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Background. Species distribution models (SDMs) are powerful tools for informing conservation,
particularly for highly mobile marine species such as common bottlenose dolphins (Tursiops truncatus).
In Maltese waters, the lack of systematic research on their habitat use has limited the eûectiveness of
conservation eûorts, especially in coastal areas. Despite the designation of oûshore Special Areas of
Conservation (SACs), key coastal regions remain under-assessed, highlighting the need for detailed
spatial studies to support evidence-based management.

Methods. In this study, we applied a comparative modelling approach using a Generalised Additive
Model (GAM) and a Maximum Entropy (MaxEnt) model to assess summer habitat suitability for bottlenose
dolphins within a coastal SAC in Malta. The models were informed by presence-only data collected
through systematic surveys and a citizen science campaign, integrated with environmental and
anthropogenic predictors including chlorophyll-a concentration, sea surface temperature anomaly, slope,
and distance to aquaculture sites.

Results. Both modelling approaches identiûed high habitat suitability in shallow, nearshore regions, with
chlorophyll-a concentration and proximity to aquaculture sites emerging as the most important
predictors. Slope and sea surface temperature anomaly contributed less substantially. The two models
showed spatial agreement in highlighting these nearshore areas as core habitats, though GAM predicted
a broader extent of suitable habitat with lower uncertainty, whereas MaxEnt results were more spatially
restricted. Both models demonstrated strong predictive performance (AUC > 0.85), reinforcing the
ecological relevance of the identiûed drivers.

Conclusion. This study demonstrates the potential of integrating opportunistic data with SDMs to
support habitat assessments in data-limited contexts. The use of complementary modelling approaches
provides robust insights into species3environment relationships. These results could help guide spatial
planning and future assessments of conservation priorities in Maltese coastal waters.
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23 Abstract

24 Background. Species distribution models (SDMs) are powerful tools for informing 
25 conservation, particularly for highly mobile marine species such as common bottlenose dolphins 
26 (Tursiops truncatus). In Maltese waters, the limited availability of data on this species has 
27 constrained the effectiveness of conservation efforts. Despite the designation of offshore Special 
28 Areas of Conservation (SACs), key coastal regions need more detailed spatial studies to support 
29 evidence-based management.
30 Methods. In this study, we applied a comparative modelling approach using a Generalized 
31 Additive Model (GAM) and a Maximum Entropy (MaxEnt) model to assess summer habitat 
32 suitability for bottlenose dolphins within a coastal SAC in Malta. The models were informed by 
33 presence-only data collected through systematic surveys and a citizen science campaign, 
34 integrated with environmental and anthropogenic predictors including chlorophyll-a 
35 concentration, sea surface temperature anomaly, slope, and distance to aquaculture sites.
36 Results. Both modelling approaches identified high habitat suitability in shallow, nearshore 
37 regions, with chlorophyll-a concentration and proximity to aquaculture sites emerging as the 
38 most important predictors. Slope and sea surface temperature anomaly contributed less 
39 substantially. The two models showed spatial agreement in highlighting these nearshore areas as 
40 core habitats, though GAM predicted a broader extent of suitable habitat with lower uncertainty, 
41 whereas MaxEnt results were more spatially restricted. Both models demonstrated strong 
42 predictive performance (AUC > 0.85), reinforcing the ecological relevance of the identified 
43 drivers.
44 Conclusion. This study demonstrates the potential of integrating opportunistic data with SDMs 
45 to support habitat assessments in data-limited contexts. The use of complementary modelling 
46 approaches provides robust insights into species�environment relationships. These results could 
47 help guide spatial planning and future assessments of conservation priorities in Maltese coastal 
48 waters.
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49 Introduction

50

51 Understanding species distribution and habitat use is fundamental for developing effective 
52 conservation strategies (Rodríguez et al., 2007; Guisan et al., 2013). However, assessing these 
53 aspects can be particularly challenging for highly mobile species like cetaceans (Fernandez, 
54 Sillero & Yesson, 2022). In this context, species distribution models (SDMs) offer a solid 
55 foundation for gaining valuable ecological insights, particularly in data-deficient regions 
56 (Redfern et al., 2006; Fiedler et al., 2018; Fernandez et al., 2021). By evaluating the relationships 
57 between cetacean populations and the environment, as well as anthropogenic factors, SDMs 
58 contribute to a more comprehensive understanding of species ecology and potential conservation 
59 priorities (Rodríguez et al., 2007; Guisan et al., 2013; Marshall, Glegg & Howell, 2014; Pace, 
60 Tizzi & Mussi, 2015; Giralt Paradell, Díaz López & Methion, 2019).
61 The ability of SDMs to assess species distributional ranges via predictive modelling (Anderson, 
62 Lew & Peterson, 2003; Pitchford et al., 2016) or to identify the environmental drivers of 
63 distribution through descriptive modelling (Azzellino et al., 2008; La Manna et al., 2023b) has 
64 led to an increase in their use in recent years for cetacean species (Pasanisi et al., 2024). When 
65 used together, predictive and descriptive modelling provide information on the distribution of 
66 habitats that fit their ecological niche and are suitable for their survival (Hirzel & Le Lay, 2008). 
67 The concept of the ecological niche refers to the set of environmental conditions within which a 
68 species can survive, grow, and reproduce (Hutchinson, 1957). Early interpretations by Grinnell 
69 (1917) framed the niche primarily in terms of abiotic factors, such as climate and habitat, that 
70 define where a species can live. Building on this, Hutchinson (1957) formalized the niche as an 
71 n-dimensional hypervolume, where each dimension represents an environmental variable 
72 relevant to the species� survival. This Hutchinsonian niche concept remains the theoretical 
73 cornerstone of modern species distribution modelling. Most SDMs rely on correlative 
74 approaches that infer a species� ecological requirements by linking its observed geographic 
75 distribution to environmental conditions (Melo-Merino, Reyes-Bonilla & Lira-Noriega, 2020). 
76 Within this framework, habitat suitability models serve as practical tools for applying ecological 
77 niche theory, as they use species occurrence data in combination with environmental predictors 
78 to estimate areas of suitable habitat (Hirzel & Le Lay, 2008).
79 Among the most widely adopted modelling techniques are machine learning algorithms such as 
80 Maximum Entropy (MaxEnt) models (Melo-Merino, Reyes-Bonilla & Lira-Noriega, 2020), 
81 which estimate the niche from presence-only data using the principle of maximum entropy 
82 (Phillips, Anderson & Schapire, 2006), and statistical approaches such as Generalized Additive 
83 Models (GAMs), which model non-linear relationships between species occurrence (e.g., 
84 presence/absence) and environmental factors (Hastie & Tibshirani, 1986). Both methods enable 
85 researchers to identify critical conservation areas and mitigate potential threats by analyzing 
86 species� habitat preferences (Rodríguez et al., 2007; Guisan et al., 2013). Furthermore, they help 
87 predict how marine species respond to environmental changes, contributing to the development 
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88 of targeted conservation strategies (Giralt Paradell, Díaz López & Methion, 2019; Díaz López & 
89 Methion, 2024). 
90 The performance and reliability of these models are inherently dependent on the quality and 
91 spatial�temporal coverage of species occurrence data (Fiedler et al., 2018). Dedicated surveys, 
92 although considered robust, are often resource-intensive and limited by logistical and financial 
93 constraints, resulting in incomplete spatial coverage and potential underrepresentation of species 
94 distribution (Evans & Hammond, 2004; Meyer et al., 2015). Recent studies have demonstrated 
95 that non-traditional data sources, such as opportunistic and citizen science data (Giovos et al., 
96 2016; Pace et al., 2019; Robbins, Babey & Embling, 2020), offer a cost-effective approach to 
97 addressing specific research challenges, facilitating the generation of estimates of cetacean 
98 distribution (Fernandez et al., 2021). In the study of species inhabiting dynamic environments, 
99 non-traditional data sources offer several advantages over conventional survey methodologies. 

100 For instance, they can enhance spatial and temporal coverage and reduce logistical constraints, as 
101 they often do not require specialized equipment or dedicated field effort (Robbins, Babey & 
102 Embling, 2020; Corr et al., 2024). Nevertheless, the inherent biases and variability associated 
103 with opportunistic data necessitate careful quality assessment and data integration techniques to 
104 ensure their effective use in large-scale modelling efforts (Isaac et al., 2020; Martino et al., 
105 2021). 
106 Given these challenges, the integration of SDMs with non-traditional data sources presents a 
107 promising approach for studying cetaceans in regions where systematic monitoring is limited. In 
108 Maltese waters, the common bottlenose dolphin (Tursiops truncatus) represents one of the most 
109 frequently observed cetacean species (Notarbartolo Di Sciara, 2002) and plays an important 
110 ecological role as a top predator within the marine ecosystem. However, knowledge on its 
111 ecology and distribution in the region is limited. Previous studies in the region have suggested a 
112 coastal distribution and spatial association between dolphin presence and anthropogenic features 
113 such as aquaculture sites, which may influence foraging behavior and local prey availability 
114 (Laspina, Terribile & Said, 2022; Soster et al., 2025). Recent work has highlighted potential gaps 
115 in the spatial alignment between currently designated Natura 2000 sites and areas predicted to be 
116 of high habitat suitability for bottlenose dolphins around the Maltese archipelago (Soster et al., 
117 2025). Specifically, although SACs have been designated for bottlenose dolphin conservation in 
118 Malta, these mainly encompass offshore regions, while key coastal regions remain outside 
119 protected boundaries. This highlights the need for further in-depth investigation of bottlenose 
120 dolphin spatial ecology and habitat use in these areas. Moreover, dolphins in the region are 
121 exposed to a range of human pressures, including maritime traffic, aquaculture, and unregulated 
122 recreational activities (Said et al., 2017; Filletti et al., 2023; Mizzi et al., 2024; Soster et al., 
123 2025). They are additionally subject to environmental pressures, such as marine heatwaves 
124 (Garrabou et al., 2022), which require further investigation to be adequately addressed under 
125 existing management frameworks. These conservation gaps highlight the urgent need for 
126 spatially explicit data on dolphin distribution and habitat use to inform evidence-based 
127 conservation strategies in Malta�s dynamic and heavily used coastal waters.
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128 In light of these gaps, this case study aims to improve understanding of bottlenose dolphin 
129 habitat suitability by comparing MaxEnt and GAM modelling approaches using presence-only 
130 data from opportunistic platforms and citizen science. Specifically, the models are applied within 
131 a heavily impacted coastal SAC. By comparing the outputs of these models, summer distribution 
132 patterns are identified, and the role of environmental and anthropogenic drivers is assessed. This 
133 work�s ultimate long-term goal is to support evidence-based spatial planning and provide 
134 information that may inform the consideration of bottlenose dolphins within the site�s 
135 conservation framework.

136

137 Materials & Methods

138

139 Study Area

140 The study area covers 159 km² and is situated on the northeastern side of the Maltese 
141 archipelago, extending from central Malta to the northern coast of Gozo, with a maximum depth 
142 of 100 m (Figure 1). The area includes the Natura 2000 site   bejn Il-Ponta ta´ San 
143 Dimitri  u Il-Qaliet, designated as a SAC for the protection of the Maltese topshell 
144 (Gibbula nivosa) and the loggerhead turtle (Caretta caretta). Although bottlenose dolphins are 
145 known to occur in the area, they are not currently listed among the protected species for this site 
146 (EUNIS, 2025). This coastal SAC hosts a wide range of important habitats, such as Posidonia 

147 oceanica meadows, maërl beds, and Cymodocea nodosa meadows. However, this site is affected 
148 by numerous human activities, including four main finfish aquaculture sites and one bunkering 
149 area for large vessels (Figure 1). Furthermore, pleasure boating is especially prevalent, driven by 
150 the high concentration of marinas and the region�s appeal as a tourist destination.
151

152 Occurrence Data

153 Occurrence data of bottlenose dolphins were collected using two complementary approaches: i) 
154 dedicated boat surveys were conducted between July and September 2024 aboard a 6 m rigid-
155 hull boat equipped with a 225 hp engine, following a standardized observational protocol during 
156 whale watching activities, permitted by the Environment and Resources Authority (EP 0249/24; 
157 Suppl. Mat. 1); ii) opportunistic data were gathered through a citizen science campaign, which 
158 encouraged sea users to report dolphin sightings by submitting information on coordinates, group 
159 size and composition, behavior, and photographs. Outreach included the distribution of flyers to 
160 marinas, diving centers, charter companies, and tour operators across the study area. In addition, 
161 opportunistic reports shared via social media platforms were also collected and screened (Pace et 
162 al., 2019). All records were validated before the inclusion in the database. An effort-based model 
163 was initially considered, but the low number of presence points with associated effort meant that 
164 the models produced were not reliable (i.e. deviance explained >99.9%). Thus, presence-only 
165 data were considered for two modelling approaches using a binomial GAM and a MaxEnt 
166 model.
167
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168 Environmental data

169 A number of static environmental variables were included in the models, including depth, slope, 
170 aspect, and distance from shore. Dynamic variables comprised sea surface temperature (SST), 
171 chlorophyll-a concentration, mixed layer depth, and salinity. The selection of these variables was 
172 informed by previous studies on bottlenose dolphins (Pitchford et al., 2016; Carlucci et al., 2016; 
173 La Manna, Ronchetti & Sarà, 2016; Fontanesi et al., 2024). In addition, SST anomaly, 
174 chlorophyll-a anomaly, and distance from aquaculture sites were incorporated to account for the 
175 potential influence of direct and indirect anthropogenic impacts on habitat suitability (Maricato 
176 et al., 2022). Details of the downloaded datasets, spatial resolutions and sources are given in 
177 Table 1. All dynamic variables were downloaded at a daily temporal scale, mean averaged across 
178 the survey period and resampled to the resolution of the depth layer (Suppl. Mat. 2 Figure S1). A 
179 number of the variables had a high level of correlation (Pearson�s correlation coefficient |r| > 0.7) 
180 and were removed from the analysis (Dormann et al., 2013). In order to decide which of a pair of 
181 correlated variables was removed, two single-variable GAMs were run, and the variable in the 
182 model with the lowest AIC value was selected. Additionally, following the fitting of the best-
183 performing GAM, a check of concurvity (a non-linear equivalent of a collinearity test) was 
184 made.
185

186 Pseudoabsences and background points selection 

187 Whilst both GAM and MaxEnt are used regularly in species distribution modelling, they differ 
188 notably in how they handle absence information and the selection of pseudo-absence or 
189 background points. GAMs require both presence and absence (or pseudo-absence) data, and 
190 model performance can be influenced by the ratio between these points. A common 
191 recommendation is to use a presence-to-pseudo-absence ratio between 1:1 and 1:5, although 
192 using a large number of pseudo-absences (e.g., 10,000) with equal weighting can also enhance 
193 model accuracy, particularly in large or heterogeneous study areas (Barbet-Massin et al., 2012). 
194 In contrast, MaxEnt operates on presence-only data and uses background points to represent the 
195 available environmental space, without assuming true absences. The default setting in MaxEnt is 
196 10,000 background points, which is generally suitable for most applications, though this number 
197 can be adjusted depending on the extent and resolution of the study area (Phillips & Dudík, 
198 2008). These methodological differences influence model outputs and will be considered when 
199 comparing results. 
200 To account for sampling bias and improve model accuracy, a bias raster was generated using a 
201 kernel density estimation based on the spatial distribution of dolphin sightings (Suppl. Mat. 3 
202 Figure S2). A focal (neighborhood-based) smoothing operation was applied to create a 
203 continuous surface representing relative sampling effort, constrained within a two-kilometer 
204 buffer around both dolphin sightings and the boundaries of the SAC. The resulting raster was 
205 normalized and used to guide the selection of pseudo-absence/background points. A total of 
206 30,000 points were initially generated (Suppl. Mat. 3 Figure S3), and the optimal number for 
207 each modelling approach was evaluated by progressively increasing the number of background 
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208 points. For GAM, background points ranged from 30 to 250 (Suppl. Mat. 3 Figures S4�S7), 
209 while for MaxEnt, the number ranged from 500 to 10,000 (Suppl. Mat. 3 Figures S8�S9). Points 
210 generation was conducted using the dismo package in R (version 1.3-16).
211

212 Model Specifications and Evaluation

213 The GAM was fitted using the binomial family with a logit link function in the mgcv package in 
214 R (version 1.9-1). To maximize the interpretability of the resulting partial smooths and reduce 
215 the risk of overfitting given the limited sample size, the maximum number of basis dimensions 
216 (k) was restricted to five for each predictor. Variable selection was enabled using shrinkage 
217 smoothers, which apply penalties to smooth terms that do not contribute meaningfully to the 
218 model, effectively shrinking them towards zero and allowing their influence to be removed.
219 The MaxEnt model was fitted using specific parameters implemented through the dismo package 
220 in R. Linear, quadratic, and hinge features were included, while product features were excluded, 
221 as they are only enabled when the number of presence points exceeds 80 (Phillips & Dudík, 
222 2008). Threshold features were also omitted to minimize model complexity (Elith et al., 2011). 
223 The model was run with a regularization multiplier of 1, using 500 iterations and 8,000 
224 background points. Regularization settings were selected based on iterative tests that evaluated 
225 model performance across different values of the regularization multiplier  and varying 
226 numbers of background points (Suppl. Mat. 3 Figures S4 and S5).
227 For both models, a 10-fold cross-validation procedure was conducted to evaluate predictive 
228 performance. This approach was selected to provide a robust estimate of model accuracy while 
229 minimizing potential biases related to overfitting and data imbalance. The dataset was stratified 
230 into ten folds, ensuring a balanced distribution of presence and pseudo-absence observations for 
231 the GAM, and presence and background observations for the MaxEnt model. Each fold was used 
232 once as a testing set, while the remaining nine folds served as the training set. This process was 
233 repeated iteratively so that each observation contributed to both training and validation. For each 
234 iteration, a model was fitted to the environmental predictors, and predictions of species presence 
235 probability were generated for the testing set. Model performance was evaluated using Receiver 
236 Operating Characteristic (ROC) curve analysis. The Area Under the Curve (AUC) was 
237 calculated for each fold as a measure of predictive accuracy, with higher AUC values indicating 
238 better model performance.
239 To investigate the spatial distribution of uncertainty, the GAM includes a built-in feature for 
240 calculating standard errors of predictions. In contrast, for the MaxEnt models, a bootstrap 
241 resampling technique was applied to assess the robustness of predictions. For each of 500 
242 bootstrap replicates, a new training dataset was created by randomly resampling the presence 
243 points with replacement, while background points were held constant across replicates to ensure 
244 comparability. A MaxEnt model was then trained using each resampled dataset, and the resulting 
245 model was used to predict habitat suitability across the study area. Predictions from all replicates 
246 were stored as raster layers in a cumulative stack, allowing for the analysis of spatial variation in 
247 model output. 
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248 Following model fitting, uncertainty was quantified for both GAM and MaxEnt predictions to 
249 assess the reliability of habitat suitability outputs. For GAMs, standard errors were extracted 
250 directly from the model�s built-in prediction outputs. For MaxEnt, a bootstrap resampling 
251 approach was used, and the resulting raster stack of 500 replicate predictions was analyzed. In 
252 both cases, a mean habitat suitability map was generated to represent the central tendency of 
253 model outputs. To further quantify uncertainty, the standard error was calculated for each raster 
254 cell, reflecting the absolute variability in predicted values, while the coefficient of variation (CV) 
255 was computed to express relative uncertainty as a percentage of the mean prediction. These 
256 uncertainty metrics were used to identify areas of high prediction confidence and regions where 
257 model outputs were more variable.
258 The output predictions of GAMs and MaxEnt are different; GAMs use logistic regression 
259 (binomial family with a logit link) to predict the probability of a presence whereas MaxEnt 
260 returns a predicted suitability. Whilst not directly comparable, both methods can be used to 
261 determine the area which is most suitable for the species of interest.
262

263 Contribution and importance of variables

264 Both GAMs and MaxEnt offer visual tools to help interpret how environmental variables 
265 influence species presence. In GAMs, the shape of the partial response curves illustrates the 
266 effect of each predictor on the log-odds of species presence. In MaxEnt, response curves indicate 
267 the species� relative preference across the range of each environmental variable. Given the 
268 differences, the two should not be directly compared. They can however, both be useful in 
269 interpreting the effects of variables and thus are both given in the results.
270 Similarly, MaxEnt also provides two metrics of variable importance: percent contribution, 
271 based on the increase in model gain during training, and permutation importance, which 
272 measures the decrease in model performance when a variable�s values are randomly permuted 
273 (Phillips, Anderson & Schapire, 2006; Elith et al., 2011). While GAMs do not include built-in 
274 measures of variable importance, a comparable estimate can be derived by examining deviance 
275 explained. This involves removing one predictor at a time and comparing the deviance of the 
276 reduced model to the full model (Wood, 2017). As with the visual response curves, these 
277 importance measures are not directly comparable across modelling approaches, but each helps to 
278 understand the role of environmental drivers and has been presented accordingly.

279

280 Results

281

282 Occurrence 

283 A total of 17 boat-based surveys covered 484.8 km of on-effort trackline, with a mean vessel 
284 speed of 9.7 kt (SE ± 0.18). The survey effort was unevenly distributed across the study area, 
285 with the majority of effort concentrated in the northern coastal waters of Malta (Figure 2). A 
286 total of 20 bottlenose dolphin sightings were recorded during these surveys, with most sightings 
287 occurring in shallow to moderately deep waters (<100 m) to the north of Malta. The encounter 
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288 rate for boat-based surveys was 4.12 groups and 19.8 individuals per 100 km surveyed. The 
289 citizen science campaign contributed an additional 49 sightings within the study area, out of a 
290 total of 52 validated records submitted during the campaign period. One sighting of a common 
291 dolphin (Delphinus delphis) was also reported. Together, the combined dataset resulted in 69 
292 sightings (Figure 2).
293

294 Collinearity tests 

295 The collinearity test resulted in the retention of slope, aspect, chlorophyll-a, SST anomaly, and 
296 distance to aquaculture. The subsequent concurvity assessment for the GAM led to the removal 
297 of aspect due to high non-linear dependency with other predictors. As a result, the final models 
298 were fitted using chlorophyll-a, SST anomaly, slope and distance to aquaculture.
299

300 Habitat suitability analysis with GAM

301 The GAM showed strong predictive performance, with a mean AUC of 0.86 (SE ± 0.02) under 
302 10-fold cross-validation, indicating a high level of discriminatory power. All four explanatory 
303 variables included in the model were found to have statistically significant relationships with 
304 bottlenose dolphin occurrence. In terms of variable importance, the proportion of deviance 
305 explained was highest for chlorophyll-a (0.79) and distance to aquaculture (0.65), suggesting 
306 these were the strongest drivers of dolphin distribution (Table 2). Although slope and SST 
307 temperature anomaly were statistically significant, they contributed less to the overall deviance 
308 explained (0.20 and 0.16, respectively), indicating a weaker influence on distribution patterns.
309 The model predicted an increased probability of occurrence with increasing values of slope and 
310 chlorophyll-a and a decreased probability of occurrence with increasing values of SST anomaly 
311 and distance to aquaculture facilities (Figure 3).
312 The mean prediction map generated across 1,000 iterations showed that the highest habitat 
313 suitability for bottlenose dolphins was concentrated around Mellieha Bay and St Paul�s Bay. 
314 Additional areas of moderate suitability were identified in the Comino Channel, in proximity to 
315 the bunkering area and along the north-eastern coast of Gozo (Figure 4). The uncertainty 
316 associated with the spatial predictions, represented by the coefficient of variation across, was 
317 generally low within the borders of the SAC but higher at the outer edges of the survey region.
318

319 Habitat suitability analysis with MaxEnt

320 The MaxEnt model demonstrated strong predictive performance, with a mean AUC of 0.89 (SE 
321 ± 0.0001) under 10-fold cross-validation. The regularized training gain was 1.23, compared to an 
322 unregularized gain of 1.18, indicating that the application of regularization successfully reduced 
323 overfitting to a small extent.
324 Chlorophyll-a was the most influential predictor in the model, contributing 61.2% of the total 
325 model gain and 25.8% of the permutation importance (Table 3). Distance to aquaculture was the 
326 second most influential variable, contributing 20.1% to model gain and 53.3% to permutation 
327 importance.
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328 The model showed a marked decrease in habitat suitability with increasing distance from 
329 aquaculture facilities, particularly within the first 5,000 m. Habitat suitability increased 
330 exponentially with higher chlorophyll-a concentrations (Figure 5). Slope and SST anomaly 
331 contributed less than 15% cumulatively to the model�s predictive power. However, slope showed 
332 a higher permutation importance (20.4%), suggesting a moderate influence on model sensitivity. 
333 The response curve indicated that suitability peaked at slope values between 2.5° and 3°, 
334 declining on either side. Sea surface temperature anomaly exhibited a nearly linear positive 
335 relationship with suitability, but its overall contribution to the model was minimal (Figure 5).
336 As with the GAM, the most suitable areas for bottlenose dolphins were the waters surrounding 
337 Mellieha Bay and Saint Paul�s Bay. The MaxEnt model predicted high suitability only along the 
338 Maltese coast of the Comino Channel and a moderate suitability in the shallow bunkering area 
339 (Figure 6). The coefficient of variation was highest near the edges of the survey area, and higher 
340 uncertainty was also observed within the SAC, especially along the central coastal waters of 
341 Gozo.
342

343 Discussion

344

345 Effective conservation planning relies on identifying areas that are important for species survival 
346 and on understanding how environmental factors influence their distribution. SDMs are widely 
347 used tools for obtaining this information, particularly in data-limited contexts (Elith & 
348 Leathwick, 2009; Guisan et al., 2013). This case study provides a method for identifying suitable 
349 habitats for a top marine predator by linking occurrence records, obtained with the support of 
350 citizen science, to key environmental variables. Through the application of a GAM and a 
351 MaxEnt model, summer habitat suitability maps were generated for the bottlenose dolphin in a 
352 relatively understudied area of Malta, offering a practical tool to support decision-makers in the 
353 formulation of conservation strategies. 
354 This study examined the bottlenose dolphin summer habitat suitability, revealing that the 
355 northeastern coastal waters of the archipelago represent an important summer habitat for the 
356 species. In addition to being in line with previous broader research in the region (Soster et al., 
357 2025), this study provides a finer-scale perspective by adding spatial detail and seasonal context 
358 to earlier habitat suitability assessments. Both the GAM and the MaxEnt models used in this 
359 research identified the area between Mellieha Bay and St Paul�s Bay as a region of high 
360 suitability, suggesting that this portion of the study area may represent a key habitat for the 
361 species in summer. This area coincides with shallow, productive waters and proximity to inshore 
362 aquaculture sites, factors previously associated with higher dolphin presence in other 
363 Mediterranean regions, where similar environmental and anthropogenic features have been 
364 linked to increased dolphin presence (Díaz López, 2012; Pace et al., 2019; Gnone et al., 2022; La 
365 Manna et al., 2023a; Bellingeri et al., 2025). Moderate suitability was also found across the 
366 broader study area, with particular interest in the Comino Channel, but with some degree of 
367 spatial variability between the two models.
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368 To better understand the environmental drivers behind these patterns, the relative importance of 
369 predictor variables for both models was examined. While GAM and MaxEnt differ in their 
370 analytical frameworks, both models� outputs revealed a comparable pattern in the importance of 
371 environmental variables shaping bottlenose dolphin habitat preference. Particularly, both models 
372 identified chlorophyll-a and distance to aquaculture as the most important predictors of habitat 
373 suitability, while slope and SST anomaly contributed less significantly. However, the relative 
374 contribution of these variables differed between the two approaches. In the GAM, chlorophyll-a 
375 explained the highest proportion of deviance, followed closely by distance to aquaculture. In 
376 contrast, MaxEnt revealed distance to aquaculture as the most influential predictor based on its 
377 permutation importance, with chlorophyll-a as the second most important variable. These 
378 differences reflect how each model handles variable interactions (Guisan & Zimmermann, 2000; 
379 Elith et al., 2011), but the consistency in identifying chlorophyll-a and distance to aquaculture as 
380 the top predictors highlights their ecological relevance. 
381 To further clarify these ecological patterns, the response curves offer information on how 
382 particular environmental factors affect habitat suitability. Higher chlorophyll-a concentrations 
383 showed a positive relationship with habitat suitability in both models, likely reflecting higher 
384 primary productivity and, by extension, greater prey availability (Methion et al., 2023). 
385 Chlorophyll-a has frequently been used as a proxy for such favorable foraging conditions, given 
386 its correlation with the abundance of zooplankton and small pelagic fish (Torres, Read & Halpin, 
387 2008). In this study, chlorophyll-a levels were likely influenced by both natural productivity and 
388 anthropogenic input from aquaculture (Díaz López & Methion, 2017), as chlorophyll-a 
389 concentrations were consistently higher in areas surrounding aquaculture sites during the 
390 summer months (Suppl. Mat. 2 Figure S1), contributing to their predictive strength in both 
391 models. Additionally, bottlenose dolphins are highly opportunistic predators with a well-
392 documented behavioral plasticity (Reynolds, Wells & Eide, 2013), often concentrating their 
393 activity in areas where prey is predictably abundant. Suitability also declined with increasing 
394 distance from aquaculture sites, reinforcing the interpretation that these sites provide foraging 
395 opportunities through local prey aggregation (Díaz López, 2012, 2017; Díaz López & Methion, 
396 2017). However, this does not imply that the area would be unsuitable in the absence of 
397 aquaculture; rather, the presence of these sites appears to increase habitat use within an 
398 ecologically favorable region. Finally, while the observed negative correlation between 
399 bottlenose dolphin presence and distance to aquaculture facilities improves our ability to predict 
400 their spatial distribution, this aggregation near fish farms may pose conservation concerns, as 
401 previous studies have associated such clustering with increased risks of vessel collisions, 
402 entanglement, habitat degradation, and exposure to elevated noise and light pollution (Guisan & 
403 Zimmermann, 2000; Martino et al., 2021).
404 While chlorophyll-a and distance to aquaculture were the strongest predictors in both models, 
405 slope and SST anomaly also contributed to explaining dolphin distribution, albeit to a lesser 
406 extent. In the GAM, slope showed a significant but weaker relationship, with habitat suitability 
407 peaking at intermediate values. Similarly, the MaxEnt response curve indicated that suitability 
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408 decreased on either side of an optimal slope range, suggesting a preference for specific seabed 
409 structures. Both models indicated a preference for areas characterized by gentle slopes (~2.5�3°), 
410 indicating that bottlenose dolphins in the study area are associated with mildly inclined rather 
411 than very flat or steep seabed. This is consistent with previous findings suggesting that moderate 
412 bottom inclinations may support preferred foraging or transit zones, particularly in coastal 
413 environments where bathymetric features influence prey availability (Cañadas, Sagarminaga & 
414  2002; Gnone et al., 2022).
415 Although SST anomaly was the weakest predictor in both models, the response curves indicated 
416 a consistent negative relationship between increasing temperature anomalies and habitat 
417 suitability. This suggests that bottlenose dolphins may tend to avoid areas experiencing greater 
418 thermal deviation, potentially due to indirect effects on prey availability or ecosystem stability 
419 (Wernberg et al., 2013). In the Mediterranean, SST anomalies have been associated with shifts in 
420 the abundance and distribution of demersal and pelagic fish species (Sabatés et al., 2006; 
421 Hidalgo et al., 2011), which could in turn reduce the attractiveness of the areas affected to 
422 predators. Given that the study only covered summer months, the role of thermal variability 
423 might be underestimated, and further investigation across seasons would be needed to better 
424 understand its influence. This is of particular importance, in light of the potential consequences 
425 of extreme weather events such as marine heatwaves that are becoming more frequent in the 
426 Mediterranean (Darmaraki et al., 2019; Wild et al., 2019).
427 One important finding of this study is the spatial agreement shown by the two models in 
428 predicting areas of high habitat suitability, particularly in the waters surrounding Mellieha Bay 
429 and St Paul�s Bay. However, a certain difference between the two modelling approaches was 
430 observed. Particularly, the GAM predicted a broader extent of high suitability, including the 
431 Comino Channel, as well as moderate suitability across most of the study area. In contrast, the 
432 MaxEnt model identified a more spatially restricted area of high suitability in the channel, 
433 primarily concentrated in Marfa Bay, with moderate suitability extending across the bunkering 
434 area. Additionally, while the coefficient of variation was higher around the SAC boundaries for 
435 both models, the MaxEnt predictions exhibited greater uncertainty within the SAC itself, 
436 particularly around the northern coastal waters of Gozo relative to the overall coefficient of 
437 variation. These differences likely reflect the methodological dissimilarities between the models 
438 and their respective sensitivities to the spatial distribution and structure of the input data. GAM�s 
439 use of pseudo-absence data and smooth functions may have allowed it to detect localized 
440 patterns of suitability, particularly if species-environment relationships in this area are non-linear 
441 or influenced by smaller gradients (Guisan, Edwards & Hastie, 2002; Wood, 2017). In contrast, 
442 MaxEnt�s reliance on background sampling and global feature fitting may have reduced 
443 sensitivity to weak or spatially clustered signals in regions with lower observation density (Elith 
444 et al., 2011; Merow, Smith & Silander, 2013). Interestingly, while MaxEnt�s outputs have been 
445 found to be only similar to those of GAMs when background points are drawn from observed 
446 absences (Fiedler et al., 2018), these results show spatial agreement despite the use of pseudo-
447 absences and background data, suggesting a robust ecological indicator captured by both 
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448 modelling approaches. These model-specific differences highlight the value of employing 
449 complementary modelling techniques, as they can reveal different aspects of species-habitat 
450 relationships and strengthen the ecological interpretation of suitability maps (Guisan & 
451 Zimmermann, 2000; Elith & Graham, 2009). 
452 Both models achieved AUC values above 0.85, indicating very good predictive performance 
453 (Swets, 1988; Elith et al., 2006). Importantly, the study demonstrates the potential of citizen 
454 science and opportunistic data to generate robust species distribution models when integrated 
455 with appropriate modelling frameworks. This finding aligns with previous work, which 
456 highlighted the ecological value of non-traditional data sources in supporting conservation 
457 efforts, particularly in the marine environments, where systematic data collection may be 
458 constrained (Giovos et al., 2016; Pace et al., 2019). Although the outputs of GAM and MaxEnt 
459 are not directly comparable, their consistency in identifying key ecological drivers strengthens 
460 the reliability of the habitat suitability insights gained. Moreover, the use of citizen science has 
461 proved to not only increase spatial coverage but also long-term monitoring potential, offering a 
462 cost-effective, scalable approach to updating habitat models as conditions change.
463 Protecting bottlenose dolphins in Maltese waters effectively calls for the inclusion of species 
464 distribution knowledge into site-based and pressure-based management approaches (Reisinger, 
465 Johnson & Friedlaender, 2022). This study contributes to that effort by identifying core summer 
466 habitats influenced by aquaculture and productivity hotspots, which, although falling within an 
467 existing SAC, do not currently recognize bottlenose dolphins as a qualifying species. The 
468 resulting habitat suitability maps offer valuable support for targeted spatial planning, local 
469 mitigation measures, and the potential consideration of bottlenose dolphins within the site�s 
470 conservation objectives. Furthermore, the integration of citizen science data demonstrates the 
471 value of participatory monitoring for expanding spatial coverage and supporting long-term 
472 conservation goals. Employing complementary modelling approaches, such as MaxEnt and 
473 GAMs, further strengthens the ecological interpretation of habitat use and provides evidence for 
474 adaptive management in data-limited marine environments. 
475

476 Study Limitations

477 Despite providing valuable insights into the summer distribution of bottlenose dolphins in 
478 Maltese waters, this work is subject to certain limitations that should be acknowledged. First, the 
479 study was limited to a single season, potentially overlooking important temporal dynamics and 
480 habitat preferences that vary across seasons. Moreover, data were collected during a single 
481 summer period, which may not fully capture interannual variability in dolphin occurrence and 
482 habitat use. As such, conclusions drawn are primarily reflective of summer distribution patterns 
483 and may not represent consistent seasonal patterns across years or year-round habitat use. 
484 Secondly, although sampling bias was addressed in both modelling exercises, the integration of 
485 citizen science and opportunistic data may remain susceptible to uneven effort and reporting. 
486 These limitations may result in underrepresentation of certain areas, where lower predicted 
487 suitability could reflect limited observation effort rather than true absence. Third, the moderate 

PeerJ reviewing PDF | (2025:04:118449:0:0:CHECK 28 Apr 2025)

Manuscript to be reviewed



488 spatial disagreement between the GAM and MaxEnt predictions, particularly in areas such as the 
489 Comino Channel, suggests that methodological sensitivity to data structure may affect spatial 
490 outputs. While both models showed strong AUC values, the reliance on pseudo-absence or 
491 background data remains a known limitation in interpreting habitat suitability, particularly in 
492 data-poor or spatially heterogeneous systems (Lobo, Jiménez-Valverde & Real, 2008; Phillips et 
493 al., 2009). 
494

495 Conclusions

496

497 This study applied a comparative modelling approach using Generalized Additive Models 
498 (GAMs) and Maximum Entropy (MaxEnt) to assess summer habitat suitability for bottlenose 
499 dolphins in a coastal Special Area of Conservation (SAC) in Malta. The models integrated 
500 citizen science and opportunistic data with environmental and anthropogenic variables to identify 
501 key drivers of dolphin distribution and highlight important habitats within a data-limited context.
502 Both modelling approaches consistently identified shallow, nearshore regions, particularly 
503 around Mellieha Bay and St Paul�s Bay, as key summer habitats for bottlenose dolphins. 
504 Chlorophyll-a concentration and proximity to aquaculture sites emerged as the strongest 
505 predictors, while slope and sea surface temperature anomaly played a secondary role. Despite 
506 some methodological differences between the models, the observed spatial agreement 
507 strengthens confidence in the ecological relevance of these findings.
508 By combining traditional ecological knowledge with citizen science contributions, this work 
509 demonstrates a scalable and cost-effective approach for habitat assessment, especially valuable in 
510 regions where systematic monitoring is limited. The results contribute to filling critical 
511 knowledge gaps on dolphin spatial ecology in Malta�s coastal waters and offer science-based 
512 support for potential updates to conservation planning frameworks, including the consideration 
513 of bottlenose dolphins as a qualifying species within the SAC.
514 However, this study is not without limitations. The research focused on a single summer season 
515 and was based on presence-only data, which may limit its ability to capture interannual 
516 variability and broader seasonal dynamics. Additionally, while sampling bias was addressed, the 
517 use of opportunistic data remains susceptible to uneven spatial effort and reporting.
518 Future research should prioritize increasing the temporal resolution of data collection across 
519 multiple seasons and years, improving systematic survey coverage, and further investigating the 
520 ecological linkages between aquaculture, productivity hotspots, and dolphin habitat use. 
521 Exploring these dynamics under different climatic scenarios, including marine heatwaves, may 
522 also provide critical insights for adaptive conservation management.
523 In summary, this case study contributes to the growing body of evidence supporting the 
524 integration of SDMs and participatory data collection into marine conservation planning. The 
525 approach presented here offers a valuable tool for informing spatial management decisions aimed 
526 at balancing species protection with human activities.
527
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Figure 1
The survey area consisting of the Special Area of Conservation (MT0000105).

Within the Special Area of Conservation (SAC), delineated by a dashed line, are aquaculture
sights and a bunkering area delineated by blue points and a dotted black line respectively.
Abbreviations: Co. - Comino, Me. - Mellieha Bay, Ma. - Marfa Bay.
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Figure 2
Survey eûort calculated as the amount of on-eûort track line across the survey area.

Warmer colours represent areas of higher survey eûort and cooler colours represent areas of
lower survey eûort. Sightings of dolphins are delineated by black crosses.
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Figure 3
Partial plots of explanatory variables for the GAM.

Slope, chlorophyll-a, sea surface temperature (SST) anomaly and distance to aquaculture.
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Figure 4
Mean prediction for bottlenose dolphin habitat suitability and the coeûcient of variation
across 1000 iterations of the GAM modelling process.
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Figure 5
Single variable response for the MaxEnt model.

Slope, chlorophyll-a, SST anomaly and distance to aquaculture.
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Figure 6
Mean prediction for bottlenose dolphin habitat suitability using the MaxEnt model and
the coeûcient of variation across 1000 iterations of the modelling process.
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Table 1(on next page)

Environmental and anthropogenic predictors used in the models, including data source
and resolution.
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1 Table 1: 

2

3 Environmental and anthropogenic predictors used in the models, including data source and 

4 resolution.

5

Predictor Details and description

Depth Water depth was obtained from the GEBCO 2023 global bathymetric grid 

(15 arc-seconds, approximately 460 x 380 m at Malta�s latitude spatial 

resolution) 

(https://www.gebco.net/data_and_products/gridded_bathymetry_data/). 

The bathymetry raster was clipped to the study area extent and projected 

to UTM Zone 33N to ensure accurate distance calculations.

Slope and Aspect Slope and aspect were derived from the GEBCO bathymetry raster using 

the R package terra. Slope represents the rate of change in elevation, 

while aspect indicates the direction of the steepest slope. These rasters 

were generated at the same resolution as the input bathymetry grid 

(approximately 460 x 380 m).

Distance from 

Shore and 

Distance from 

Aquaculture Sites

Euclidean distance from each raster cell to the nearest coastline or 

aquaculture facility, calculated using the �Distance� tool in 

the terra package in R. The coastline was obtained from official Maltese 

marine boundaries, and aquaculture sites were manually digitised from 

government sources (https://msdi.data.gov.mt/geoportal.html).

Sea Surface 

Temperature 

(SST)

Daily mean SST values were obtained from the STREAM App 

(https://stream-srf.com/products/), providing high-resolution satellite-

derived SST data (~1 km grid resolution) based on Copernicus Marine 

Service inputs. SST values were averaged over the study period to 

generate a composite summer surface.

Chlorophyll-a Daily chlorophyll-a concentration data were sourced from the STREAM 

App. The product integrates Copernicus Ocean Colour multi-sensor 

datasets at ~1 km spatial resolution, using the MedOC4 algorithm for 

offshore waters and AD4 for coastal waters. Values were averaged over 

the summer period.

Mixed Layer 

Depth

Mixed layer depth was obtained from the Mediterranean Sea Physics 

Analysis and Forecast product (Copernicus Marine 

Service: https://marine.copernicus.eu/). The product provides daily 

gridded data at 1/24° (~4 km) spatial resolution.

Salinity Daily surface salinity data were also extracted from the Mediterranean 

Sea Physics Analysis and Forecast product (Copernicus Marine Service, 

1/24° spatial resolution). Mean salinity values were calculated for the 

summer study period.

SST Anomaly SST anomaly, representing the deviation of daily SST from the 30-year 

climatological mean (1989�2019), was obtained from the STREAM App. 

This allows identification of thermal anomalies across the study area at 

~1 km resolution.
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Chlorophyll-

a Anomaly

Chlorophyll-a anomaly data were sourced from the STREAM App, 

calculated as the difference between daily chlorophyll-a concentrations 

and the 26-year climatological mean (Sept 1997�Aug 2023). The product 

uses multi-sensor satellite observations and gap-free data at ~1 km 

resolution.

6
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Table 2(on next page)

Relative importance of explanatory variables in the Generalised Additive Model (GAM).

The sum of the proportion of the total deviance explained exceeds 1 because the method

penalises more complex models
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1 Table 2: 

2

3 Relative importance of explanatory variables in the Generalised Additive Model (GAM).

4

Variable Deviance 

Explained

Proportion of total 

deviance explained*

Chlorophyll-a 31.4% 0.79

Distance to aquaculture 26% 0.65

Slope 7.89% 0.20

SST anomaly 6.36% 0.16

5 * The sum of the proportion of the total deviance explained exceeds 1 because the method 

6 penalises more complex models

7
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Table 3(on next page)

Percent Contribution and Permutation Importance for the Maximum Entropy Model
(MaxEnt).
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1 Table 3:

2

3 Percent C����������� ana Permutation Importance f�� the Maximum Entropy MoaM� (MaxEnt(

4

Predictor Percent contribc�	
� of 

predictorp

PerPc���	
� 

iPi

�����

C������������ 61.2 25.8

Distance to aquaculture 20.1 53.3

Slope 10.4 20.4

SST anomaly 2.3 0.5

5
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