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ABSTRACT
Background. Species distribution models (SDMs) are powerful tools for informing
conservation, particularly for highly mobile marine species such as common bottlenose
dolphins (Tursiops truncatus). In Maltese waters, the limited availability of data on this
species has constrained the effectiveness of conservation efforts. Despite the designation
of offshore Special Areas ofConservation (SACs), key coastal regions needmore detailed
spatial studies to support evidence-based management.
Methods. In this study, we analyzed and compared the outputs of a generalized
additive model (GAM) and a maximum entropy (MaxEnt) model to assess summer
habitat suitability for bottlenose dolphins within a coastal SAC in Malta. The models
were informed by presence-only data collected through systematic surveys and a
citizen science campaign, integrated with environmental and anthropogenic predictors
including chlorophyll-a concentration, sea surface temperature anomaly, slope, and
distance to aquaculture sites.
Results. Both modeling approaches identified high habitat suitability in shallow,
nearshore regions, with chlorophyll-a concentration and proximity to aquaculture
sites emerging as the most important predictors. Slope and sea surface temperature
anomaly contributed less substantially. The two models showed spatial agreement in
highlighting these nearshore areas as core habitats, though GAM predicted a broader
extent of suitable habitat, whereas MaxEnt results were more spatially restricted. Both
models demonstrated strong predictive performance (AUC > 0.85), reinforcing the
ecological relevance of the identified drivers.
Conclusion. This study demonstrates the potential of integrating opportunistic data
with SDMs to support habitat assessments in data-limited contexts. The use of com-
plementary modeling approaches provides robust insights into species–environment
relationships. These results aim to guide spatial planning and future assessments of
conservation priorities in Maltese coastal waters.
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INTRODUCTION
Understanding species distribution and habitat use is fundamental for developing effective
conservation strategies (Rodríguez et al., 2007;Guisan et al., 2013). However, assessing these
aspects can be particularly challenging for highly mobile species like cetaceans (Fernandez,
Sillero & Yesson, 2022). In this context, species distribution models (SDMs) offer a
solid foundation for gaining valuable ecological insights, particularly in data-deficient
regions (Redfern et al., 2006; Fiedler et al., 2018; Fernandez et al., 2021). By evaluating the
relationships between cetacean populations and the environment, as well as anthropogenic
factors, SDMs contribute to a more comprehensive understanding of species ecology and
potential conservation priorities (Rodríguez et al., 2007; Guisan et al., 2013;Marshall, Glegg
& Howell, 2014; Pace, Tizzi & Mussi, 2015; Giralt Paradell, Díaz López & Methion, 2019).

The ability of SDMs to assess species distributional ranges via predictive modeling
(Anderson, Lew & Peterson, 2003; Pitchford et al., 2016) or to identify the environmental
drivers of distribution through explanation modeling (Azzellino et al., 2008; La Manna et
al., 2023b) has led to an increase in their use in recent years for cetacean species (Pasanisi et
al., 2024). When used together, predictive and explanation modeling provides information
on the distribution of habitats that are suitable for species survival (Hirzel & Le Lay, 2008).
Within this framework, habitat suitability models serve as practical tools to estimate the
ecological conditions and areas within which a species is most likely to occur (Guisan &
Thuiller, 2005).

Among the most widely adopted modeling techniques are machine learning algorithms
such as maximum entropy (MaxEnt) models (Melo-Merino, Reyes-Bonilla & Lira-Noriega,
2020), which estimate the habitat suitability from presence-only data using the principle of
maximum entropy (Phillips, Anderson & Schapire, 2006), and statistical approaches such
as generalized additive models (GAMs), which model non-linear relationships between
species occurrence (e.g., presence/absence) and environmental factors (Hastie & Tibshirani,
1986). Both methods enable researchers to identify critical conservation areas and mitigate
potential threats by analyzing species’ habitat preferences (Rodríguez et al., 2007; Guisan et
al., 2013). Furthermore, they help predict how marine species respond to environmental
changes, contributing to the development of targeted conservation strategies (Giralt
Paradell, Díaz López & Methion, 2019; Díaz López & Methion, 2024).

The performance and reliability of these models are inherently dependent on several
factors, including model parametrization (Elith et al., 2006), the ecological relevance
and statistical independence of environmental predictors (Guisan & Zimmermann, 2000;
Dormann et al., 2013), the spatial and temporal scale at which models are implemented
(Elith & Leathwick, 2009) and the overall quality, completeness, and bias of species
occurrence records (Hernandez et al., 2006; Araújo & Guisan, 2006; Merow, Smith &
Silander, 2013).
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Dedicated surveys, although considered robust, are often resource-intensive and limited
by logistical and financial constraints, resulting in incomplete spatial coverage and potential
underrepresentation of species distribution (Evans & Hammond, 2004; Meyer et al., 2015).
Recent studies have demonstrated that non-traditional data sources, such as opportunistic
and citizen science data (Giovos et al., 2016; Pace et al., 2019; Robbins, Babey & Embling,
2020), offer a cost-effective approach to addressing specific research challenges, facilitating
the generation of estimates of cetacean distribution (Fernandez et al., 2021). In the study
of species inhabiting dynamic environments, non-traditional data sources offer several
advantages over conventional survey methodologies. For instance, they can enhance spatial
and temporal coverage and reduce logistical constraints, as they often do not require
specialized equipment or dedicated field effort (Robbins, Babey & Embling, 2020; Corr et
al., 2024). Nevertheless, the inherent biases and variability associated with opportunistic
data necessitate careful quality assessment and data integration techniques to ensure their
effective use in large-scale modeling efforts (Isaac et al., 2020; Martino et al., 2021).

Given these challenges, the integration of SDMs with non-traditional data sources
presents a promising approach for studying cetaceans in regions where systematic
monitoring is limited. In Maltese waters, the common bottlenose dolphin (Tursiops
truncatus) represents one of the most frequently observed cetacean species (Notarbartolo
Di Sciara, 2002) and plays an important ecological role as a top predator within the marine
ecosystem. Bottlenose dolphins are protected under a framework of national, regional and
international legal frameworks. At the national level, all cetacean species are protected
through the Flora, Fauna and Natural Habitats Protection Regulations (S.L. 549.44), which
transpose the European Union (EU) Habitats Directive 92/43/EEC into Maltese law. In
particular, the bottlenose dolphin is listed in Annex II of the Directive, which requires
the designation of Special Areas of Conservation (SACs) forming part of the Natura 2000
network, and in Annex IV as a species of community interest in need of strict protection.

Despite its protected status, the limited availability of systematic data on bottlenose
dolphins in Maltese waters presents challenges for fully supporting conservation planning.
Previous studies in the region have suggested a coastal distribution and spatial association
between dolphin presence and anthropogenic features such as aquaculture sites, which
may influence foraging behavior and local prey availability (Laspina, Terribile & Said, 2022;
Soster et al., 2025). Recent modeling efforts have highlighted potential gaps in the spatial
alignment between currently designated Natura 2000 sites and areas predicted to be of high
habitat suitability for bottlenose dolphins around the Maltese archipelago (Soster et al.,
2025). Specifically, although SACshave beendesignated for bottlenose dolphin conservation
in Malta, these mainly encompass offshore regions, while key coastal regions remain
outside protected boundaries. This highlights the need for further in-depth investigation
of bottlenose dolphin spatial ecology and habitat use in these areas, particularly through
temporally and spatially specific studies that can build upon existing baseline knowledge.
Moreover, dolphins in the region are exposed to a range of human pressures, including
maritime traffic, aquaculture, and unregulated recreational activities (Said et al., 2017;
Filletti et al., 2023; Mizzi et al., 2024; Soster et al., 2025). They are additionally subject to
environmental pressures, such as marine heatwaves (Garrabou et al., 2022), which require
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further investigation to be adequately addressed under existing management frameworks.
These conservation gaps highlight the urgent need for spatially explicit data on dolphin
distribution and habitat use to inform evidence-based conservation strategies in Malta’s
dynamic and heavily used coastal waters.

In light of these gaps, this case study aims to improve understanding of bottlenose
dolphin habitat suitability using presence-only data from opportunistic research platforms
and citizen science. We apply GAM and MaxEnt approaches within a heavily impacted
coastal SAC that, despite its designation, does not explicitly include bottlenose dolphins
as a target species. While this study is conservation-focused and not a methodological
comparison of modeling techniques, the inclusion of both models allows for a more
nuanced interpretation of species–habitat relationships and enhances stakeholder
confidence in the results. By analyzing and comparing the outputs, we identify summer
habitat suitability patterns and assess the influence of environmental and anthropogenic
drivers. The ultimate long-term goal of this work is to support evidence-based spatial
planning and inform the potential inclusion of bottlenose dolphins within the site’s
conservation framework.

MATERIALS & METHODS
Study area
The study area covers 159 km2 and is situated on the northeastern side of the Maltese
archipelago, extending from central Malta to the northern coast of Gozo, with a maximum
depth of 100 m (Fig. 1). The area includes the Natura 2000 site Żona fil-Bah̄ar bejn
Il-Ponta ta ‘ San Dimitri (Gh̄awdex)u Il-Qaliet, designated as a SAC for the protection
of the Maltese top-shell (Steromphala nivosa) and the loggerhead turtle (Caretta caretta).
Although bottlenose dolphins are known to occur in the area, they are not currently listed
among the protected species for this site (EUNIS, 2025). This coastal SAC hosts a wide range
of important habitats, such as Posidonia oceanica meadows, maërl beds, and Cymodocea
nodosa meadows. However, this site is affected by numerous human activities, including
four main finfish aquaculture sites and one bunkering area for large vessels (Fig. 1).
Furthermore, pleasure boating is especially prevalent, driven by the high concentration of
marinas and the region’s appeal as a tourist destination.

Occurrence data
Occurrence data of bottlenose dolphins were collected using two complementary
approaches: (i) dedicated boat surveys were conducted between July and September
2024 aboard a six-meter rigid-hull boat equipped with a 225 hp engine, following a
standardized observational protocol during whale watching activities, permitted by the
Environment and Resources Authority (EP 0249/24; Supplementary Material 1A); (ii)
opportunistic data were gathered through a citizen science campaign, which encouraged
sea users to report dolphin sightings by submitting information on coordinates, group
size and composition, behavior, and photographs (Supplementary Material 1B). Outreach
included the distribution of flyers to marinas, diving centers, charter companies, and
tour operators across the study area. In addition, opportunistic reports shared via social

Soster et al. (2025), PeerJ, DOI 10.7717/peerj.19804 4/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.19804#supp-1
http://dx.doi.org/10.7717/peerj.19804#supp-1
http://dx.doi.org/10.7717/peerj.19804


Figure 1 The survey area consisting of the Special Area of Conservation (MT0000105).Within the Spe-
cial Area of Conservation (SAC), delineated by a dashed line, are aquaculture sites and a bunkering area
delineated by blue points and a dotted black line respectively. Abbreviations: Co., Comino; Me., Mellieha
Bay; Ma., Marfa Bay.

Full-size DOI: 10.7717/peerj.19804/fig-1

media platforms were also collected and screened (Pace et al., 2019). All records were
validated through expert verification before the inclusion in the database, a method widely
utilized for its high level of accuracy (Yu, Wong & Hutchinson, 2010; Baker et al., 2021). The
validation process considered the reliability of the observer, the availability of supporting
visual evidence (e.g., videos or photographs), and existing knowledge of the local bottlenose
dolphin population (Bonter & Cooper, 2012).

Data collection was limited to the summer season due to resource availability and its
alignment with the regional peak in dolphin sightings and more favorable sea conditions,
thereby enhancing both detection probability and data quality. An effort-based GAM was
initially generated, but the low number of presence points with associated effort meant
that the results were not reliable (i.e., deviance explained >99.9%). Thus, presence-only
data were considered for two modeling approaches using a binomial GAM and a MaxEnt
model.

Environmental data
A number of static environmental variables were included in the models, including
depth, slope, aspect, and distance from shore. Dynamic variables comprised sea surface
temperature (SST), chlorophyll-a concentration, mixed layer depth, and salinity. The
selection of these variables was informed by previous studies on bottlenose dolphins
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(Pitchford et al., 2016; Carlucci et al., 2016; La Manna, Ronchetti & Sarà, 2016; Fontanesi
et al., 2024). In addition, SST anomaly, chlorophyll-a anomaly, and distance from
aquaculture sites were incorporated to account for the potential influence of direct and
indirect anthropogenic impacts on habitat suitability (Maricato et al., 2022). Details of the
downloaded datasets, spatial resolutions and sources are given in Table 1. All dynamic
variables were downloaded at a daily temporal scale, mean averaged across the survey
period and resampled to the resolution of the depth layer (Fig. S1). A number of the
variables had a high level of correlation (Pearson’s correlation coefficient |r|>0.7) and
were removed from the analysis (Dormann et al., 2013). In order to decide which of a
pair of correlated variables was removed, two single-variable GAMs were run, and the
variable in the model with the lowest AIC value was selected. Additionally, following the
fitting of the best-performing GAM, a check of concurvity (a non-linear equivalent of a
collinearity test) was made. This diagnostic is specific to models like GAMs that include
smooth functions and allow assessment of non-linear dependencies among predictors. This
step is not applicable to MaxEnt models, as they do not estimate smooth functions and
lack a direct analogue to concurvity diagnostics. The final set of environmental predictors
retained after this process was used consistently in both the GAM and MaxEnt models to
ensure comparability of outputs.

Pseudoabsences and background points selection
Whilst both GAM and MaxEnt are used regularly in species distribution modeling, they
differ notably in how they handle absence information and the selection of pseudo-absence
or background points. GAMs require both presence and absence (or pseudo-absence)
data, and model performance can be influenced by the ratio between these points. A
common recommendation is to use a presence-to-pseudo-absence ratio between 1:1 and
1:5, although using a large number of pseudo-absences (e.g., 10,000) with equal weighting
can also enhance model accuracy, particularly in large or heterogeneous study areas
(Barbet-Massin et al., 2012). In contrast, MaxEnt operates on presence-only data and uses
background points to represent the available environmental space, without assuming true
absences. The default setting in MaxEnt is 10,000 background points, which is generally
suitable for most applications, though this number can be adjusted depending on the
extent and resolution of the study area (Phillips & Dudík, 2008). These methodological
differences influence model outputs and will be considered when comparing results.

To account for sampling bias and improve model accuracy, a bias raster was
generated using a kernel density estimation based on the spatial distribution of dolphin
sightings (Fig. S2). A focal (neighborhood-based) smoothing operation was applied to
create a continuous surface representing relative sampling effort, constrained within
a two-kilometer buffer around both dolphin sightings and the boundaries of the
SAC. The resulting raster was normalized and used to guide the selection of pseudo-
absence/background points. A total of 30,000 points were initially generated (Fig. S3)
using the randomPoints function in the dismo package in R, version 1.3-16 (Hijmans et
al., 2024).
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Table 1 Environmental and anthropogenic predictors used in the models, including data source and resolution.

Predictor Details and description

Depth Water depth was obtained from the GEBCO 2023 global bathymetric grid (15
arc-seconds, approximately 460×380 m at Malta’s latitude spatial resolution)
(https://www.gebco.net/data_and_products/gridded_bathymetry_data/). The
bathymetry raster was clipped to the study area extent and projected to UTM
Zone 33N to ensure accurate distance calculations.

Slope and Aspect Slope and aspect were derived from the GEBCO bathymetry raster using the
R package terra. Slope represents the rate of change in elevation, while aspect
indicates the direction of the steepest slope. These rasters were generated at
the same resolution as the input bathymetry grid (approximately 460×380
m).

Distance from Shore and Distance from
Aquaculture Sites

Euclidean distance from each raster cell to the nearest coastline or aquacul-
ture facility, calculated using the ‘‘Distance’’ tool in the terra package in R.
The coastline was obtained from official Maltese marine boundaries, and
aquaculture sites were manually digitised from government sources (https://
msdi.data.gov.mt/geoportal.html).

Sea Surface Temperature (SST) Daily mean SST values were obtained from the STREAM App (https://stream-
srf.com/products/), providing high-resolution satellite-derived SST data (∼1
km grid resolution) based on Copernicus Marine Service inputs. SST values
were averaged over the study period to generate a composite summer surface.

Chlorophyll-a Daily chlorophyll-a concentration data were sourced from the STREAM App.
The product integrates Copernicus Ocean Colour multi-sensor datasets at∼1
km spatial resolution, using the MedOC4 algorithm for offshore waters and
AD4 for coastal waters. Values were averaged over the summer period.

Mixed Layer Depth Mixed layer depth was obtained from the Mediterranean Sea Physics Analysis
and Forecast product (Copernicus Marine Service: https://marine.copernicus.
eu/). The product provides daily gridded data at 1/24◦ (∼4 km) spatial resolu-
tion.

Salinity Daily surface salinity data were also extracted from the Mediterranean Sea
Physics Analysis and Forecast product (Copernicus Marine Service, 1/24◦

spatial resolution). Mean salinity values were calculated for the summer study
period.

SST Anomaly SST anomaly, representing the deviation of daily SST from the 30-year
climatological mean (1989–2019), was obtained from the STREAM App. This
allows identification of thermal anomalies across the study area at∼1 km
resolution.

Chlorophyll-a Anomaly Chlorophyll-a anomaly data were sourced from the STREAM App, calculated
as the difference between daily chlorophyll-a concentrations and the 26-year
climatological mean (Sept 1997–Aug 2023). The product uses multi-sensor
satellite observations and gap-free data at∼1 km resolution.

To estimate the optimal number of background points for GAMs, 30 values were
randomly sampled from the generated dataframe using base R (v4.4.3; R Core Team, 2025).
Presence and background data were split into 90% training and 10% testing sets. GAMs
were fitted to the training data and evaluated on the test set using the area under the
curve (AUC) and the true skill statistic (TSS). AUC is threshold-independent and widely
used for its simplicity and interpretability (Liu, White & Newell, 2011), while TSS provides
a threshold-dependent metric less sensitive to prevalence (Shabani, Kumar & Ahmadi,
2018). This process was repeated 50 times using k-values (wiggliness parameter) of 3, 5,
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and 10, and background point values ranging from 30 to 250, exceeding the commonly
recommended 1:1 to 1:5 presence-to-pseudo-absence ratio (Barbet-Massin et al., 2012).
For the GAM, AUC stabilized beyond 50 background points (Fig. S4A), while TSS peaked
between 50 and 90 (Fig. S4B). Models with k= 3 or 5 consistently outperformed those with
k= 10. A 1:1 presence-to-background ratio and k= 5 were selected for final modeling.

The same procedure was applied to MaxEnt, with background values from 1,000 to
12,000 and beta (regularization multiplier) values from 1 to 5. For MaxEnt, AUC and TSS
remained stable across most background values, with AUC between 0.87 and 0.89, and TSS
between 0.50 and 0.55 (Figs. S5A, S5B). Given the small size (159 km2) and homogeneity
of the study area, 8,000 background points were selected. A beta value of 1 was retained,
following Phillips & Dudík (2008) for small samples, and to avoid over-regularization,
which may reduce ecological interpretability (Merow, Smith & Silander, 2013).

Model specifications and evaluation
The GAM was fitted using the binomial family with a logit link function in the mgcv
package in R (version 1.9-1). Variable selection was enabled using shrinkage smoothers,
which apply penalties to smooth terms that do not contribute meaningfully to the model,
effectively shrinking them towards zero and allowing their influence to be removed.

The MaxEnt model was fitted using specific parameters implemented through the
dismo package in R. Linear, quadratic, and hinge features were included, while product
features were excluded, as they are only enabled when the number of presence points
exceeds 80 (Phillips & Dudík, 2008). Threshold features were also omitted to minimize
model complexity (Elith et al., 2011). The model was run using 500 iterations and 8,000
background points.

For both models, a 10-fold cross-validation procedure (90% train/10% test) was
conducted to evaluate predictive performance as previously done when dataset sizes are
constrained (Fielding & Bell, 1997; Breiner et al., 2015; Deneu et al., 2021). This approach
was selected to provide a robust estimate of model accuracy while minimizing potential
biases related to overfitting and data imbalance. The dataset was stratified into ten folds,
ensuring a balanced distribution of presence and pseudo-absence observations for the
GAM, and presence and background observations for the MaxEnt model. Each fold was
used once as a testing set, while the remaining nine folds served as the training set. This
process was repeated iteratively so that each observation contributed to both training
and validation. For each iteration, a model was fitted to the environmental predictors,
and predictions of species presence probability were generated for the testing set. Model
performance was evaluated using receiver operating characteristic (ROC) curve analysis
(Fielding & Bell, 1997; Phillips, Anderson & Schapire, 2006; Elith et al., 2006). The AUC
was calculated for each fold as a measure of predictive accuracy, with higher AUC values
indicating better model performance (Phillips, Anderson & Schapire, 2006; Elith et al., 2006;
Merow, Smith & Silander, 2013).

Following model fitting, uncertainty was quantified for both GAM and MaxEnt
predictions to assess the reliability of habitat suitability outputs. For GAMs, standard
errors were extracted directly from the model’s built-in prediction outputs (Wood, 2017).
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For MaxEnt, a bootstrap resampling approach was used, and the resulting raster stack of
500 replicate predictions was analyzed (Elith & Leathwick, 2009). In both cases, a mean
habitat suitability map was generated to represent the central tendency of model outputs
(Phillips, Anderson & Schapire, 2006). To further quantify uncertainty, the standard error
was calculated for each raster cell, reflecting the absolute variability in predicted values,
while the coefficient of variation (CV) was computed to express relative uncertainty as
a percentage of the mean prediction (Chen, Dimitrov & Meyers, 2019). These uncertainty
metrics were used to identify areas of high prediction confidence and regions where
model outputs were more variable. Given the two different methodologies of extracting
the coefficient of variation, these are not directly comparable between the two modeling
techniques but provide a useful understanding of spatial uncertainty around the model.
Similarly, the output predictions of GAMs and MaxEnt are different; GAMs use logistic
regression (binomial family with a logit link) to predict the probability of a presence
whereas MaxEnt returns a predicted suitability (Guisan, Edwards & Hastie, 2002; Phillips,
Anderson & Schapire, 2006). Whilst not directly comparable, both methods can be used to
determine the area which is most suitable for the species of interest.

Contribution and importance of variables
Both GAMs and MaxEnt offer visual tools to help interpret how environmental variables
influence species presence. In GAMs, the shape of the partial response curves illustrates
the effect of each predictor on the log-odds of species presence (Guisan, Edwards & Hastie,
2002). In MaxEnt, response curves indicate the species’ relative preference across the range
of each environmental variable (Phillips, Anderson & Schapire, 2006). Given the differences,
the two should not be directly compared. They can however, both be useful in interpreting
the effects of variables and thus are both given in the results.

Similarly, MaxEnt also provides two metrics of variable importance: percent
contribution, based on the increase in model gain during training, and permutation
importance, which measures the decrease in model performance when a variable’s values
are randomly permuted (Phillips, Anderson & Schapire, 2006; Elith et al., 2011). While
GAMs do not include built-in measures of variable importance, a comparable estimate
can be derived by examining deviance explained. This involves removing one predictor at
a time and comparing the deviance of the reduced model to the full model (Wood, 2017).
As with the visual response curves, these importance measures are not directly comparable
across modeling approaches, but each helps to understand the role of environmental
drivers and has been presented accordingly.

Investigating the additional value of including citizen science data
To assess the influence of citizen science data on model performance, both the GAM
and MaxEnt models were run without the inclusion of citizen science records. Model
parameters were kept identical to those used in the full models: a 1:1 ratio of presence to
background points and a k-value of five for the GAM, and 8,000 background points with
a beta value of one for MaxEnt.
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RESULTS
Occurrence
A total of 17 boat-based surveys covered 484.8 km of on-effort trackline, with a mean
vessel speed of 9.7 kt (SE ± 0.18). The survey effort was unevenly distributed across the
study area, with the majority of effort concentrated in the northern coastal waters of Malta
(Fig. 2). A total of 20 bottlenose dolphin sightings were recorded during these surveys,
with most sightings occurring in shallow to moderately deep waters (<50 m) to the north
of Malta. The encounter rate for boat-based surveys was 4.12 groups and 19.8 individuals
per 100 km surveyed. The citizen science campaign contributed an additional 49 sightings
within the study area, out of a total of 52 validated records submitted during the campaign
period. Together, the combined dataset resulted in 69 sightings (Fig. 2).

Collinearity tests
The collinearity test resulted in the retention of slope, aspect, chlorophyll-a, SST anomaly,
and distance to aquaculture. The subsequent concurvity assessment for the GAM led to
the removal of aspect due to high non-linear dependency with other predictors. As a
result, the final models were fitted using chlorophyll-a, SST anomaly, slope and distance
to aquaculture.

Habitat suitability analysis with GAM
The GAM showed strong predictive performance, with a mean AUC of 0.86 (SE ± 0.02)
under 10-fold cross-validation, indicating a high level of discriminatory power (Swets,
1988). All four explanatory variables included in the model were found to have
statistically significant relationships with bottlenose dolphin occurrence. In terms of
variable importance, the proportion of deviance explained was highest for chlorophyll-a
(0.79) and distance to aquaculture (0.65), suggesting these were the strongest drivers of
dolphin habitat suitability (Table 2). Although slope and SST temperature anomaly were
statistically significant, they contributed less to the overall deviance explained (0.20 and
0.16, respectively), indicating a weaker influence on habitat suitability patterns.

The model predicted an increased probability of occurrence with increasing values of
slope and chlorophyll-a and a decreased probability of occurrence with increasing values
of SST anomaly and distance to aquaculture facilities (Fig. 3).

The mean prediction map generated across 1,000 iterations showed that the highest
habitat suitability for bottlenose dolphins was concentrated around Mellieha Bay and St
Paul’s Bay. Additional areas of moderate suitability were identified in the Comino Channel,
in proximity to the bunkering area and along the north-eastern coast of Gozo (Fig. 4).
The uncertainty associated with the spatial predictions, represented by the coefficient of
variation across, was generally low within the borders of the SAC but higher at the outer
edges of the survey region.

Habitat suitability analysis with MaxEnt
The MaxEnt model demonstrated strong predictive performance (Swets, 1988), with a
mean AUC of 0.89 (SE ± 0.0001) under 10-fold cross-validation. The regularized training
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Figure 2 Survey effort calculated as the amount of on-effort track line across the survey area.Warmer
colours represent areas of higher survey effort and cooler colours represent areas of lower survey effort.
Sightings of dolphins are delineated by black crosses.

Full-size DOI: 10.7717/peerj.19804/fig-2

Table 2 Relative importance of explanatory variables in the generalised additive model (GAM). The
sum of the proportion of the total deviance explained exceeds 1 because the method penalises more com-
plex models.

Variable Deviance
explained

Proportion of
total deviance
explained*

Chlorophyll-a 31.4% 0.79
Distance to aquaculture 26% 0.65
Slope 7.89% 0.20
SST anomaly 6.36% 0.16

Notes.
*The sum of the proportion of the total deviance explained exceeds 1 because the method penalises more complex models.

gain was 1.23, compared to an unregularized gain of 1.18, indicating that the application
of regularization successfully reduced overfitting to a small extent.

Chlorophyll-a was the most influential predictor in the model, contributing 61.2% of
the total model gain and 25.8% of the permutation importance (Table 3). Distance to
aquaculture was the second most influential variable, contributing 20.1% to model gain
and 53.3% to permutation importance.

Themodel showed amarked decrease in habitat suitability with increasing distance from
aquaculture facilities, particularly within the first 5,000 m. Habitat suitability increased

Soster et al. (2025), PeerJ, DOI 10.7717/peerj.19804 11/29

https://peerj.com
https://doi.org/10.7717/peerj.19804/fig-2
http://dx.doi.org/10.7717/peerj.19804


Figure 3 Partial plots of explanatory variables for the GAM. Slope, chlorophyll-a, sea surface tempera-
ture (SST) anomaly and distance to aquaculture.

Full-size DOI: 10.7717/peerj.19804/fig-3

exponentially with higher chlorophyll-a concentrations (Fig. 5). Slope and SST anomaly
contributed less than 15% cumulatively to the model’s predictive power. However, slope
showed a higher permutation importance (20.4%), suggesting a moderate influence on
model sensitivity. The response curve indicated that suitability peaked at slope values
between 2.5◦ and 3◦, declining on either side. Sea surface temperature anomaly exhibited a
nearly linear negative relationship with suitability, but its overall contribution to the model
was minimal (Fig. 5).

As with the GAM, the most suitable areas for bottlenose dolphins were the waters
surrounding Mellieha Bay and Saint Paul’s Bay. The MaxEnt model predicted high
suitability only along the Maltese coast of the Comino Channel and a moderate suitability
in the shallow bunkering area (Fig. 6). The coefficient of variationwas highest near the edges
of the survey area, and higher uncertainty was also observed within the SAC, especially
along the central coastal waters of Gozo.

Investigating the additional value of including citizen science data
When using the GAM with effort-based presences only (n = 21), model performance
was notably lower than when research and citizen science data were combined (n = 69),
with a mean AUC of 0.69 compared to 0.86, and a comparable TSS of 0.984 versus 0.951.
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Figure 4 Mean prediction for bottlenose dolphin habitat suitability and the coefficient of variation
across 1,000 iterations of the GAMmodelling process.

Full-size DOI: 10.7717/peerj.19804/fig-4
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Table 3 Percent contribution and permutation importance for the Maximum EntropyModel (Max-
Ent).

Predictor Percent
contribution of
predictors

Permutation
importance

Chlorophyll-a 61.2 25.8
Distance to aquaculture 20.1 53.3
Slope 10.4 20.4
SST anomaly 2.3 0.5

Figure 5 Single variable response for the MaxEnt model. Slope, chlorophyll-a, SST anomaly and
distance to aquaculture.

Full-size DOI: 10.7717/peerj.19804/fig-5

Prediction uncertainty was also higher, with a coefficient of variation of 154.9% across the
study area, particularly in the northern region (Figs. S6D–S6F). Furthermore, the limited
number of data points led to an underestimation of habitat suitability in areas where
dolphins were observed in the citizen science data, such as the Comino Channel (Fig. 2)
and the southeast of Malta (Figs. S6A–S6C).

Although the MaxEnt model using only effort-based presences produced higher mean
AUC (0.94) and TSS (0.89) compared to the model based on the full dataset (AUC= 0.89;
TSS = 0.64), it showed increased prediction uncertainty, with the coefficient of variation
rising by 76.5% across the survey area, particularly in the eastern region (Figs. S7D–S7F).
Additionally, the model failed to predict suitable habitat in the Comino Channel and the
southeastern part of the survey area (Figs. S7A–S7C).
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Figure 6 Mean prediction for bottlenose dolphin habitat suitability using theMaxEnt model and the
coefficient of variation across 1,000 iterations of the modelling process.

Full-size DOI: 10.7717/peerj.19804/fig-6
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DISCUSSION
Effective conservation planning relies on identifying areas that are important for species
survival and on understanding how environmental factors influence their distribution.
SDMs are widely used tools for obtaining this information, particularly in data-limited
contexts (Elith & Leathwick, 2009; Guisan et al., 2013). This case study identifies core
suitable habitats for a top marine predator by linking occurrence records, obtained with
the support of citizen science, to key environmental variables. Through the application
of a GAM and a MaxEnt model, summer habitat suitability maps were generated for the
bottlenose dolphin in a relatively understudied area of Malta, offering a practical tool to
support decision-makers in the formulation of conservation strategies.

This study examined the bottlenose dolphin summer habitat suitability, revealing that
the northeastern coastal waters of the archipelago represent an important summer habitat
for the species. In addition to being in line with previous broader research in the region
(Soster et al., 2025), this study provides a finer-scale perspective by adding spatial detail and
seasonal context to earlier habitat suitability assessments. Both the GAM and the MaxEnt
models used in this research identified the area between Mellieha Bay and St Paul’s Bay as a
region of high suitability, suggesting that this portion of the study area may represent a key
habitat for the species in summer. This area coincides with shallow, productive waters and
proximity to inshore aquaculture sites, factors previously associated with higher dolphin
presence in other Mediterranean regions, where similar environmental and anthropogenic
features have been linked to increased dolphin presence (Díaz López, 2012; Pace et al., 2019;
Gnone et al., 2022; La Manna et al., 2023a; Bellingeri et al., 2025). Moderate suitability was
also found across the broader study area, with particular interest in the Comino Channel,
but with some degree of spatial variability between the two models.

To better understand the environmental drivers behind these patterns, the relative
importance of predictor variables for both models was examined. While GAM andMaxEnt
differ in their analytical frameworks, bothmodels’ outputs revealed a comparable pattern in
the importance of environmental variables shaping bottlenose dolphin habitat preference.
Particularly, both models identified chlorophyll-a and distance to aquaculture as the most
important predictors of habitat suitability, while slope and SST anomaly contributed less
significantly. However, the relative contribution of these variables differed between the
two approaches. In the GAM, chlorophyll-a explained the highest proportion of deviance,
followed closely by distance to aquaculture. In contrast, MaxEnt revealed distance to
aquaculture as the most influential predictor based on its permutation importance, with
chlorophyll-a as the second most important variable. These differences reflect how each
model handles variable interactions (Guisan & Zimmermann, 2000; Elith et al., 2011),
but the consistency in identifying chlorophyll-a and distance to aquaculture as the top
predictors highlights their ecological relevance to this population.

To further clarify these ecological patterns, the response curves offer information
on how particular environmental factors affect habitat suitability. Higher chlorophyll-a
concentrations showed a positive relationship with habitat suitability in both models, likely
reflecting higher primary productivity and, by extension, greater prey availability (Methion
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et al., 2023). Chlorophyll-a has frequently been used as a proxy for such favorable foraging
conditions, given its correlation with the abundance of zooplankton and small pelagic fish
(Torres, Read & Halpin, 2008). Indeed, its importance as a predictor of dolphin occurrence
and habitat use has been demonstrated in other regions of the Mediterranean (La Manna,
Ronchetti & Sarà, 2016; Giannoulaki et al., 2017; Karamitros et al., 2020). In this study,
chlorophyll-a levels were likely influenced by both natural productivity and anthropogenic
input from aquaculture (Díaz López & Methion, 2017), as chlorophyll-a concentrations
were consistently higher in areas surrounding aquaculture sites during the summer
months (Fig. S1), contributing to their predictive strength in both models. Additionally,
bottlenose dolphins are highly opportunistic predators with a well-documented behavioral
plasticity (Reynolds, Wells & Eide, 2013), often concentrating their foraging activity in areas
where prey is predictably abundant. Suitability also declined with increasing distance
from aquaculture sites, suggesting that these areas may provide foraging opportunities
by promoting local prey aggregations (Díaz López, 2012; Díaz López, 2017; Díaz López &
Methion, 2017). However, this does not imply that the area would be unsuitable in the
absence of aquaculture; rather, the presence of these sites appears to increase habitat use
within an ecologically favorable region. Finally, while the observed negative correlation
between bottlenose dolphin presence and distance to aquaculture facilities improves our
ability to predict their habitat preferences, this aggregation near fish farms may pose
conservation concerns, as previous studies have associated such clustering with increased
risks of vessel collisions, entanglement, habitat degradation, and exposure to elevated noise
and light pollution (Guisan & Zimmermann, 2000;Martino et al., 2021).

While chlorophyll-a and distance to aquaculture were the strongest predictors in
both models, slope and SST anomaly also contributed to explaining dolphin habitat
suitability, albeit to a lesser extent. In the GAM, slope showed a significant but weaker
relationship, with habitat suitability peaking at intermediate values. Similarly, the MaxEnt
response curve indicated that suitability decreased on either side of an optimal slope range,
suggesting a preference for specific seabed structures. Both models indicated a preference
for areas characterized by gentle slopes (∼2.5–3◦), indicating that bottlenose dolphins in
the study area are associated with mildly inclined rather than very flat or steep seabed. This
is consistent with previous findings suggesting that moderate bottom inclinations may
support preferred foraging or transit zones, particularly in coastal environments where
bathymetric features influence prey availability (Cañadas, Sagarminaga & Garcı’a-Tiscar,
2002; Gnone et al., 2022).

Although SST anomaly was the weakest predictor in both models, the response curves
indicated a consistent negative relationship between increasing temperature anomalies
and habitat suitability. This suggests that bottlenose dolphins may tend to avoid areas
experiencing greater thermal deviation, potentially due to indirect effects on prey availability
or ecosystem stability (Wernberg et al., 2013). In the Mediterranean, SST anomalies have
been associated with shifts in the abundance and distribution of demersal and pelagic
fish species (Sabatés et al., 2006; Hidalgo et al., 2011), which could in turn reduce the
attractiveness of the areas affected to predators. Given that the study only covered summer
months, the role of thermal variability might be underestimated, and further investigation
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across seasons would be needed to better understand its influence. This is of particular
importance, in light of the potential consequences of extreme weather events such as
marine heatwaves that are becoming more frequent in the Mediterranean (Darmaraki et
al., 2019;Wild et al., 2019).

One important finding of this study is the spatial agreement shown by the two models
in predicting areas of high habitat suitability, particularly in the waters surrounding
Mellieha Bay and St Paul’s Bay. However, a certain difference between the two modeling
approaches was observed. Particularly, the GAM predicted a broader extent of high
suitability, including the Comino Channel, as well as moderate suitability across most of
the study area. In contrast, the MaxEnt model identified a more spatially restricted area
of high suitability in the channel, primarily concentrated in Marfa Bay, with moderate
suitability extending across the bunkering area. Additionally, while the coefficient of
variation was higher around the SAC boundaries for both models, the MaxEnt predictions
exhibited greater uncertainty within the SAC itself, particularly around the northern coastal
waters of Gozo relative to the overall coefficient of variation. These differences likely reflect
the methodological dissimilarities between the models and their respective sensitivities
to the spatial distribution and structure of the input data. GAM’s use of pseudo-absence
data and smooth functions may have allowed it to detect localized patterns of suitability,
particularly if species-environment relationships in this area are non-linear or influenced
by smaller gradients (Guisan, Edwards & Hastie, 2002; Wood, 2017). In contrast, MaxEnt’s
reliance on background sampling and global feature fitting may have reduced sensitivity
to weak or spatially clustered signals in regions with lower observation density (Elith et
al., 2011;Merow, Smith & Silander, 2013). Interestingly, while MaxEnt’s outputs have been
found to be only similar to those of GAMs when background points are drawn from
observed absences (Fiedler et al., 2018), these results show spatial agreement despite the
use of pseudo-absences and background data, suggesting a robust ecological indicator
captured by both modeling approaches. These model-specific differences highlight the
value of employing complementary modeling techniques, as they can reveal different
aspects of species-habitat relationships and strengthen the ecological interpretation of
suitability maps (Guisan & Zimmermann, 2000; Elith & Graham, 2009).

Given its significance in conservation applications of SDMs (Guisan et al., 2013), it
is important to highlight the low degree of uncertainty found in the central core area
identified between Mellieha Bay and St. Paul’s Bay. While some uncertainty is inherently
irreducible (Regan et al., 2005), the low uncertainty and strong spatial agreement of highly
suitable areas, together with the high predictive performance of both models (AUC > 0.85),
reinforce confidence in the identified ecological patterns. Making the uncertainty explicit
also helps stakeholders understand the level of confidence they can place in the prediction
(Regan et al., 2005). The highly suitable area found by both models should therefore be
treated as a conservation priority, while the broader GAM-predicted moderately suitable
areas may inform future monitoring efforts. In data-limited contexts, this complementarity
can provide a more holistic and robust foundation for decision-making.

Incorporating citizen science data was a key aspect of this study, enabling a nearly
threefold increase in presence records as well as expanding the number of sightings in areas
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with less survey coverage. In contrast, models based solely on research data predicted low
habitat suitability in the Comino Channel, despite frequent dolphin sightings reported
by citizen scientists (Fig. 2). The reduced coefficient of variation in both the GAM
and MaxEnt models using the full dataset further underscored the value of including
opportunistic observations, especially when systematic survey effort is limited. These
findings align with previous research showing that appropriately incorporating citizen
science and opportunistic data can significantly enhance species distribution models
(Tiago, Pereira & Capinha, 2017; Coxen et al., 2017; Matutini et al., 2021). Our results
contribute to the growing recognition of non-traditional data sources as valuable tools for
contributing to cost-effective long-term monitoring and the generation of reliable habitat
suitability predictions. These predictions help govern conservation, particularly in marine
environments where systematic data collection is often constrained (Giovos et al., 2016;
Pace et al., 2019).

Protecting bottlenose dolphins in Maltese waters effectively calls for the inclusion of
species–habitat knowledge into site-based and pressure-based management approaches
(Reisinger, Johnson & Friedlaender, 2022). This study adopts a conservation-oriented
perspective and identifies key summer habitats which, although located within an existing
SAC, are not currently designated for the protection of bottlenose dolphins. The strong
agreement between habitat suitability maps highlights consistent ecological patterns and
supports spatial planning, local mitigation, and the potential inclusion of bottlenose
dolphins in the site’s conservation objectives. Furthermore, the integration of citizen
science data demonstrates how participatory monitoring expands spatial coverage and
enhances model reliability in under-surveyed areas. Employing complementary modeling
approaches, such as MaxEnt and GAMs, further strengthens the ecological interpretation
of habitat use and provides evidence for adaptive management in data-limited marine
environments.

Study limitations
Despite providing valuable insights into the summer habitat suitability of bottlenose
dolphins in Maltese waters, this work is subject to certain limitations that should be
acknowledged. First, the study was limited to a single season, potentially overlooking
important temporal dynamics and habitat preferences that vary across seasons. Moreover,
data were collected during a single summer period, whichmay not fully capture interannual
variability in dolphin occurrence and habitat use. As such, conclusions drawn are primarily
reflective of summer habitat suitability patterns and may not represent consistent seasonal
patterns across years or year-round habitat use. Secondly, although sampling bias was
addressed in both modeling exercises, the integration of citizen science and opportunistic
data may remain susceptible to uneven effort and reporting. These limitations may result in
underrepresentation of certain areas, where lower predicted suitability could reflect limited
observation effort rather than true absence. Third, the moderate spatial disagreement
between the GAM and MaxEnt predictions, particularly in areas such as the Comino
Channel, suggests that methodological sensitivity to data structure may affect spatial
outputs. While both models showed strong AUC values, the reliance on pseudo-absence or
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background data remains a known limitation in interpreting habitat suitability, particularly
in data-poor or spatially heterogeneous systems (Lobo, Jiménez-Valverde & Real, 2008;
Phillips et al., 2009).

CONCLUSIONS
This study applied a comparativemodeling approach using generalized additivemodels and
MaxEnt to assess summer habitat suitability for bottlenose dolphins in a coastal Special Area
of Conservation (SAC) in Malta. The models integrated citizen science and opportunistic
data with environmental and anthropogenic variables to identify key drivers of dolphin
habitat suitability and highlight important habitats within a data-limited context.

Both modeling approaches consistently identified shallow, nearshore regions,
particularly around Mellieha Bay and St Paul’s Bay, as key summer habitats for bottlenose
dolphins. Chlorophyll-a concentration and proximity to aquaculture sites emerged as the
strongest predictors, while slope and sea surface temperature anomaly played a secondary
role. Despite some methodological differences between the models, the observed spatial
agreement strengthens confidence in the ecological relevance of these findings.

By combining traditional ecological knowledge with citizen science contributions, this
work demonstrates a scalable and cost-effective approach for habitat assessment, especially
valuable in regions where systematic monitoring is limited. The results contribute to
filling critical knowledge gaps on dolphin spatial ecology in Malta’s coastal waters and
offer science-based support for potential updates to conservation planning frameworks,
including the consideration of bottlenose dolphins as a qualifying species within the SAC.

However, this study is not without limitations. The research focused on a single summer
season and was based on presence-only data, limiting its ability to capture interannual
variability and broader seasonal dynamics. Additionally, while sampling bias was addressed,
the use of opportunistic data remains susceptible to uneven spatial effort and reporting.

Future research should prioritize increasing the temporal resolution of data collection
across multiple seasons and years, improving systematic survey coverage, and further
investigating the ecological linkages between aquaculture, productivity hotspots, and
dolphin habitat use. Exploring these dynamics under different climatic scenarios, including
marine heatwaves,may also provide critical insights for adaptive conservationmanagement.

In summary, this case study contributes to the growing body of evidence supporting the
integration of SDMs and participatory data collection into marine conservation planning.
The approach presented here offers a valuable tool for informing spatial management
decisions aimed at balancing species protection with human activities.
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