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Ornithodirans represent a diverse and highly successful clade that encompasses a wide
array of morphologies and ecological adaptations.This group includes volant forms such as
the Jurassic long-tailed pterosaur Rhamphorhynchus , a derived non-pterodactyloid
species. It was a medium-sized that foraged extensively in Solnhofen lagoons, piscivorous
pterosaur characterized by a prow-shaped lower jaw and procumbent teeth.Additionally, it
comprises theropod dinosaurs such as Halszkaraptor escuilliei , a dromaeosaurid from
Mongolia that exhibits exhibits morphological traits suggesting a semi-aquatic lifestyle. In
this study, we evaluated the aerobic performance of these two extinct ornithodirans by
using femoral metadiaphyseal nutrient foramen dimensions as a proxy for maximal
metabolic rate (MMR), based on an extant-amniote dataset of reference. Through the
femoral artery dimensions, we estimated femoral blood ûow (Qï ) and retrodicted mass-
independent MMR for both Halszkaraptor escuilliei and a juvenile individual of
Rhamphorhynchus . Our ûndings reveal similar femoral blood ûow rate and mass-
independent MMR values between the taxa, despite their extreme diûerences in ontogeny,
lifestyle, locomotory behavior and ecosystem. The juvenile Rhamphorhynchus displays an
elevated MMR inûated due to elevated femoral perfusion associated with growth demands.
While for the Halszkaraptor escuilliei , the predicted mass-independent MMR aligns with
values observed in extant ground-dwelling emus and migratory shorebirds such as gulls
and terns, but it falls below the high MMR value in ducks. Further investigation into adult
specimens of Rhamphorhynchus is needed to reûne our understanding of aerobic capacity
in non-pterodactyloid pterosaurs, particularly regarding their ability to sustain powered
ûight and takeoû. This study advances knowledge on the physiological strategies of extinct
taxa, ûlling gaps in paleophysiological reconstructions.
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41 Abstract

42 Ornithodirans represent a diverse and highly successful clade that encompasses a wide array of 
43 morphologies and ecological adaptations. This group includes volant forms such as the Jurassic 
44 long-tailed pterosaur Rhamphorhynchus, a derived non-pterodactyloid species. It was a medium-
45 sized that foraged extensively in Solnhofen lagoons, piscivorous pterosaur characterized by a 
46 prow-shaped lower jaw and procumbent teeth. Additionally, it comprises theropod dinosaurs 
47 such as Halszkaraptor escuilliei, a dromaeosaurid from Mongolia that exhibits exhibits 
48 morphological traits suggesting a semi-aquatic lifestyle. In this study, we evaluated the aerobic 
49 performance of these two extinct ornithodirans by using femoral metadiaphyseal nutrient 
50 foramen dimensions as a proxy for maximal metabolic rate (MMR), based on an extant-amniote 
51 dataset of reference. Through the femoral artery dimensions, we estimated femoral blood flow 
52  and retrodicted mass-independent MMR for both Halszkaraptor escuilliei and a juvenile 
53 individual of Rhamphorhynchus. Our findings reveal similar femoral blood flow rate and mass-
54 independent MMR values between the taxa, despite their extreme differences in ontogeny, 
55 lifestyle, locomotory behavior and ecosystem. The juvenile Rhamphorhynchus displays an 
56 elevated MMR inflated due to elevated femoral perfusion associated with growth demands. 
57 While for the Halszkaraptor escuilliei, the predicted mass-independent MMR aligns with values 
58 observed in extant ground-dwelling emus and migratory shorebirds such as gulls and terns, but it 
59 falls below the high MMR value in ducks. Further investigation into adult specimens of 
60 Rhamphorhynchus is needed to refine our understanding of aerobic capacity in non-
61 pterodactyloid pterosaurs, particularly regarding their ability to sustain powered flight and 
62 takeoff. This study advances knowledge on the physiological strategies of extinct taxa, filling 
63 gaps in paleophysiological reconstructions.
64

65 Keywords: aerobic performance, dinosaur, maximum oxygen consumption, metabolic rate, 
66 pterosaur.     
67

68 Introduction

69     Maximal metabolic rate (MMR), also referred to as the maximal rate of oxygen consumption 
70 (VO2max), represents the highest aerobic metabolic rate achieved during exercise and defines 
71 the upper limit of sustained metabolic performance (Bennett & Ruben, 1979; Weibel et al., 
72 2004). In extant amniotes, MMR can be directly measured during physical activity using a circuit 
73 respirometer. For volant taxa, this involves measurements during forced flight (Hails, 1979; 
74 Norberg, 1996), while for terrestrial species, metabolic rates are assessed using treadmill running 
75 (Fedak et al., 1974; Taylor et al., 1982; Seymour et al., 2008). For swimming amniotes such as 
76 ducks, penguins and sea turtles, MMR is measured in controlled-flow swim channels (Prange & 
77 Schmidt-Nielsen, 1970; Prange 1976; Kooyman & Ponganis, 1994).   
78 In extinct archosaurs, reconstructing maximal aerobic capacity has posed significant challenges, 
79 leading to the development of indirect methods based on fossilized bone structures (Seymour et 
80 al., 2012; Knaus et al., 2021; Varela et al., 2024). Among various methodologies, the "foramen 
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81 technique" (Seymour et al., 2012), has proven particularly effective. This approach estimates 
82 regional blood flow by measuring the size of foramina in long bones. Since long bones require 
83 blood perfusion for remodeling, which repairs microfractures induced by locomotion and weight-
84 bearing stresses (Lieberman et al., 2003; Eriksen, 2010), nutrient foramen size provides a useful 
85 proxy for bone perfusion and aerobic capacity. A nutrient artery transpasses the femoral shaft 
86 through the nutrient foramen, typically accompanied by a vein (Currey, 2002), and the size of the 
87 foramen correlates dynamically with the size of the vessels it contains. The maximal metabolic 
88 rate is therefore tied to the size of the nutrient artery and the corresponding blood flow supplying 
89 the bone (Seymour et al., 2019). In mature terrestrial vertebrates, femoral blood flow is 
90 positively correlated with locomotor activity levels, with relatively larger nutrient foramina 
91 occurring in species with elevated metabolic rates during locomotion (Allan et al., 2014; 
92 Newham et al., 2020). According to Seymour et al. (2012), the proximate causation of this 
93 relationship would be linked to the fact that tetrapods with high activity levels undergo 
94 biomechanical constraints producing microfractures that are repaired through secondary 
95 (Haversian bone) remodelling necessitating high oxygen consumption. The application of 
96 phylogenetic eigenvector maps (PEMs; Guénard et al., 2013) to reconstruct metabolic rates in 
97 extinct amniotes has been adopted in the last decade (Legendre et al., 2016; Fleischle et al., 
98 2018; Cubo et al., 2024). PEMs provide a framework to infer the metabolic profiles of extinct 
99 organisms by integrating phylogenetic and morphological data. When combined with the 

100 foramen technique, PEMs have been used to estimate mass-independent MMR in other 
101 archosaur group, extinct pseudosuchians (Cubo et al. 2024; Sena et al., 2023; 2025).  
102 In this study, we used these methods by integrating a comprehensive phylogenetic amniote 
103 database with their corresponding nutrient artery blood flow measurements computed using the 
104 foramen technique and the previously measured MMR values. This combined approach is 
105 applied to retrodict the mass-independent MMR of two extinct ornithodirans with extremely 
106 different lifestyle and locomotory behaviors: a Jurassic pterosaur and a Cretaceous 
107 dromaeosaurid. Specifically, we focus on Rhamphorhynchus, a basal, medium-sized, piscivorous 
108 pterosaur from the Late Jurassic Plattenkalks of southern Germany. Characterized by a prow-
109 shaped lower jaw and forward-angled (procumbent) teeth, Rhamphorhynchus was well-adapted 
110 for foraging extensively in aquatic environments (Voeten et al., 2018; Witton et al., 2018) and 
111 Halszkaraptor escuilliei, a Late Cretaceous dromaeosaurid theropod hypothesized to possess an 
112 amphibious ecomorphology, potentially relying on neck hyperelongation for predatory foraging 
113 (Cau et al., 2017; Cau, 2020). We aim to elucidate the metabolic capacities of these two 
114 ornithodirans.  
115  
116 Institutional Abbreviations  
117 MdC, Musée des Confluences, Lyon, France. MPC, Institute of Paleontology and Geology, 
118 Mongolian Academy of Sciences, Ulaanbaatar, Mongolia.   
119 Add your introduction here.

120
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121 Materials & Methods

122 Material and foramen measurements  
123 We examined the 3D models of the basal pterosaur Rhamphorhynchus sp. MdC 20269891 from 
124 Solnhofen Plattenkalk, Germany (Upper Jurassic) and the theropod Halskaraptor escuilliei MPC 
125 D-102/109 from Djadokhta Formation, Mongolia (Campanian). These fossils were imaged using 
126 propagation phase-contrast synchrotron microtomography at the European Synchrotron 
127 Radiation Facility for previous microanatomical and morphological investigations (Cau et al., 
128 2017; Voeten et al., 2018).    
129 Metadiaphyseal and nutrient foramina openings were measured from the 3D reconstructions of 
130 H. escuilliei and Rhamphorhynchus sp. The foramina areas found on the femora were measured 
131 with ImageJ/Fiji (Schindelin et al., 2012) (https://imagej.net/Fiji). For comparative purposes, we 
132 assumed that the foramen area was the same as that of a geometric circle. To estimate nutrient 
133 artery blood flow rate  ml s-1) in the femora we applied the curved polynomial equation:  
134 log   log ri2 + 1.91 log ri + 1.82 (Seymour et al., 2019), 
135 where ri is the arterial lumen radius extracted from the arterial lumen area which corresponds to 
136 about 20% of the total foramen area (Hu et al., 2022).  
137  
138 Maximal Metabolic rate retrodictions and recovered unit  
139 To retrodict the mass-independent MMRs of the fossil taxa we constructed a phylogenetic 
140 inference model where the dataset of extant species was collected from published literature 
141 composed of MMRs, body masses and the nutrient artery  values of 43 extant mammals 
142 (n=15), non-avian sauropsids (n=14), and avian sauropsids (n=14) (Supplementary files). It is 
143 well established that larger animals have greater metabolic needs in mLO2 h-1 but lower 
144 metabolic needs in mLO2 h-1 g-1, metabolic rate in mLO2 h-1 increases with body mass following 
145 an exponential relationship, with an exponent lower than 1 (Schmidt-Nielsen, 1984). We 
146 compared three taxonomic groups according to their metabolic features and the time of 
147 evolutionary divergence. We transformed their different allometric exponents to a common 
148 value. Here, we employed the 0.87 exponent to body mass unit (expressed in grams) for all the 
149 amniotes in our dataset. This exponent corresponds to the phylogenetic mean recovered using 
150 Mesquite (Maddison & Maddison, 2014). This generates a single character matrix of distinct 
151 extant species body mass allometric exponents 0.829 for non-avian sauropsids (Seymour, 2013), 
152 0.87 for synapsids (White & Seymour 2005) and 1.02 for avian species (Allan et al., 2014) and a 
153 question mark for fossil taxa. This approach is more aligned with evolutionary principles and 
154 was taken into consideration in an earlier study (Sena et al., 2025). In this case, the phylogenetic 
155 exponent recovered was 0.87, so mass-independent MMR data have units of mLO2 h-1 g-0.87.  
156  
157 Phylogenetic Framework  
158 We derived the phylogenetic relationships of Neornithes from Stiller et al. (2024), employing 
159 Zurano et al. (2019) for Cetartiodactyla, Upham et al. (2019) for other mammals, Pyron et al. 
160 (2013) and Vidal & Hedges (2005) for squamates in general and Villa et al. (2018) for varanid 
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161 lizards. Branch length data for extant taxa were gathered from the Time Tree of Life 
162 (timetree.org, accessed November 29, 2024), and those for the extinct ones from the 
163 Paleobiology Database (paleobiodb.org, accessed November 29, 2024). 
164   
165 Phylogenetic comparative method   
166 Paleobiology inference models for mass-independent MMR were constructed using phylogenetic 
167 eigenvector maps (PEM) from the �MPSEM� package (Guénard et al., 2013) in R (R Core 
168 Team, 2023). The model allowed us to retrodict the mass-independent MMR values, along with 
169 their 95% confidence intervals, for the two ornithodiran fossils. The normality of the residuals 
170 was checked using the Shapiro-Wilk test.
171

172

173 Results

174 The pterosaur Rhamphorhynchus sp. MdC 20269891 and the theropod Halskaraptor escuilliei 
175 MPC D-102/109 have similar calculated nutrient artery flow rate  respectively 0.0017 ml s-1 
176 and 0.0010 ml s-1 based on their metadiaphyseal and nutrient foramen openings (Fig. 1). 
177  
178 Insert Figure 1 here 
179  
180 The retrodicted mass-independent MMR value for the �long-tailed� pterosaur Rhamphorhynchus 
181 sp. was 5.55 mLO2 h-1 g-0.87 (95% CI = 4.37-7.05) and the theropod Halskaraptor escuilliei MPC 
182 D-102/109 was 5.68 mLO2 h-1 g-0.87 (95% CI = 4.44-7.26). and the �long-tailed� pterosaur 
183 Rhamphorhynchus sp. was  The predictive model included the phylogenetic eigenvectors 1, 2, 3, 
184 4, 5, 6, 8, 9, 20, 22, 23, 27, 28, and 41, and the estimated nutrient artery  as the co-predictor 
185 (adjusted R2 = 0.90; AICc = 56.79; and p = 3.501e-12) (Fig. 2). Leave-one-out cross-validation 
186 tests showed no significant difference between predicted and observed values for extant species 
187 (p = 0.7788).    
188  

189 Insert Figure 2 here 
190

191 Discussion

192 The dromaeosaurid Halszkaraptor escuilliei, estimated to have a body mass of 1.5 kg (Cau et al., 
193 2017), represents a mallard-sized theropod that likely reached maturity. In contrast, the examined 
194 Rhamphorhynchus individual, weighing approximately 95 g, is identified as a juvenile based on 
195 its small size (see supplementary of Voeten et al., 2018) and its wingspan ranging from 45 to 50 
196 cm based on Prondvai et al. (2012). Despite their distinct ecomorphologies, the two sampled 
197 ornithodirans exhibit similar mass-independent MMR and femoral nutrient artery  This 
198 suggests a strong influence of phylogenetic constraints on the outcomes of predictive energy 
199 modeling.  
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200 The mass-independent MMR inferred for H. escuilliei aligns with that measured in Varanus 

201 gouldii, an athletic monitor lizard, and certain avian taxa, such as emus (Dromaius 

202 novaehollandiae), gulls (Larus), and terns (Sterna). Similarly, the aerobic capacity of 
203 Rhamphorhynchus also overlaps with that of V. gouldii, a predatory lizard known for its 
204 enhanced oxygen transport capabilities. Monitor lizards achieve aerobic scopes and sustainable 
205 running speeds more than twice those of similar size lizards due to adaptations such as increased 
206 lung surface area, blood buffers, and myoglobin-rich skeletal muscles (Bartholomew & Tucker, 
207 1964; Bennett, 1972; 1973). These features suggest the importance of morphological investments 
208 in oxygen transport systems for achieving high aerobic performance (Bennett & Ruben, 1979).  

209 Flightless ratites emus possess increased hindlimb muscle and heart mass compared to cursorial 
210 phasianids, enabling sustained locomotor activity (Hartman, 1961; Grubb et al., 1983). In 
211 exercising emus, the V02max is 10 times greater than their resting values (Grubb et al., 1983). 
212 Conversely, non-migratory cursorial phasianids, such as guinea fowl (Numida meleagris) and 
213 jungle fowl (Gallus), are adapted for rapid escape flights, maximizing takeoff performance for 
214 avoiding predation (Witter et al., 1994). However, they exhibit lower endurance and aerobic 
215 performance due to limited flight muscle aerobic capacity (Kiessling, 1977; Ellerby et al., 2003; 
216 Askew & Marsh, 2001; Henry et al., 2005). The contribution of flight muscles to organismal 
217 aerobic scope in these birds, even if combined with leg activity is small (Hammond et al., 2000). 
218 Halszkaraptor, interpreted as an amphibious dromaeosaurid, likely combined vigorous hindlimb 
219 activity for terrestrial locomotion, similar to flightless ratites with the use of its forelimbs for 
220 swimming. The plesiomorphic glenoid condition characteristic of paravians, which is also 
221 inferred for Halszkaraptor, may have served as a potential exaptation for a forelimb-assisted 
222 swimming style (Cau et al., 2017; Cau, 2020). However, its aerobic capacity appears to be lower 
223 than that of highly specialized swimmers, such as ducks (Anas spp.). This suggests that 
224 Halszkaraptor may have been less efficient in aquatic environments compared to these highly 
225 adapted species (e.g., mallard).  

226 The early stage of the Rhamphorhynchus contributes to the overestimation of its mass-
227 independent MMR, driven by the rapid growth rates typical of juvenile pterosaurs, as confirmed 
228 by osteohistological studies in both non-pterodactyloid and pterodactyloid pterosaurs (Prondvai 
229 et al., 2012; Araújo et al., 2023). Previous analyses of Rhamphrorhychus suggest the flight 
230 capability was likely achieved when individuals reached approximately 30-50% of the wingspan 
231 of an adult individual and 7-20% of the adult body mass (Prondvai et al., 2012). Recent findings 
232 indicate that the largest known specimen of Rhamphorhynchus had an estimated wingspan of 1.8 
233 m and a body mass of about 3 kg (Hone and McDavid, 2025). This underscores that, despite its 
234 high mass-independt MMR value, our specimen represents a small individual that likely did not 
235 have flight capabilities at this stage. Juveniles often exhibit relatively larger foramen areas due to 
236 the increased perfusion required for rapid growth. For example, growing kangaroos display 
237 larger femoral nutrient foramen areas compared to adults, reflecting higher energy demands for 
238 bone development (Hu et al., 2018). A similar pattern is observed in laying oviparous females, 
239 where increased femoral blood flow supports calcium mobilization for eggshell formation (Hu et 
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240 al., 2021). Thus, the high MMR value found for Rhamphorhychus in this study is more likely 
241 linked to its growth demands rather than flight capacity. Furthermore, while this juvenile 
242 Rhamphrorhynchus may not have been capable of flight, it could have been able to climb trees 
243 and hunt small vertebrates and invertebrates (Prodvai et al., 2012), indicating that it maintained a 
244 sufficiently high activity rate during its early stages of life. 

245 As the earliest archosaur group to evolve flapping flight, pterosaurs faced the energetic costs 
246 associated with aerial locomotion, in special to pterodactyloid with large body size, as 
247 Quetzalcoatlus northropi. The energetic advantage of larger body sizes in continuous flight, as 
248 seen in birds (Tatner & Bryant, 1986). The flight energetics of large pterosaurs, such as the 
249 Quetzalcoatlus northropi, probably involved anaerobic metabolism during takeoff, followed by 
250 energy-efficient soaring or high-speed flight (Marden, 1994). To sustain flight aerobically, 
251 Quetzalcoatlus likely required an aerobic scope comparable to migratory swans. In contrast, 
252 smaller pterosaur species like Rhamphorhynchus might have had different metabolic 
253 requirements during takeoff, highlighting the need for further studies on adult specimens to 
254 elucidate their flight endurance and takeoff capabilities.  

255 In volant birds, flying is generally more energetically efficient than running or swimming over 
256 equivalent distance due to higher speeds achieved in flight (Fedak et al., 1974; Norberg, 1996; 
257 Butler, 2016). This aerodynamic efficiency is particularly pronounced in insectivore birds, which 
258 exhibit flight costs 49�73% lower than predicted for nonaerial species (Hails, 1979; Tucker, 
259 1970). Consequently, the maximal aerobic capacity of adult Rhamphorhynchus is expected to be 
260 lower than of the juvenile specimen analyzed and likely lower than that of the H. escuilliei.  
261 Once, flight would likely be achieved in adulthood, allowing for more efficient energy use, and 
262 resulting in a lower MMR value compared to the juvenile specimen, which would have had a 
263 terrestrial and arboreal lifestyle. 

264 The endurance flight capabilities of juvenile Rhamphorhynchus are comparable to migratory 
265 shorebirds, such as gulls and terns, but its flight muscles likely lacked the mass-specific power 
266 required for sustained vertical takeoff, as seen in small migratory phasianids Coturnix coturnix 
267 and Coturnix chinensis (Bishop, 1997; Askew & Marsh, 2001; Henry et al., 2005). Further 
268 investigation of adult specimens is necessary to clarify the ontogenetic influence on pterosaur 
269 flight performance.  

270 Although Rhamphorhynchus and Halszkaraptor escuilliei belong to distinct groups and exhibit 
271 different lifestyles, parallels can be drawn regarding their metabolism and energy efficiency in 
272 locomotion. Rhamphorhynchus, would require a high aerobic capacity, particularly, when it 
273 would achieve greater energy efficiency for flight, although juvenile stages exhibit elevated 
274 metabolic rates due to rapid growth. On the other hand, Halszkaraptor escuilliei, with its semi-
275 aquatic locomotion, would have adapted its metabolism for endurance rather than high bursts of 
276 energy, as seen in flight. Both groups demonstrate adaptations that reflect the need for metabolic 
277 efficiency, albeit in different ways: while the aerobic energy costs of flight would be high, they 
278 would be offset by the flight efficiency in adult Rhamphorhynchus individuals, whereas 
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279 Halszkaraptor's locomotion would be more balanced, with lower energy expenditure during 
280 terrestrial and aquatic activities.  

281   

282 Caveats  

283 Several species of the sample of extant birds used to construct the inference model are 
284 characterized by the presence of pneumatization. The pneumatic foramina in long bones likely 
285 include arteries (in addition to the air sac), and this may have effect on the size of foramina and 
286 on the blood flow rate. As we need an extant phylogenetic bracket to construct the inference 
287 model (Witmer, 1992 unpublished data), we must include a sample of extant birds assuming that 
288 the arteries passing through the pneumatic foramina are small and do not have a significant 
289 impact on the blood flow rate through the foramina.

290

291 Conclusions

292 This study highlights the aerobic capacity of the theropod Halszkaraptor escuilliei and the 
293 pterosaur Rhamphorhynchus. Despite significant differences in lifestyle and ontogenetic state, 
294 both taxa exhibited similar mass-independent maximal metabolic rates (MMR) and femoral 
295 nutrient artery blood flow  The mass-independent MMR of H. escuilliei aligns with that of V. 
296 gouldii and the avian species, emus and the Charadriiformes, Larus and Sterna. However, its 
297 aerobic performance appears to fall below that of swimmers like ducks and athletic mammals.  
298 The juvenile Rhamphorhynchus likely displayed elevated femoral blood flow compared to 
299 mature individuals. While its endurance flight capabilities resemble those of migratory 
300 shorebirds, it is far from those seen in small migratory phasianids. In addition, adult 
301 Rhamphorhynchus individuals, having reduced growth-related demands, likely had lower mass-
302 independent MMRs. The attainment of flight would have resulted in a more energetically 
303 efficient metabolism; however, further study is needed to fully understand the ontogenetic 
304 influence on their metabolic performance. 
305

306 Supplementary Information 
307 https://github.com/MAVAAS/MMR_Halszkaraptor_and_Rhamphorhynchus.git
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558  Figure Caption 

559  
560 Figure 1. 3D reconstruction of femora of Rhamphorhynchus sp. MdC 20269891 (voxel size of 
561 4.24  (A) and Halszkaraptor escuilliei MPC D-102/109 using µCT (C) (voxel size of 53.58 
562  with the identifiable foramina segmented and highlighted in red (B) and green (D). Scale 
563 bar equals 2 mm (A), 600 µm (B), and 550 µm (C and D). 
564  
565 Figure 2. Phylogenetic relationships including the sample of extant amniotes used to construct 
566 the mass-independent maximum metabolic rates inference model and the extinct theropod and 
567 the pterosaur for which we performed retrodictions using nutrient artery  as co-predictor. 
568 Branch lengths are proportional to time.   
569
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Figure 1
Figure 1. 3D reconstruction of femora

3D reconstruction of femora of Rhamphorhynchus sp. MdC 20269891 (voxel size of 4.24 ¿m)
(A) and Halszkaraptor escuilliei MPC D-102/109 using µCT (C) (voxel size of 53.58 ¿m), with
the identiûable foramina segmented and highlighted in red (B) and green (D). Scale bar
equals 2 mm (A), 600 µm (B), and 550 µm (C and D).
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Kommentar zu Text
Show us the whole bone! We want to see where on the bone the nutrient foramen is located, otherwise it's not possible to see where you measured and whether the vector of the nutrient canal points towards the ossification center



Figure 2
Figure 2. Phylogenetic + blood ûow rate (Qï ) model to estimate maximum metabolic rate

Phylogenetic relationships including the sample of extant amniotes used to construct the
mass-independent maximum metabolic rates inference model and the extinct theropod and
the pterosaur for which we performed retrodictions using nutrient artery Qï  as co-predictor.
Branch lengths are proportional to time.
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