranging from 1.38 to 9.90 µM (Fig. 4 and Table 1). Conversely, ocimene,
(+)-limonene and hexyl butyrate exhibited relatively low binding affinities, with KD values
of 10.43, 11.34 and 11.47 µM, respectively (Fig. 4 and Table 1).

Molecular docking and dynamic simulation
The Ramachandran plot was used to assess the rationality of the minimized structure
of AplaCSP4 and revealed that 100% of residues were in the allowed region (Fig. S2),
indicating the predicted model of AplaCSP4 was reasonable and reliable. The AplaCSP4
contained 7 helices (α 1–7) (Fig. S2).

The volatile compound farnesene, which exhibited the highest binding affinity in the
fluorescence competition binding assay, was selected formolecular docking with AplaCSP4.
The conformation with the highest docking score was subsequently employed formolecular
dynamics (MD) simulation with dual-replicate. The results of the two molecular dynamics
simulations indicate that the rootmean square deviation (RMSD) reaches a stable state after
125 ns (Fig. 5). Additionally, the root mean square fluctuations (RMSF) were displayed
in Fig. 5. The results of the MMPBSA analysis showed that the binding energy between
AplaCSP4 and farnesene was −31.830 ± 2.015 kcal/mol and −32.585 ± 2.011 kcal/mol
in dual-replicate molecule dynamics simulations (Table 2). Both molecular dynamics
simulations demonstrated that farnesene binds within the same hydrophobic binding
pocket of AplaCSP4 (Fig. 6), with binding site coordinates at (30.558, 30.106, 31.277) and
(31.075, 29.304, 31.781), respectively. The energy contributions of the amino acid residues
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Figure 2 Tissue-specific expression of Agrilus planipennis chemosensory protein 4 (AplaCSP4) gene
in male and female adult. (A) indicates the expression of AplaCSP4 in female antennae (FA), female head
(FH), female body, male antennae (MA), male head, and male body (MB). β-actin was used as a control
gene. NC was negative control. (B) displays the mRNA expression level of AplaCSP4 in FA and MA. Error
bars represent the standard error (SE), and ‘‘***’’ indicates the P-value< 0.001.

Full-size DOI: 10.7717/peerj.19812/fig-2

in the active site are depicted in Fig. 7, where van derWaals forces represent the predominant
interaction forces between the amino acids and farnesene. The centroid distance between
farnesene and binding pocket of AplaCSP4 was analyzed by two molecular dynamics
simulations, and the results indicated that the average centroid distance of farnesene from
AplaCSP4 active center was 0.13 ± 0.004 nm and 0.16 ± 0.004 nm in both simulations,
and the average centroid distance of carbon atom between farnesene and the side chain of
hydrophobic amino acids was 1.41 ± 0.003 nm and 1.39 ± 0.002 nm (Fig. 8), it suggested
that the farnesene has stable interaction with AplaCSP4.

DISCUSSION
As a native pest inNortheast Asia and an invasive pest in Europe andAmerica,A. planipennis
has caused significant ecological and economic damage by infesting and killing ash trees
in these regions (Herms & McCullough, 2014; Liebhold et al., 2024; Morin et al., 2017).
Understanding the mechanisms underlying its host recognition and olfactory perception
is crucial for developing effective pest management strategies. Some studies have reported
the chemosensory proteins are critical in the transport of volatiles and pheromones in
various insects, such as Agrilus mali, Halyomorpha halys, and Frankliniella occidentalis (Jia
et al., 2024; Li et al., 2021a; Li et al., 2022; Wang et al., 2021). Previously, 14 chemosensory
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Figure 3 The recombinant chemosensory protein 4 of Agrilus planipennis (AplaCSP4) is analyzed
using SDS-PAGE. M, Protein molecular weight marker; 1, Non-induced Escherichia coli; 2, Induced
E. coli; 3, Supernatant; 4, Inclusion body protein; 5, Recombinant AplaCSP4 with His-tag; 6, Recombinant
AplaCSP4 without His-tag.

Full-size DOI: 10.7717/peerj.19812/fig-3

protein genes have been identified from A. planipennis genome (Andersson, Keeling &
Mitchell, 2019). The expression profiles of these genes across various tissues were elucidated
via RT-PCR. Notably, AplaCSP4 and AplaCSP5 were found to be highly enriched in the
antennae of both female andmale individuals (Fig. S1).However, AplaCSP5 failed to exhibit
detectable expression in heterologous systems. AplaCSP12 (anAplaCSP4 paralog) displayed
specific expression in the head (without antennae) (Fig. S3). Given these findings, this study
focuses on AplaCSP4, a protein that is highly expressed in the antennae of A. planipennis.
It shows the capacity to bind to specific volatiles tested in this study and has a binding
pocket that strongly interacts with the tested ligand farnesene.

Our results showed that AplaCSP4 is prominently expressed in the antennae of both
male and female A.planipennis. More importantly, the expression level in female antennae
was 1.91 times higher than in males, indicating that AplaCSP4 might be associated with
host location for oviposition behaviors in females, which aligns with previous findings that
female A. planipennis are more responsive to host volatiles than males (Rodriguez-Saona et
al., 2006). This sex-specific expression pattern highlights the importance of AplaCSP4 in
the olfactory-driven behaviors of A. planipennis.
β-ionone is a common volatile compound in pine, cedar, and elm trees (Henke et

al., 2015; Zhang et al., 2022), and it has been shown repellent activity against female A.
planipennis, as well as Phyllotreta cruciferae and Cnaphalocrocis medinalis (Cáceres et al.,
2016; Sun et al., 2016). Our results indicate that AplaCSP4 exhibits a high binding affinity
for β-ionone. Although, the behavioral response of A. planipennis to ash tree volatiles
such as dodecane, myrcene, ocimene, farnesene, (+)-limonene, and nerolidol (Crook
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Figure 4 Binding properties of recombinant chemosensory protein 4 of Agrilus planipennis
(AplaCSP4) to different ligand. (A) presents the binding curve of the fluorescence probe 1-NPN
with AplaCSP4. (B) shows the scatter plot of the bound/free ratio versus the concentration of bound
1-NPN. (C) indicates the competitive binding curves of volatile compounds to AplaCSP4.

Full-size DOI: 10.7717/peerj.19812/fig-4

et al., 2008; Rigsby et al., 2017; Rodriguez-Saona et al., 2006) have not been determined,
the farnesene and nerolidol exhibited attractive activity to Mythimna separata, and
the CSP14 of M. separata (MsepCSP14) played a critical role in the identification of
farnesene and nerolidol (Younas et al., 2022). Our results demonstrate that AplaCSP4 has
a particularly high binding affinity for farnesene and nerolidol. AplaCSP4 also exhibited
binding capabilities to dodecane, myrcene, ocimene, and (+)-limonene. This suggests that
AplaCSP4 may play a crucial role in the recognition of host plant volatile compounds,
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Table 1 Binding affinities of Agrilus planipennis chemosensory protein 4 (AplaCSP4) for 43 volatiles.

Ligands Source CAS number Purity (%) KD ±SE
(µM)

cis-3-Hexenyl acetate* TCI 3681-71-8 >97.0 –
Methyl salicylate* TCI 119-36-8 >99.0 –
Hexyl acetate* TCI 142-92-7 >99.0 –
trans-2-Hexenyl acetate TCI 2497-18-9 >97.0 –
cis-3-Hexenyl benzoate TCI 25152-85-6 >98.0 4.29± 0.18
Hexyl butyrate TCI 2639-63-6 >98.0 11.47± 0.42
cis-3-Hexenyl isovalerate TCI 35154-45-1 >98.0 –
cis-3-Hexenyl isobutyrate TCI 41519-23-7 >95.0 –
Methyl benzoate TCI 93-58-3 >99.0 –
Nonanal TCI 124-19-6 >95.0 –
Benzaldehyde TCI 100-52-7 >98.0 –
Valeraldehyde TCI 110-62-3 >95.0 –
Decanal TCI 112-31-2 >97.0 –
Octanal TCI 124-13-0 >98.0 –
trans-2-Heptenal TCI 18829-55-5 >95.0 –
Hexanal* TCI 66-25-1 >98.0 –
trans-2-Hexenal* TCI 6728-26-3 >97.0 –
1-Hexanol* TCI 111-27-3 >98.0 –
1-Octanol TCI 111-87-5 >99.0 –
1-Octen-3-ol TCI 3391-86-4 >98.0 –
cis-3-Hexen-1-ol* TCI 928-96-1 >97.0 –
n-Octane TCI 111-65-9 >97.0 4.83± 0.11
Decane TCI 124-18-5 >99.5 2.87± 0.44
Dodecane* TCI 112-40-3 >99.5 1.93± 0.09
Tetradecane TCI 629-59-4 >99.5 –
4′-Ethylacetophenone* TCI 937-30-4 >97.0 –
2-Hexanone TCI 591-78-6 >98.0 –
Isobornyl acetate TCI 125-12-2 >90.0 –
(±)-Citronellal TCI 106-23-0 >98.0 –
Myrcene* TCI 123-35-3 >75.0 9.90± 0.34
Ocimene* SIGM 13877-91-3 ≥90 10.43± 1.11
β-Ionone TCI 14901-07-6 >95.0 4.23± 0.07
(-)-β-Pinene* TCI 18172-67-3 >94.0 –
1,8-Cineole* TCI 470-82-6 >99.0 –
Farnesene* SIGM 502-61-4 >90 0.25± 0.07
Citral TCI 5392-40-5 >96.0 –
(+)-Limonene* TCI 5989-27-5 >99.0 11.34± 0.69
(R)-(-)-Carvone TCI 6485-40-1 >99.0 –
Nerolidol* TCI 7212-44-4 >97.0 1.38± 0.03

(continued on next page)
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Table 1 (continued)

Ligands Source CAS number Purity (%) KD ±SE
(µM)

Linalool* TCI 78-70-6 >96.0 –
β-Caryophyllene* TCI 87-44-5 >90.0 –
Eugenol TCI 97-53-0 >99.0 –
Phenylacetonitrile TCI 140-29-4 >98.0 –

Notes.
KD, dissociation constant; KD < 1, Strong binding; 1 ≤ KD ≤ 10, Moderate binding; KD > 10, Weak binding; SE, Standard
error.
We consider the AplaCSP4 had no binding with the tested ligands if the IC50 values >16 µM and KD values were not to be
calculated and are represented as ‘‘–’’. Data are means of three independent experiments and represents mean± SE.
*denotes the volatiles found in the ash tree (Rodriguez-Saona et al., 2006; Crook et al., 2008; Rigsby et al., 2017).

Figure 5 Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of Agrilus
planipennis chemosensory protein 4 (AplaCSP4) and farnesene during twomolecular dynamics simu-
lations. (A) and (B) indicate the RMSD and RMSF of the first molecular dynamics simulation, and C and
D show the second molecular dynamics simulation.

Full-size DOI: 10.7717/peerj.19812/fig-5

while biological functional of AplaCSP4 in response the behavior for host plant volatile
needed to further confirm.

To explore the binding mode of AplaCSP4 with its ligands, molecular docking and
dynamics simulation were performed using farnesene, a volatile compound that exhibited
the strongest binding affinity to AplaCSP4 in the fluorescence competition binding assay.
The results demonstrated that farnesene binds within the same hydrophobic pocket of

Li et al. (2025), PeerJ, DOI 10.7717/peerj.19812 12/19

https://peerj.com
https://doi.org/10.7717/peerj.19812/fig-5
http://dx.doi.org/10.7717/peerj.19812


Table 2 Binding energy of Agrilus planipennis chemosensory protein 4 (AplaCSP4) with farnesene in dual-replicate dynamics simulations.

Repeat dG (kJ/mol) VDW (kJ/mol) ELE (kJ/mol) PB (kJ/mol) SA (kJ/mol) TdS

1 −133.176± 8.429 −156.052± 8.319 −1.821± 0.836 30.442± 3.987 −21.999± 0.642 −16.254
2 −136.337± 8.413 −154.460± 8.491 −2.116± 1.168 26.659± 3.715 −21.941± 0.601 −15.521

Notes.
dG, Gibbs Free Energy Change; VDW, Van der Waals energy; ELE, Electrostatic energy; PB, Polar solvation energy; SA, Nonpolar solvation energy; Tds, Temperature
times Entropy Change.
dG=VDW+ELE+PB+SA-Tds.

Figure 6 Binding conformations of Agrilus planipennis chemosensory protein 4 (AplaCSP4) with
farnesene in the last frame of dual-replicate molecular dynamics simulations. (A) compares the binding
sites of farnesene in AplaCSP4 from the two molecular dynamics simulations, with green representing
the results of the first simulation and red representing the second. (B) and (C) show the binding pocket
and interactions of farnesene with AplaCSP4 in the first molecular dynamics simulation, while (D) and
(E) present the binding pocket and interactions of farnesene with AplaCSP4 in the second molecular
dynamics simulation.

Full-size DOI: 10.7717/peerj.19812/fig-6
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Figure 7 Contribution of key amino acids in the binding pocket of Agrilus planipennis chemosensory
protein 4 (AplaCSP4) to binding energy. (A) and (B) present the results of dual-replicate molecular dy-
namics simulations. VDW, Van der Waals energy; ELE, Electrostatic energy; PB, Polar solvation energy;
SA, Nonpolar solvation energy; Binding= VDW+ELE+PB+SA.

Full-size DOI: 10.7717/peerj.19812/fig-7

AplaCSP4 in dual-replicate molecule dynamics simulations, and with strong binding
energies of −31.830 ± 2.015 kcal/mol and −32.585 ± 2.011 kcal/mol, indicating that
AplaCSP4 has a stable interaction with farnesene. Additionally, by analyzing the centroid
distance between farnesene and the binding pocket of AplaCSP4, it was revealed that the
binding mode of farnesene to AplaCSP4 remained relatively stable throughout the two
molecular dynamics simulations, indicating that these residues (showing in Fig. 7) are
relatively conserved and play a crucial role in stabilizing the ligand-binding pocket.

Our findings are consistent with previous studies on CSPs in other insects, which have
shown that these proteins play a significant role in odorant detection and host recognition
(Li et al., 2021b; Yang et al., 2025). The specific expression of AplaCSP4 in the antennae
and its strong binding affinity for host volatiles highlight the importance of CSPs in the
olfactory system of A. planipennis. The current research demonstrates only in vitro and
in silico validation of AplaCSP4, but additional validations by in vivo experiments (gene
silencing or editing) and behavioral assays are needed to demonstrate the actual biological
function. This study extends our understanding of the molecular mechanisms underlying
host recognition in invasive pests and may provide a foundation for developing novel pest
management approaches.
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Figure 8 The distance change between farnesene and the binding pocket of Agrilus planipennis
chemosensory protein 4 (AplaCSP4) during twomolecular dynamics simulations. (A) and (C)
indicate the centroid distance between farnesene and key amino acids in the binding pocket, (B) and (D)
present the centroid distance between the carbon atoms of farnesene and the side-chain carbon atoms of
hydrophobic amino acids in the binding pocket. Blue represents the results of the first simulation, yellow
represents the second simulation, and red dashed lines indicate the mean values, with numerical values
display in black boxes as mean± standard error.

Full-size DOI: 10.7717/peerj.19812/fig-8

CONCLUSION
In conclusion, our study elucidates the role of AplaCSP4 in the olfactory perception of
A. planipennis and its potential contribution to host recognition. The specific expression
pattern, binding characteristics, and structural analysis of AplaCSP4 may provide valuable
insights into the molecular mechanisms underlying plant volatiles identification in this
invasive beetle. These findings have significant implications for developing novel olfactory-
based pest management strategies that could help mitigate the ecological and economic
damage caused by A. planipennis. Future research should focus on further characterizing
the interactions between AplaCSP4 and host volatiles, as well as exploring the potential
application of these findings in pest control programs.
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