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ABSTRACT
We have used the COSMO-RS implicit solvation method to calculate the equilibrium
constants, pKa, for deprotonation of the acidic residues of the ovomucoid inhibitor
protein, OMTKY3. The root mean square error for comparison with experimental
data is only 0.5 pH units and the maximum error 0.8 pH units. The results show that
the accuracy of pKa prediction using COSMO-RS is as good for large biomolecules
as it is for smaller inorganic and organic acids and that the method compares very
well to previous pKa predictions of the OMTKY3 protein using Quantum Mechan-
ics/Molecular Mechanics. Our approach works well for systems of about 1000 atoms
or less, which makes it useful for small proteins as well as for investigating portions of
larger proteins such as active sites in enzymes.
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INTRODUCTION
Proteins are the basic building blocks of life as we know it. Better understanding of their

chemical and physical behavior would open a host of new possibilities in science, medicine

and technology. Central to understanding their behavior is a method for describing

their properties thermodynamically. The protonation state is one important variable

for predicting interaction with fluids and solids because as pH changes and protons attach

or detach from the protein as a function of pH and solution composition, charge and

adhesion properties are affected. The equilibrium constant that describes protonation, the

acidity constant, pKa, provides a quantification of the protein’s properties and contributes

to our ability to predict the outcome of processes such as protein–protein interaction

(Muegge, Schweins & Warshel, 1998; Sheinerman, Norel & Honig, 2000), aggregation

(Wang, Li & Speaker, 2010) and interactions with nanoparticles (Bomboi et al., 2013)

and surfaces. These processes in turn control biological activity. Considerable effort has

gone into research on pKa, to determine values experimentally as well as developing

and validating methods to predict them. Many of these are described in a recent review

(Alexov et al., 2011). An interesting point throughout is that pKa values for protonation

of amino acid side chains can be significantly shifted from their water reference values.

For predicting acidity constants, several approaches have been used: quantum chemical,

How to cite this article Andersson et al. (2013), Predicting pKa for proteins using COSMO-RS. PeerJ 1:e198; DOI 10.7717/peerj.198

mailto:ma@nano.ku.dk
mailto:ma@nano.ku.dk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.198
http://dx.doi.org/10.7717/peerj.198
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://peerj.com
http://dx.doi.org/10.7717/peerj.198


molecular dynamics, electrostatic (Poisson–Boltzmann and generalized Born) and

empirical methods. The empirical methods often outperform more rigorous methods. In a

recent blind prediction study (Olsson, 2012), the largest deviation from experimental data

resulted from a quantum chemical method. Much of the difficulty in reducing uncertainty

in protein acidity constants comes from difficulties with configurational sampling, which is

crucial for capturing details about structural reorganization and water penetration into the

protein.

The turkey ovomucoid inhibitor protein, OMTKY3, has frequently been used as a

system for benchmarking pKa predictions in proteins, in particular quantum mechanical

(QM) and combined quantum mechanical/molecular mechanical (QM/MM) methods.

Accurate measurements of its five acid residues are available (Schaller & Robertson, 1995)

and there is a significant spread between the most and the least acidic values. This spread,

coupled with the reasonable size of the protein, makes OMTKY3 a very good model for

benchmarking theoretical results (Li, Robertson & Jensen, 2004).

pKa prediction, using density functional theory (DFT) and the implicit solvent model

COSMO-RS, is quite straightforward for acids (Klamt et al., 2003) as well as bases (Eckert

& Klamt, 2006) and does not require any explicit solvent molecules. The prediction of

pKa values for small inorganic and organic molecules using COSMO-RS is mature, with

calculated values matching experimental values with a root mean square error of 0.5 pH

units, but how well could pKa values be predicted when an acid group is part of a protein

and both the acid group and the rest of the protein are affected by internal hydrogen

bonding and local changes in the environment? In this study, we demonstrate that

given a reasonable starting structure based on experimental evidence, a combination of

semi-empirical geometry optimization, coupled with single point calculation using DFT,

and the implicit solvent model COSMO-RS, gives excellent agreement for the pKa values of

the five acid side chains in OMTKY3. We also provide evidence that the accuracy of protein

pKa predictions using COSMO-RS is equally good for larger biomolecules such as whole or

parts of protein molecules that consist of as many as 1000 atoms.

COMPUTATIONAL DETAILS
Geometry optimization was performed using the program MOPAC2009 (Stewart, 2009)

with the AM1 (Dewar et al., 1985) and PM6-DH+ (Korth, 2011) semi-empirical methods

and the linear scaling algorithm MOZYME. The COSMO solvent module with dielectric

constant 999.9 was used for the geometry optimization because the COSMO-RS method

requires perfect screening as the reference state. We used the LBFGS method for geometry

optimization, with GNORM = 2.0. All DFT simulations were single point calculations

performed with the TURBOMOLE program, v6.33 (Ahlrichs et al., 1989), using the BP
3 TURBOMOLE V6.3 2011, a develop-

ment of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH,
1989–2007, TURBOMOLE GmbH, since
2007.

functional (Becke, 1988; Perdew, 1986) and the SVP basis set (Schafer, Horn & Ahlrichs,

1992; Weigend & Ahlrichs, 2005). The COSMOtherm program with parameterization

BP SVP C21 0111 was used for all COSMO-RS calculations (Eckert & Klamt, 2002; Eckert

& Klamt, 2013) and all were performed at 298 K. pKa calculations in COSMO-RS are based

on a linear free energy relationship between measured pKa and the calculated free energy
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difference between the protonated and the deprotonated forms of the acid (Klamt et al.,

2003). There is no need for explicit solvent molecules.

Our starting point for the geometry optimization for the OMTKY3 protein was the

experimental structure for 1PPF (Bode et al., 1986) downloaded from the PDB databank.

The initial positions of the hydrogen atoms were determined at pH 7, using the WHATIF

program (Vriend, 1990). We used two approaches for geometry optimization: We first

used the AM1 method, with full optimization of the whole protein for each of the

protonated states. As a second approach, we used the PM6-DH+ method analogously

but we had to make an additional geometry optimization. Before the single point

DFT calculations, we froze the entire structure except for the amino acid side chain of

interest and re-optimized using AM1. This is a prerequisite for using the COSMO-RS

parameterization BP SVP C21 0111, for which only the AM1 semi-empirical method

gives reliable results.

The initial structure was determined for neutral pH, which means that all aspartic

acid, Asp, and glutamic acid, Glu, were deprotonated and negatively charged, whereas

lysine, Lys, was protonated and positively charged. All pKa values were then predicted

by adding a single hydrogen atom to each acid group in turn, using only the most stable

conformation found. At least two conformations were tested for each acid group by adding

a hydrogen atom to either of the acid oxygen atoms. No conformer treatment was made in

COSMO-RS.

The calculation time was quite reasonable for a small (805 atoms) protein. The

semi-empirical geometry optimization of the experimental structure took about 5 h on

a single core. The next geometry optimizations, where protons were added, took less than

an hour each. A single point DFT calculation took about 15 h (wall time) using 8 cores.

RESULTS AND DISCUSSION
The optimized geometry and corresponding COSMO surface for the OMTKY3 protein

is shown in Fig. 1. The predicted pKa values for the acid side chains of OMTKY3 match

very well with experimental data (Table 1) with an RMS error of less than 1 pH unit for

both optimization methods. This compares well with previous studies (Forsyth et al., 1998;

Havranek & Harbury, 1999; Li, Robertson & Jensen, 2004; Mehler & Guarnieri, 1999; Nielsen

& Vriend, 2001). The PM6-DH+ optimization, where RMS error is 0.5, gives slightly

better results than AM1, where RMS is 0.8. This improvement probably comes from the

much more accurate treatment of internal hydrogen bonding with the PM6-DH+method,

which results in a better three-dimensional protein structure. Particularly important is the

ability of our method to predict the most acidic pKa value of Asp27 with an error of less

than 1 pH unit. The excellent agreement implies that pKa prediction using COSMO-RS

is as good for macromolecules as it is for smaller inorganic and organic compounds,

for which the method is parameterized. COSMO-RS has been shown to be as accurate

for small bases (Eckert & Klamt, 2006) as it is for small acids (Klamt et al., 2003), which

suggests that COSMO-RS could also be applied to pKa predictions for base side chains of

proteins.
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Figure 1 Optimized geometry and COSMO surface of the OMTKY3 protein. (A) Optimized geometry
and (B) COSMO surface of the OMTKY3 protein. The PM6-DH+ semi-empirical method was used for
the geometry optimization and the BP/SVP/COSMO method was used to create the COSMO surface.

Table 1 Experimental and calculated pKa values for the acids in OMTKY3. The method in parenthesis is the method used for the geometry
optimization.

Amino acid
side chain

Experimental
data (Schaller &
Robertson, 1995)

This work
(AM1)

This work
(PM6-DH+

/AM1)

Li, Robertson
& Jensen
(2004)

Forsyth et al.
(1998)

Nielsen
& Vriend
(2001)

Mehler &
Guarnieri
(1999)

Havranek
& Harbury
(1999)

Asp7 2.5 2.7 2.2 2.4 2.9 2.7 2.9 2.1

Glu10 4.1 5.7 3.8 4.3 3.4 3.6 4.1 4.0

Glu19 3.2 3.5 2.6 2.7 3.2 2.7 3.6 3.1

Asp27 2.2 2.6 3.0 1.9 4.0 3.4 3.3 2.9

Glu43 4.8 4.9 4.6 4.5 4.3 4.3 4.4 5.6

RMS error 0.8 0.5 0.3 0.9 0.7 0.6 0.5

Max error 1.6 0.8 0.5 1.8 1.2 1.1 0.8

OMTKY3 is a small protein but our results suggest that parts of larger proteins, with as

many as 1000 atoms (about 50 amino acid residues), for example, active sites in enzymes,

could be predicted in a similar manner. This would require slightly more complex methods

where one might freeze atoms for parts of the protein that are far from the site of interest.

Assuming an average protein density of 1.22 g/cm3 (Andersson & Hovmöller, 1998) and

using polyglycine as an average protein composition and structure, we can construct a

model protein with∼1000 atoms contained within a sphere of radius 13.8 Å. This system

is large enough to represent most active sites in enzymes and similar molecules of interest.

To use a pure QM method, the molecular structure must be terminated outside the sphere,

i.e., by removing atoms more than 13 Å from the center of interest and adding protons

to any broken bonds, similar to the approach followed by Li and colleagues (2004). By

choosing a QM treatment for a system of as many as 1000 atoms, we can significantly

reduce the artifacts that would accompany the need for a QM/MM boundary for a smaller

number of atoms.

Andersson et al. (2013), PeerJ, DOI 10.7717/peerj.198 4/7

https://peerj.com
http://dx.doi.org/10.7717/peerj.198


The COSMO-RS method, using semi-empirical geometry optimization, has an

accuracy that is close to much more elaborate QM/MM methods but the computational

setup and cost are significantly smaller. For proteins of <1000 atoms, application of the

method is quite straightforward because the whole structure can be considered, with no

need to cut bonds. It would be advantageous to have a parameterization of COSMO-RS

that is based on geometry from a more accurate semi-empirical method than AM1. From

our results, we suggest that the PM6-DH+ method could provide such a framework,

considering its good performance for biomolecules (Yilmazer & Korth, 2013).

CONCLUSIONS
We have predicted pKa for the OMTKY3 protein that is quite close to experimental data.

The COSMO-RS implicit solvent model works very well for proteins, where internal

hydrogen bonding and local environment modify the pKa values from what they would

be for the free amino acids. The root mean square error for the five acidic side chains in the

OMTKY3 protein was 0.5 pH units, which is comparable to results from previous efforts

to predict pKa. Our approach works well for systems of about 1000 atoms or less, which

makes it useful for small model proteins and for investigating portions of larger proteins

such as active sites in enzymes.
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