Vampyromorph coleoid predation by an ichthyosaurian from the Early Jurassic Lagerstätte of Luxembourg (#116115)

First submission

Guidance from your Editor

Please submit by 2 May 2025 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

3 Figure file(s)

1 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Vampyromorph coleoid predation by an ichthyosaurian from the Early Jurassic Lagerstätte of Luxembourg

Robert Weis Corresp., Equal first author, 1 , Valentin Fischer Corresp., Equal first author, 2 , Dominique Delsate 1 , Francesco Della Giustina 2 , Pierre Wintgens 2 , Dirk Fuchs 3 , Ben Thuy 1

Corresponding Authors: Robert Weis, Valentin Fischer Email address: robert.weis@mnhn.lu, v.fischer@ulg.ac.be

Many Early Jurassic marine predators were seemingly adapted to hunt soft and fast prey items such as cephalopods. However, deciphering what these animals ate and, therefore, the intensity of their competition is challenging, as fossilised gut content is biased by multiple factors. In this paper, we report a loligosepiid vampyromorph coleoid in the gut of a specimen of the ichthyosaurian *Stenopterygius triscissus* from the early Toarcian Bascharage Lagerstätte of Southern Luxembourg. This is the first report of octobrachian predation in ichthyosaurians. The coeval pachycormid teleosts *Pachycormus macropterus* and *Saurostomus esocinus*have recently been reported to feed on loligosepiid octobrachians as well, indicating partial reliance on the same food resources. We use this opportunity to compare the functional anatomy of these taxa and re-evaluate the affinities of coleoids preserved as ichthyosaurian gut content.

¹ Section Paléontologie, Musée National d'histoire Naturelle, Luxembourg, Luxembourg

² Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium

Baverische Staatssammlung für Paläontologie und Geologie, München, Germany

Vampyromorph coleoid predation by an ichthyosaurian

2 from the Early Jurassic Lagerstätte of Luxembourg

Valentin Fischer¹, Robert Weis², Dominique Delsate², Francesco Della Giustina¹, Pierre 4 Wintgens¹, Dirk Fuchs³ & Ben Thuy² 5 6 7 ¹ Evolution & Diversity Dynamics Lab, UR Geology, Université de Liège, Belgium ² Section Paléontologie, Musée National d'histoire Naturelle, 25 rue Münster L-2160 8 9 Luxembourg, Grand Duchy of Luxembourg 10 ³ Bayerische Staatssammlung für Paläontologie und Geologie, Richard Wagner Straße 11 10, D-80333 München, Germany 12 13 Corresponding Authors: 14 Valentin Fischer¹, Robert Weis² 15 ¹ Evolution & Diversity Dynamics Lab, UR Geology, Université de Liège, Belgium 16 ² Section Paléontologie, Musée National d'histoire Naturelle, 25 rue Münster L-2160 17 Luxembourg, Grand Duchy of Luxembourg 18 Email addresses: v.fischer@uliege.be; robert.weis@mnhn.lu 19 20

Abstract

Many Early Jurassic marine predators were seemingly adapted to hunt soft and fast prey items such as cephalopods. However, deciphering what these animals ate and, therefore, the intensity of their competition is challenging, as fossilised gut content is biased by multiple factors. In this paper, we report a loligosepiid vampyromorph coleoid in the gut of a specimen of the ichthyosaurian *Stenopterygius triscissus* from the early Toarcian Bascharage Lagerstätte of Southern Luxembourg. This is the first report of octobrachian predation in ichthyosaurians. The coeval pachycormid teleosts *Pachycormus macropterus* and *Saurostomus esocinus* have recently been reported to feed on loligosepiid octobrachians as well, indicating partial reliance on the same food resources. We use this opportunity to compare the functional anatomy of these taxa and re-evaluate the affinities of coleoids preserved as ichthyosaurian gut content.

Introduction

A series of Lagerstätten deposits have revealed, over the last 170 years, a formidable diversity of marine reptiles that populated the European epicontinental seas during the Toarcian (late Early Jurassic) (e.g. Hauff, 1953; Godefroit, 1994; Röhl et al., 2001; Großmann, 2007; Maisch, 2008; Benson et al., 2010, 2011; Johnson et al., 2018; Stöhr & Werneburg, 2022). These localities indicate the presence of several coeval predators: neoichthyosaurians, thalattosuchian crocodyliforms, and plesiosaurians. Many of them have long snout and small, acute teeth, suggesting that they relied on soft prey items such as cephalopods and small teleosts (Massare, 1987; Bardet, 1994; Godefroit, 1994; Fischer et al., 2022a). Competition among marine reptiles, as well as with other

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

vertebrates such as teleosts or chondrichthyans, is likely, as evidenced in some Mesozoic formations (Martin et al., 2017; Foffa et al., 2018; Cortés & Larsson, 2024). However, precise data on the prey items found in marine reptile gut content is generally lacking. The Bascharage Lagerstätte of Southern Luxembourg has recently revealed that multiple pachycormid teleosts fed on octobranchian cephalopods (Weis et al., 2024), while coleoids as a whole are often regarded as a resource consumed by other marine reptiles, notably ichthyosaurians and thalattosuchians based on gut content and dental anatomy (Massare, 1987; Böttcher, 1989; Lomax, 2010). Consumption of cephalopods by ichthyosaurians has indeed been known since the 19th century (Buckland, 1829; Quenstedt, 1858). Based on masses of arm hooks in their fossilised gut contents, ichthyosaurians have indeed been regarded as 'teuthophages', probably preferring belemnoid coleoids (Dick, Schweigert & Maxwell, 2016). Here, we add to this body of evidence by (i) describing the ecomorphology and the gut content of a specimen of the baracromian ichthyosaurian Stenopterygius triscissus from the Bascharage Lagerstätte, (ii) comparing it with those of coeval pachycormid teleosts, and (iii) reviewing the systematic attribution of prey items in fossilised ichthyosaurian gut contents.

60

61

62

63

64

65

66

Materials & Methods

Geological setting

The 'Schistes bitumineux', also known as 'Couches à Harpoceras falciferum' (Lo1) or the Bascharage Lagerstätte, is a geological formation in Luxembourg that crops out over an area approximately 30 km wide between Rodange and Bascharage in the west and

Bettembourg and Dudelange to the east (Dittrich, 1993); its thickness reaches 40-45 m (Lucius, 1945). This formation is the local expression of a widespread phenomenon of anoxia that affected the European epicontinental seas during the early Toarcian, known as the Toarcian Oceanic Anoxic Event (T-OAE) or the Jenkyns Event. As such, the Schistes bitumineux Formation is coeval with other bituminous formations in western Europe, such as the Posidonienschiefer Formation in southwestern Germany, the Jet Rock Formation in the UK, the Schistes Carton in France, and the Grandcourt Formation in Belgium (Muscente et al., 2023).

The bituminous shales outcropping in the south of Luxembourg and the neighbouring Gaume and Lorraine regions in France and Belgium are known for their rich fossil record since the 19th century: Chapuis & Dewalque (1853) mentioned fossils of 'fish' and 'squids' in Aubange, on the Belgian-Luxembourgish border. Since the 1930s, when two ichthyosaurian skeletons were unearthed (Faber & De Muyser, 1947), marine reptiles are surely amongst the most iconic and mostly sought-after fossils from the 'Schistes bitumineux' Formation. Several specimens have been discovered since; see Godefroit (1994) for a detailed analysis of this material, as well as Vincent et al. (2017), Johnson et al. (2018), Laboury et al. (2022), and Wallstedt et al. (2024) for recent contributions on plesiosaurians, thalattosuchians, and ichthyosaurians, respectively.

The ichthyosaurian specimen studied herein originates from the Schistes bitumineux Formation, more precisely the Serpentinum ammonite zone. It was found during construction works for the 'Luxguard' factory in the industrial zone next to Dudelange

91

(coordinates: 49°30'06"N; 6°04'55"E) by D. Watrinelle, a private fossil collector, in the late '80s or early '90s and subsequently donated to the MNHNL. The specimen had been 92 described and illustrated as Stenopterygius quadriscissus by Godefroit (1994: pl. 3, fig. 93 c) and is exhibited in the permanent gallery at the MNHNL. A recent restoration by O. 94 Kunze (Stuttgart, Germany) revealed further anatomical details. A 3D model of the full 95 specimen can be accessed freely online: https://sketchfab.com/3d-96 models/stenopterygius-quadriscissus-tv211-v2024-97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Functional traits

930e539b4f6e4ef7816d2ad4f4a65227.

We gathered a series of craniodental and postcranial traits that summarise the feeding and swimming capabilities of three coeval species, known to have ingested loligosepiid coleoids: the ichthyosaurian Stenopterygius triscissus and the pachycormiforms Pachycormus macropterus and Saurostomus esocinus. We selected the following traits to be compared for each taxon: the absolute total body size (a proxy for energy consumption, among other factors), the mandibular aspect ratio (mandible area divided by the square of mandible length (Friedman, 2012); a proxy for lower jaw stiffness), the closing mechanical advantage of the jaw, computed at the middle part of the dentigerous section (distance from the quadrate/articular articulation to the coronoid process divided by the distance from the quadrate/articular articulation to the mid-dentigerous point in the mandible; a proxy for relative bite strength), the crown shape (crown height divided by crown basal diameter, for tooth in the middle part of the dentigerous section, a proxy for the piercing capability of the crown), the absolute diameter of the opening of the sclerotic

114

115

116

117

118

119

120

121

122

123

ring (a proxy for the size of the dilatated pupil and therefore of low-light vision), and the aspect ratio of the pectoral and caudal fins (fin area divided by the square of the fin proximo-distal length; a proxy for swimming speed). We obtained these data from the literature for pachycormids (Friedman, 2012; Williams, Benton & Ross, 2015; Cawley et al., 2019; Cooper & Maxwell, 2022) and from measurements of MNHNL TV211, complemented by the literature (Lingham-Soliar, 2001; Maisch, 2008) for the ichthyosaurian. The caudal aspect ratio for the ichthyosaurian is taken for the species *Stenopterygius quadriscissus* instead of *Stenopterygius triscissus*, as no specimen of the latter have been reported with an intact caudal fin outline preserved. Articulated apical and postflexural skeletal regions suggest that both species possessed a similarly shaped caudal fin (Maisch, 2008; Maxwell, 2012).

124

125

- Institutional abbreviations: BRLSI: Bath Royal Literary and Scientific Institution, Bath,
- 126 UK. GPIT: Paläontologische Sammlung der Universität Tübingen, Germany. MNHNL:
- 127 Palaeontological collections of Musée National d'Histoire Naturelle, Luxembourg.
- 128 NHMUK: Natural History Museum, London, UK. SMF: Natur-Museum Senckenberg,
- 129 Frankfurt, Germany. SMNS: Staatliches Museum für Naturkunde Stuttgart, Germany.

130

131

132

Results

Identity and age of the ichthyosaurian

- 133 The specimen MNHNL TV211 is a partial ichthyosaurian preserving the skull, neck, torso,
- 134 scapular girdle, and right anterior forefin, in articulation (total anteroposterior length =
- 135 1047 mm; mandible length = 424 mm). The preserved portion suggests that the animal

was ≈2000 mm long in vivo. The prefrontal is small and does not participate in the bony narial aperture; the maxilla is anteroposteriorly short; the teeth are small, straight, and lack conspicuous enamel ornamentation but have apicobasal ridges texturing the root; the coracoid is rounded, with an anterior notch and lacks a posterolateral emargination; the scapula forms a large acromion; the humerus is constricted at mid-shaft and solely connects distally to two large epipodial hexagonal elements (radius and ulna); the radius and the radiale are notched and the intermedium solely contacts the distal carpal 3. This combination of features is unique to the genus *Stenopterygius* (Godefroit, 1994; Maisch, 2008; Caine & Benton, 2011; Maxwell, 2012; Maxwell & Cortés, 2020; Fischer et al., 2022b).

The rostrum is ≥0.63 the length of the mandible (its anteriormost margin is broken off); the dorsoventral height of the maximal at the level of mid-naris is 0.38 times the dorsoventral height of the rostrum in the same zone; the maxilla forms the ventral border of the bony narial aperture; the trunk appears slender. This suite of features suggests that the specimen belongs to the species *Stenopterygius triscissus* (Godefroit, 1994; Maisch, 2008; Maxwell, 2012), the most abundant ichthyosaurian species from the Toarcian of Luxembourg (Godefroit, 1994). Godefroit (1994) reported that the maxilla forms the ventral border of the naris in *Stenopterygius longifrons* (=*Stenopterygius triscissus* (Maisch, 2008)), yet a specimen from Strawberry Bank, UK, has the maxilla excluded from the bony narial aperture by a combination of the subnarial process of the premaxilla and the anteroventral process of the lacrimal (Caine & Benton, 2011). This feature therefore appears interspecifically variable and should not be used in isolation to identify

the species of *Stenopterygius*. Additionally, it is worth mentioning that the specimen is likely not a fully mature adult (the species is supposed to grow to a size of 3500 mm) and might not have developed all the diagnostic features of the species, notably the long rostrum (70% of total mandible length in adults only, only ≥63% in the present specimen) (Godefroit, 1994; Maisch, 2008). Its probable subadult growth stage also explains the presence of a fully functional dentition. Indeed, *Stenopterygius* is known to lose teeth upon reaching the adult stage; the timing and degree of tooth reduction appears however interspecifically variable (Godefroit, 1994; Maisch, 2008; Dick & Maxwell, 2015).

Functional anatomy of the ichthyosaurian

With an estimated body length of 2 m, the ichthyosaurian analysed here is about the same size as the common dolphin, *Delphinus delphis* (Ridgway & Harrison, 1999). Being an early thunnosaurian ichthyosaurian (Motani, 1999), *Stenopterygius* has a thunniform body outline (Lingham-Soliar & Plodowski, 2007) and was likely adapted for fast, sustained swimming (Motani, 2002; Gutarra et al., 2019). This is also evidenced by the high aspect ratio of the forefin and the caudal fin (Figure 3).

The rostrum is long and slender, as in most ichthyosaurians. The coronoid process of the surangular is small, as is the postorbital region of the skull. These factors result in a weak bite force; the mechanical advantage computed at the mesialmost tooth of the snout = 0.08 (Figure 3). Such a value is, for example, one-third to one-half of the value found in most mosasaurids and short-necked plesiosaurians (MacLaren et al., 2022; Fischer et al. in prep). The long, slender, and tubular snout of *Stenopterygius triscissus* (mandibular

aspect ratio = 0.038; Figure 3) could be ideal for fast lateral snapping of small prey items, even in the context of reduced head mobility in ichthyosaurians (VanBuren & Evans, 2016). The tooth crown in the middle part of the rostrum in MNHNL TV211 has an apicobasal height/basal ratio of 6.1 mm / 2.4 mm = 2.5 (Figure 3) and is therefore slender compared to many other marine amniotes. In *Stenopterygius quadriscissus*, the teeth (when retained) are usually blunter at mandible lengths of ≥400 mm (Dick, Schweigert & Maxwell, 2016). The small, narrow crowns of *Stenopterygius triscissus* are straight and lack enamel ornamentation. This suggests a diet of small, soft prey items (Massare, 1987; Fischer et al., 2022a). The eyes of *Stenopterygius triscissus* are large: the mean diameter of the right orbit of MNHNL TV211 is 91.5 mm, and that of the inner opening of the right sclerotic ring (a direct proxy for the size of the dilatated pupil) is 36.1 mm (Figure 3), slightly larger than the pupil of the fast swimming swordfish (Nilsson, Warrant & Johnsen, 2014). Such a pupil allows a ≈32 m vision range of a 10 cm black target at a depth of 350m in clear oceanic waters (Nilsson, Warrant & Johnsen 2014).

Identity of the gut content in MNHNL TV221

The preserved gut content corresponds to the fragmentary remains of a gladius-bearing coleoid, more precisely a loligosepiid octobranchian. This assignation is based on the presence of an extended hyperbolar zone on the gladius, which also lacks the keel that is otherwise typical of contemporary teudopseid octobrachians. However, a more precise determination is hampered by the fragmentary preservation and the diagnostic course of the growth lines within the hyperbolar zone is not observable on this specimen. Fossils of loligosepiids are widespread in the Lower Toarcian sediments across Central and

Western Europe and have been described for instance from Southern Germany, France, Luxembourg and the UK (e.g. Riegraf, Werner & Lörcher, 1984; Doyle, 1990; Guérin-Franiatte & Gouspy, 1993; Fuchs & Weis, 2008, 2010; Jattiot et al., 2024). In the Schistes bitumineux Formation, they usually have phosphatized soft tissue and ink sacs, in addition to the unmineralized gladius. The vampyromorph faunal list in this formation comprises three teudopsid species (*Teudopsis bunelii, Teudopsis subcostata* and *Teudopsis bollensis*) and three loligosepiid species (*Loligosepia aalensis, Parabelopeltis flexuosa, Jeletzkyteuthis coriaceus*) as well as one recently discovered species, *Simoniteuthis michaelyi* (Fuchs & Weis, 2008, 2010; Fuchs, Weis & Thuy, 2024).

Functional anatomy of coeval octobranchian-eating pachycormids

Several species of pachycormids are found in the same deposits as MNHNL TV221:
Pachycormus macropterus, Saurostomus esocinus, Sauropsis latus, Euthynotus
incognitus, and Haasichthys michelsi (Delsate, 1999a,b) but only the former two have
coleoid remains in their gut content (Weis et al. 2024). Both are smaller than
Stenopterygius triscissus, with skull lengths of around 150mm for Saurostomus (of which
mandible length accounts for 45-50 %; total body length up to 1374 mm (Friedman, 2012;
Cawley et al., 2019) and 170 mm for Pachycormus (of which mandible length accounts
for 40-55 %; total body length up to 600 mm (Friedman, 2012; Cawley et al., 2019; Cooper
& Maxwell, 2022)). Pachycormus macropterus and Saurostomus esocinus have a highly
hydrodynamic, fusiform profile, suggesting rapid swimming. This is also supported by the
aspect ratios of the pectoral and caudal fins, which are fairly similar for Stenopterygius
and the three pachycormids considered (Figure 3).

220	1
//8	Ś

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Besides these similarities in global body shape and fin aspect ratios, the ichthyosaurian and the pachycormids fundamentally differ in the shape and mechanism of their feeding apparatus. Firstly, *Pachycormus* and *Saurostomus* lack a rostrum; the anteorbital portion of their skull is short. This results in marked differences in the closing mechanical advantage, which is ≈ 0.22 for Saurostomus esocinus, and 0.25 for Pachycormus macropterus, therefore nearly or more than three times that of Stenopterygius triscissus (Figure 3). Similarly, the mandible aspect ratio is about five times higher in *Saurostomus* esocinus and Pachycormus macropterus than in Stenopterygius triscissus (Figure 3). This suggests that *Pachycormus macropterus* and *Saurostomus* esocinus did not employ lateral snapping, but rather suction to aid capturing prey items. The tooth crowns of Pachycormus macropterus are small and elongated (crown shape ratio = 2.7; (Friedman, 2012)), with a slight labio-lingual compression (Cooper & Maxwell, 2022), and lack any evident external texture (although 3 µm-wide apicobasal ridges are present; D.D. pers. obs.). Tooth crowns of Saurostomus esocinus are larger, and less elongated (crown shape ratio = 1.84 (Friedman, 2012), and curved lingually (Cooper & Maxwell, 2022), with conspicuous folds in the enamel. Pachycormus macropterus and Saurostomus esocinus possess pupils that are absolutely smaller than those of Stenopterygius triscissus (18 mm and 21 mm VS 36 mm; Figure 3), resulting in a vision range of a 10 cm black target at a depth of 350m in clear oceanic waters (≈ 23 m (Nilsson, Warrant & Johnsen, 2014), while it was ≈ 32 m for Stenopterygius triscissus).

249

250

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Discussion

Gut content in Early Jurassic ichthyosaurians

Gut contents have been reported in ichthyosaurians, mostly in the Early Jurassic mediumsized thunnosaurians *Ichthyosaurus* and *Stenopteryaius* (Pollard, 1968; Massare, 1987; Dick, Schweigert & Maxwell, 2016). Buckland (1829, p. 226) inferred that Early Jurassic ichthyosaurians preyed upon cuttlefish (suborder Sepiida; crown Decabrachia), as he regarded ring-like structures in putative ichthyosaurian coproliths as the horny sucker rings of sepiids. The occurrence of sepiids in the Jurassic has however been repeatedly rejected (Fuchs, 2023 and references therein), because fossils with a minimum set of sepiid characters are recorded from the latest Cretaceous onward, thus well after the extinction of ichthyosaurians (Bardet, 1992; Fischer et al., 2016). Subsequently, the idea grew that hooklets associated with ichthyosaurian remains belonged to squids (suborder Oegopsida; crown Decabrachia) such as the present day Onychoteuthis (Moore, 1856). The idea of 'fossil teuthids' was popular at that time popular, but has become obsolete since the works of Bandel & Leich (Bandel & Leich, 1986; Fuchs, 2020). More recently, the fossilised diet of *Ichthyosaurus* appears to be restricted to belemnoid hooklets (Pollard, 1968; Massare, 1987) and without much variation (nor more details) among species. Two specimens are also known to preserve teleost scales (Buckland, 1836; Lomax, 2010), along with multiple belemnoid hooklets. Keller (1976) and Massare (1987) reported belemnoid hooklets and rare fish fragments in Stenopterygius quadriscissus, Stenopterygius crassicostatus (=Stenopterygius quadriscissus or Stenopterygius uniter), and Stenopterygius megalorhinus (=Stenopterygius triscissus or Stenopterygius uniter) (Maisch, 2008). The diet of the species Stenopterygius quadriscissus seems to follow an

ontogenetic trend increasing the proportion of cephalopods while decreasing that of teleosts (Dick, Schweigert & Maxwell 2016). Individuals with mandible length > 420 mm seemingly solely relied on cephalopods; which corresponds to the moment when teeth reduce in relative size, eventually becoming non-functional (Dick & Maxwell, 2015). In *Stenopterygius triscissus*, teeth remain large enough to protrude from the dental groove at larger skull sizes (Maisch, 2008; this work). Larger species of Early Jurassic ichthyosaurians seem to add amniotes to their diet (Fischer et al., 2022a): fragments of a smaller ichthyosaurian have been reported in the gastric content of '*Leptopterygius acutirostris*' (Massare, 1987) (some specimens of that entity are now referrable to the large parvipelvian *Temnodontosaurus zetlandicus*, while some smaller specimens possibly belong to early baracromians (Maisch 2010; Laboury et al. 2022)). Böttcher (1989) reported 200 ichthyosaur centra (as well as a series of coleoid hooklets) in the gastric mass of '*Leptopterygius burgundiae*' (=*Temnodontosaurus trigonodon*) (Maisch 1998; McGowan & Motani 2003; Bennion et al. 2024).

However, there has been confusion, or perhaps a lack a precision, in the literature regarding the possible owners of hooklets found in ichthyosaurian guts. These claw-like structures were interpreted as the arm hooklets of 'belemnites' (Pollard, 1968) and this somehow became the interpretation by default. In fact, the coleoid order Belemnitida is essentially typified by ten hooklet-bearing arms (Fuchs & Hoffmann, 2017), and a massive calcitic rostrum covering the primary shell, as well as the presence of mega-onychites (Hoffmann & Stevens, 2020). The absence of such rostra in the stomach of ichthyosaurians was longtime enigmatic until Valente et al. (2010) suggested that most

of the arm hooklets in the stomachs of Early Jurassic parvipelvians do not belong to 'belemnites' *sensu stricto*, but rather to rostrum-less clades, essentially referrable to Phragmoteuthida, Belemnoteuthina, and Diplobelida (Fuchs, Donovan & Keupp, 2013; Fuchs, 2019). So far, unambiguous evidence of ichthyosaurians feeding on belemnitids is rare; sporadic records of mega-onychites (Dick, Schweigert & Maxwell, 2016) suggest that Early Jurassic thunnosaurians occasionally preyed upon rostrum-bearing belemnites, potentially snapping off the hard part (Valente, Edwards & Pollard, 2010), but preferentially hunted rostrum-less coleoids.

Competition or chance?

The fossil record of octobrachian coleoids as ichthyosaurian gut content is exceedingly rare; the specimen we described above represents the first evidence of this behaviour, even though Dick et al. (2016) noted that these species may have been part of ichthyosaurian diets. The fossil record of octobrachians as gut content has been regarded as certainly biased, because octobrachians usually lack strongly mineralised tissues and hooklets (Dick, Schweigert & Maxwell, 2016). The fact that none are preserved in German specimens of *Stenopterygius quadriscissus* prompted Dick et al. (2016) to suggest that this species avoided octobrachians. With hundreds of specimens known (Hauff, 1953), *Stenopterygius quadriscissus* dominates the marine reptile fossil record in early Toarcian German localities and is usually regarded as the ideal representative of the ecology of *Stenopterygius*. Yet, *Stenopterygius triscissus* is more common in Luxembourg (Godefroit, 1994, 1996) and only 15 German specimens of *Stenopterygius triscissus* are preserved with gut content (Dick, Schweigert & Maxwell, 2016). Moreover, there are

subtle differences in the gross anatomy (Maisch, 2008; Maxwell, 2012) and in the retention of functional teeth at adult size (Dick & Maxwell, 2015; Dick, Schweigert & Maxwell, 2016) between the two species, which could lead to slightly distinct diets.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

320

321

322

Fossilised gut contents represent a biased record of the diet of marine predators, whose fossil record is also strongly biased (e.g. Benson et al., 2010). It is therefore difficult to assess the biological significance of our find, as a frequent or infrequent ingestion of easily dissolved prey would result in fossil records that are difficult to dissociate. If this occurrence is chance fossilisation of a rare behaviour, it slightly improves our understanding of the ecological capabilities of Stenopterygius triscissus. However, if octobrachian consumption was not uncommon in Stenopterygius triscissus, it would document a case of competition among dissimilar predators. Indeed, our comparisons of Stenopterygius triscissus with coeval, loligosepiid-eating pachycormid teleosts (Figure 3) indicate that these taxa differ in most aspects of their craniodental shapes. This is reinforced by the complexity of the jaw opening and closing in teleosts, as the maxilla and the ceratohyals can rotate, markedly widening the bucco-pharyngeal cavity. This adds suction as an essential mechanism in prey capture (e.g. Day et al., 2015). Closing the mouth forces water to exit behind the operculas, causing a stronger water flux (pushing the prey) at the entry of the oesophagus than in reptiles. This enabled pachycormids to capture and consume relatively larger prey items than ichthyosaurians did. Indeed, Pachycormus is known to feed on juveniles of its own kin (Cooper, 2023) as well as ammonites (Cooper & Maxwell, 2023). Such profound functional differences between marine amniotes and 'fish' result in the absence of a 'convergence requirement' to feed

on similar prey items in the marine realm, which likely explains why attempts to unify the feeding guilds of marine amniotes and sharks have been challenging (Ciampaglio, Wray & Corliss, 2005), despite palaeontological and neontological evidence that both groups competed for similar resources (e.g. Martin et al., 2017). Exceptional preservation in the early Toarcian Bascharage Lagerstätte of Southern Luxembourg indicates that this might also have applied between *Stenopterygius triscissus*, *Pachycormus macropterus*, and *Saurostomus esocinus*, although the true intensity of this competition remains far from clear.

Conclusions

We report on the gut content of a specimen of the ichthyosaurian *Stenopterygius triscissus* from the early Toarcian Bascharage Lagerstätte of Southern Luxembourg. The gut contains an identifiable gladius of a loligosepiid vampyromorph; this marks the first record of gladius-bearing octobrachians in the diet of ichthyosaurians. The coeval pachycormid teleosts *Pachycormus macropterus* and *Saurostomus esocinus* have also been reported to feed on the same food resource, although through a fully distinct mechanism given the functional differences between these taxa. The intensity of the competition between ichthyosaurians and pachycormids during the Early Jurassic remains, however, elusive.

Acknowledgements

366	We are indebted to Paul Braun (Luxembourg), who took the photographs of the specimer
367	and prepared the 3D model. We also thank reviewers XXX and editor XXX.
368	
369	References
370	Bandel K, Leich H. 1986. Jurassic Vampyromorpha (dibranchiate cephalopods). Neues
371	Jahrbuch für Geologie und Paläontologie - Monatshefte 1986:129–148. DOI:
372	10.1127/njgpm/1986/1986/129.
373	Bardet N. 1992. Stratigraphic evidence for the extinction of the ichthyosaurs. Terra
374	Nova 4:649–656.
375	Bardet N. 1994. Extinction events among Mesozoic marine reptiles. <i>Historical Biology</i>
376	7:313–324.
377	Bennion RF, Maxwell EE, Lambert O, Fischer V. 2024. Craniodental ecomorphology of
378	the large Jurassic ichthyosaurian Temnodontosaurus. Journal of Anatomy
379	221:22-41. DOI: 10.1111/joa.13939.
380	Benson RBJ, Butler RJ, Lindgren J, Smith AS. 2010. Mesozoic marine tetrapod
381	diversity: mass extinctions and temporal heterogeneity in geological megabiases
382	affecting the vertebrates. Proceedings of the Royal Society B: Biological
383	Sciences 277:829-834. DOI: 10.1098/rspb.2009.1845.
384	Benson RBJ, Ketchum HF, Noè LF, Gómez-Pérez M. 2011. New information on
385	Hauffiosaurus (Reptilia, Plesiosauria) based on a new species from the Alum
386	Shale member (Lower Toarcian: Lower Jurassic) of Yorkshire, UK.
387	Palaeontology 54:547–571.

388	Bonnevier Wallstedt I, Sjövall P, Thuy B, De La Garza RG, Eriksson ME, Lindgren J.
389	2024. Skin Anatomy, Bone Histology and Taphonomy of a Toarcian (Lower
390	Jurassic) Ichthyosaur (Reptilia: Ichthyopterygia) from Luxembourg, with
391	Implications for Paleobiology. Diversity 16:492. DOI: 10.3390/d16080492.
392	Böttcher VR. 1989. Über die Nahrung eines Leptopterygius (Ichthyosauria, Reptilia) aus
393	dem süddeutschen Posidonienschiefer (Unterer Jura) mit Bemerkungen über
394	den Magen der Ichthyosaurier. Stuttgarder Beiträge zur Naturkunde Serie B
395	(Geologie und paläontologie) 155:1–19.
396	Buckland W. 1829. On the Discovery of Coprolites, or Fossil Fæces, in the Lias at Lyme
397	Regis, and in other Formations. Transactions of the Geological Society of
398	London 3:223–236. DOI: 10.1144/transgslb.3.1.223.
399	Buckland W. 1836. Geology and mineralogy considered with reference to natural
400	theology. London: Pickering.
401	Caine H, Benton MJ. 2011. Ichthyosauria from the upper Lias of Strawberry Bank,
402	England. Palaeontology 54:1069–1093.
403	Cawley JJ, Kriwet J, Klug S, Benton MJ. 2019. The stem group teleost Pachycormus
404	(Pachycormiformes: Pachycormidae) from the Upper Lias (Lower Jurassic) of
405	Strawberry Bank, UK. <i>PalZ</i> 93:285–302. DOI: 10.1007/s12542-018-0431-7.
406	Chapuis G, Dewalque M. 1853. Description des fossiles des terrains secondaires de la
407	province de Luxembourg.
408	Ciampaglio CN, Wray GA, Corliss BH. 2005. A toothy tale of evolution: convergence in
409	tooth morphology among Marine Mesozoic - Cenozoic sharks, reptiles, and
410	mammals. The Sedimentary Record 3:4–8.

411	Cooper SLA. 2023. Carifibalish in the Early Jurassic bony lish Pachyconnus
412	macropterus (Teleosteomorpha: Pachycormiformes) and its paleoecological
413	significance. Journal of Vertebrate Paleontology 43:e2294000. DOI:
414	10.1080/02724634.2023.2294000.
415	Cooper SLA, Maxwell EE. 2022. Revision of the pachycormid fish Saurostomus
416	esocinus Agassiz from the Early Jurassic (Toarcian) of Europe, with new insight
417	into the origins of suspension-feeding in Pachycormidae. Papers in
418	Palaeontology 8:e1467. DOI: 10.1002/spp2.1467.
419	Cooper SLA, Maxwell EE. 2023. Death by ammonite: fatal ingestion of an ammonoid
420	shell by an Early Jurassic bony fish. Geological Magazine 160:1254–1261. DOI:
421	10.1017/S0016756823000456.
422	Cortés D, Larsson HCE. 2024. Top of the food chains: an ecological network of the
423	marine Paja Formation biota from the Early Cretaceous of Colombia reveals the
424	highest trophic levels ever estimated. Zoological Journal of the Linnean Society
425	202:zlad092. DOI: 10.1093/zoolinnean/zlad092.
426	Day SW, Higham TE, Holzman R, Van Wassenbergh S. 2015. Morphology, Kinematics
427	and Dynamics: The Mechanics of Suction Feeding in Fishes. Integrative and
428	Comparative Biology 55:21–35.
429	Delsate D. 1999a. L'Ichthyofaune du Toarcien luxembourgeois. Cadre général et
430	catalogue statistique.
431	Delsate D. 1999b. <i>Haasichthys michelsi</i> , nov. gen., nov. sp., un nouveau
432	Pachycormiforme (Osteichthyes, Actinopterygii) du Toarcien inférieur

433	(Jurassique) luxembourgeois. Travaux Scientifiques du Musée National d'histoire
434	Naturelle de Luxembourg 32:87–140.
435	Dick DG, Maxwell EE. 2015. Ontogenetic tooth reduction in Stenopterygius
436	quadriscissus (Reptilia: Ichthyosauria): Negative allometry, changes in growth
437	rate, and early senescence of the dental lamina. PLoS ONE 10. DOI:
438	10.1371/journal.pone.0141904.
439	Dick DG, Schweigert G, Maxwell EE. 2016. Trophic niche ontogeny and palaeoecology
440	of early Toarcian Stenopterygius (Reptilia: Ichthyosauria). Palaeontology 59:423-
441	431. DOI: 10.1111/pala.12232.
442	Dittrich D. 1993. Erläuterungen zur geologischen Karte von Luxemburg, 1.25000: Blatt
443	11 Grevenmacher und Blatt 13 Remich. Service Géologique de Luxembourg.
444	Doyle P. 1990. Teuthid cephalopods from the Lower Jurassic of Yorkshire The
445	Palaeontological Association. <i>Palaeontology</i> 33:193–207.
446	Faber G, De Muyser E. 1947. Mise à jour des premiers Ichtyosaures, en 1933, sur le
447	territoire du Grand-duché de Luxembourg. In: Mémoire sur les couches
448	géologiques traversées et les découvertes paléontologiques faites au cours des
449	travaux de terrassement exécutés en 1933 et 1934 sur la ligne de chemin de fer
450	Prince Henri, entre les gares de Pétange et de Luxembourg-Hollerich. Revue
451	technique luxembourgeoise. 203–212.
452	Fischer V, Bardet N, Benson RBJ, Arkhangelsky MS, Friedman M. 2016. Extinction of
453	fish-shaped marine reptiles associated with reduced evolutionary rates and
454	global environmental volatility. Nature communications 7:1–11. DOI:
455	10.1038/ncomms10825.

100	rischer V, berinion Kr, Fona D, MacLaren JA, McCurry MR, Meistion KM, baruet N.
157	2022a. Ecological signal in the size and shape of marine amniote teeth.
158	Proceedings of the Royal Society B: Biological Sciences 289:20221214. DOI:
159	10.1098/rspb.2022.1214.
160	Fischer V, Laboury A, Bernacki K, Garbay L, Gillen Y, Rollinger C, Thill A, Weis R, Thuy
161	B. 2022b. A fragmentary leptonectid ichthyosaurian from the lower Pliensbachian
62	of Luxembourg. Palaeontologia Electronica 25:a24.
163	Foffa D, Young MT, Stubbs TL, Dexter KG, Brusatte SL. 2018. The long-term ecology
64	and evolution of marine reptiles in a Jurassic seaway. Nature Ecology and
165	Evolution 2:1548-1555. DOI: 10.1038/s41559-018-0656-6.
166	Friedman M. 2012. Parallel evolutionary trajectories underlie the origin of giant
167	suspension-feeding whales and bony fishes. Proceedings of the Royal Society B
168	279:944–951.
169	Fuchs D. 2020. Part M, Chapter 23G: Systematic Descriptions: Octobrachia. Treatise
70	Online 138. DOI: 10.17161/to.vi.14661.
71	Fuchs D. 2023. Part M, Coleoidea. Chapter 23F: Systematic descriptions: Decabrachia.
72	Treatise Online 171:1–41. DOI: 10.17161/to.vi.21456.
73	Fuchs D, Hoffmann R. 2017. Part M, Chapter 10: Arm Armature in Belemnoid Coleoids.
74	Treatise Online 91. DOI: 10.17161/to.v0i0.6582.
75	Fuchs D, Weis R. 2008. Taxonomy, morphology and phylogeny of Lower Jurassic
76	loligosepiid coleoids (Cephalopoda). Neues Jahrbuch für Geologie und
177	Paläontologie - Abhandlungen 249:93–112. DOI: 10.1127/0077-7749/2008/0249-
78	0093.

479	Fuchs D, Weis R. 2010. Taxonomy, morphology and phylogeny of Lower Jurassic
480	teudopseid coleoids (Cephalopoda). Neues Jahrbuch für Geologie und
481	Paläontologie - Abhandlungen 257:351–366. DOI: 10.1127/0077-
482	7749/2010/0083.
483	Fuchs D, Weis R, Thuy B. 2024. Simoniteuthis, a new vampyromorph coleoid with prey
484	in its arms from the Early Jurassic of Luxembourg. Swiss Journal of
485	Palaeontology 143:6. DOI: 10.1186/s13358-024-00303-y.
486	Godefroit P. 1994. Les reptiles marins du Toarcien (Jurassique inférieur) belgo-
487	luxembourgeois. Mémoires pour servir à l'Explication des Cartes Géologiques et
488	Minières de la Belgique 39:98.
489	Godefroit P. 1996. Biodiversité des reptiles marins du Jurassique inférieur belgo-
490	luxembourgeois. Bulletin de la Société belge de Géologie 104:67–76.
491	Großmann F. 2007. The taxonomic and phylogenetic position of the Plesiosauroidea
492	from the Lower Jurassic Posidonia shale of south-west Germany. Palaeontology
493	50:545–564.
494	Guérin-Franiatte S, Gouspy C. 1993. Découverte de céphalopodes teuthidés
495	(Coleoidea) dans le Lias supérieur de Haute-Marne. Geobios 15:181–189.
496	Gutarra S, Moon BC, Rahman IA, Palmer C, Lautenschlager S, Brimacombe AJ,
497	Benton MJ. 2019. Effects of body plan evolution on the hydrodynamic drag and
498	energy requirements of swimming in ichthyosaurs. Proceedings of the Royal
499	Society B: Biological Sciences 286:20182786. DOI: 10.1098/rspb.2018.2786.
500	Hauff B. 1953. <i>Das Holzmadenbuch</i> . Öhringen: Verlag der Hohenlohe'schen
501	Buchhandlung.

502	Hoffmann R, Stevens K. 2020. The palaeobiology of belemnites – foundation for the
503	interpretation of rostrum geochemistry. Biological Reviews 95:94–123. DOI:
504	10.1111/brv.12557.
505	Jattiot R, Coquel-Poussy N, Kruta I, Rouget I, Rowe AJ, Moreau J-D. 2024. The first
506	gladius-bearing coleoid cephalopods from the lower Toarcian "Schistes Cartons"
507	Formation of the Causses Basin (southeastern France). PeerJ 12:e16894. DOI:
508	10.7717/peerj.16894.
509	Johnson MM, Young MT, Brusatte SL, Thuy B, Weis R. 2018. A catalogue of
510	teleosauroids (Crocodylomorpha: Thalattosuchia) from the Toarcian and
511	Bajocian (Jurassic) of southern Luxembourg. Historical Biology 2963:1–16. DOI:
512	10.1080/08912963.2018.1427090.
513	Keller (von) T. 1976. Magen- und Darminhalte von Ichthyosauriern des süddeutchen
514	Posidonienschiefers. Neues Jahrbuch für Geologie und Paläontologie.
515	Monatshefte 1976:266–283.
516	Laboury A, Bennion RF, Thuy B, Weis R, Fischer V. 2022. Anatomy and phylogenetic
517	relationships of Temnodontosaurus zetlandicus (Reptilia: Ichthyosauria).
518	Zoological Journal of the Linnean Society:zlab118. DOI:
519	10.1093/zoolinnean/zlab118.
520	Lingham-Soliar T. 2001. The ichthyosaur integument: skin fibers, a means for a strong,
521	flexible and smooth skin. Lethaia 34:287–302. DOI:
522	10.1080/002411601753293042.
523	Lingham-Soliar T, Plodowski G. 2007. Taphonomic evidence for high-speed adapted
524	fins in thunniform ichthyosaurs. Naturwissenschaften 94:65–70.

525	Lomax DR. 2010. An <i>Ichthyosaurus</i> (Reptilia, Ichthyosauria) with gastric contents from
526	Charmouth, England: first report of the genus from the Pliensbachian. Paludicola
527	8:22–36.
528	Lucius M. 1945. Die Luxemburger Minetteformation und die jüngeren Eisenerzbildungen
529	unseres Landes. Beiträge zur Geologie von Luxemburg. 4:1–347.
530	MacLaren JA, Bennion RF, Bardet N, Fischer V. 2022. Global ecomorphological
531	restructuring of dominant marine reptiles prior to the K/Pg mass extinction.
532	Proceedings of Royal Society B 289:20220585. DOI: rspb.2022.0585.
533	Maisch MW. 1998. Kurze Übersicht der Ichthyosaurier des Posidonienschiefers mit
534	Bemerkungen zur Taxionomie der Stenopterygiidae und Temnodontosauridae.
535	Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 209:401–431.
536	Maisch MW. 2008. Revision der Gattung Stenopterygius Jaekel, 1904 emend. von
537	Huene, 1922 (Reptilia: Ichthyosauria) aus dem unteren Jura Westeuropas.
538	Palaeodiversity 1:227–271.
539	Maisch MW. 2010. Phylogeny, systematics, and origin of the Ichthyosauria - the state of
540	the art. Palaeodiversity 3:151–214.
541	Martin JE, Vincent P, Tacail T, Khaldoune F, Jourani E, Bardet N, Balter V. 2017.
542	Calcium Isotopic Evidence for Vulnerable Marine Ecosystem Structure Prior to
543	the K/Pg Extinction. Current Biology 27:1-4. DOI: 10.1016/j.cub.2017.04.043.
544	Massare JA. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles.
545	Journal of Vertebrate Paleontology 7:121–137.

Maxwell EE. 2012. New metrics to differentiate species of Stenopterygius (Reptilia:
Ichthyosauria) from the Lower Jurassic of southwestern Germany. Journal of
Paleontology 86:105–115. DOI: 10.1666/11-038.1.
Maxwell EE, Cortés D. 2020. A revision of the Early Jurassic ichthyosaur <i>Hauffiopteryx</i>
(Reptilia: Ichthyosauria), and description of a new species from Southwestern
Germany. Palaeontologia Electronica 23:1–43. DOI: 10.26879/937.
McGowan C, Motani R. 2003. Part 8. Ichthyopterygia. München: Verlag Dr. Friedrich
Pfeil.
Moore C. 1856. On the skin and food of ichtyosauri and teleosauri. Report of the British
Association for the Advancement of Science:69–70.
Motani R. 1999. Phylogeny of the Ichthyopterygia. Journal of Vertebrate Paleontology
19:473–496.
Motani R. 2002. Scaling effects in caudal fin propulsion and the speed of ichthyosaurs.
Nature 415:309–312.
Muscente AD, Vinnes O, Sinha S, Schiffbauer JD, Maxwell EE, Schweigert G,
Martindale RC. 2023. What role does anoxia play in exceptional fossil
preservation? Lessons from the taphonomy of the Posidonia Shale (Germany).
Earth-Science Reviews 238:104323. DOI: 10.1016/j.earscirev.2023.104323.
Nilsson D-E, Warrant E, Johnsen S. 2014. Computational visual ecology in the pelagic
realm. Philosophical Transactions of the Royal Society B: Biological Sciences
369:20130038. DOI: 10.1098/rstb.2013.0038.
Pollard JE. 1968. The gastric contents of an ichthyosaur from the Lower Lias of Lyme
Regis, Dorset. Palaeontology 11:376–388.

569	Quenstedt FA. 1858. Der Jura. H. Laupp.
570	Ridgway SH, Harrison R. 1999. The Second Book of Dolphins and the Porpoise. San
571	Diego: Academic Press.
572	Riegraf W, Werner G, Lörcher F. 1984. Der Posidonienschiefer – Biostratigraphie,
573	Fauna und Fazies des südwestdeutschen Untertoarciums. Stuttgart: Enke.
574	Röhl H-J, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L. 2001. The Posidonia
575	Shale (Lower Toarcian) of SW Germany: an oxygen-depleted ecosystem
576	controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology,
577	Palaeoecology 169:273–299.
578	Stöhr H, Werneburg I. 2022. The Tübingen collection of ichthyosaurs from the Lower
579	Jurassic (Lower Toarcian) Posidonienschiefer Formation of Württemberg: a
580	historical and curatorial perspective. Palaeodiversity 16. DOI:
581	10.18476/pale.v16.a3.
582	Valente DE, Edwards AL, Pollard JE. 2010. Reappraisal of the gastric contents of a
583	Lower Jurassic ichthyosaur. Geological Curator 9:133–142. DOI:
584	10.55468/GC220.
585	VanBuren CS, Evans DC. 2016. Evolution and function of anterior cervical vertebral
586	fusion in tetrapods. Biological reviews of the Cambridge Philosophical Society.
587	DOI: 10.1111/brv.12245.
588	Vincent P, Weis R, Kronz G, Delsate D. 2017. Microcleidus melusinae, a new
589	plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg.
590	Geological Magazine:In Press. DOI: 10.1017/S0016756817000814.

591	Weis R, Delsate D, Klug C, Argyriou T, Fuchs D. 2024. Pachycormid fish fed on
592	octobrachian cephalopods: new evidence from the 'Schistes bitumineux' (early
593	Toarcian) of southern Luxembourg. Swiss Journal of Palaeontology 143:5. DOI:
594	10.1186/s13358-023-00295-1.
595	Williams M, Benton MJ, Ross A. 2015. The Strawberry Bank Lagerstätte reveals
596	insights into Early Jurassic life. Journal of the Geological Society:2014–144. DOI
597	10.1144/jgs2014-144.
598	Wretman L, Blom H, Kear BP. 2016. Resolution of the Early Jurassic Actinopterygian
599	Fish Pachycormus and a Dispersal Hypothesis for Pachycormiformes. Journal of
600	Vertebrate Paleontology 36:1–8.
601	

602	Figure cap	otions								
603										
604	Figure 1. Lo	calisatio	n of the B	Bascharage	locality.					
605										
606	Figure 2. Ph	otograpi	ns and int	erpretation	of speci	men MN	HNL TV211	I. A, overvie	W	
607	of the specin	nen. B, ar	natomical i	nterpretatio	n of the ri	ght latera	al portion of	the skull. C	,	
608	zoom on the	fossilised	l gut conte	ent, showing	a vampy	romorph	gladius.			
609										
610	Figure 3. Comparison of functional traits of the vampyromorphan predators from									
611	the Baschar	age Lag	gerstätte.	See Table	1 and sup	plementa	ary informat	ion 1 for		
612	details.									
613										
614										
615	Tables									
616										
617	Table 1. Fun	ctional tra	aits used t	o compare v	vampyron	norphan p	oredators fro	om the		
618	Bascharage	Laggerst	ätte. See s	supplementa	ary inform	ation 1 fc	or the individ	dual		
619	measuremer	nts and da	ata source	s. Uncited re	eferences	s used: (L	ingham-Sol	iar, 2001;		
620	Williams, Be	nton & Ro	oss, 2015;	Wretman, E	Blom & Ke	ear, 2016).			
621										
	Species	Total	Mandib	Closing	Crown	Sclerot	Pectoral	Caudal		
		length	ula	mech	shape	ic ring	fin aspect	fin aspect		
			aspect	advantag		openin				

			е		g		
Stenopteryg	2000	0.03764	0.0823693	2.44	36.1	3.6528301	3.0117647
ius			97			89	06
triscissus							
Pachycorm	600.29	0.17632	0.249741	2.7	18	4.2816702	4.3431635
us	26					05	39
macropteru							
s							
Saurostomu	1374.6	0.15351	0.218336	1.84	21	2.3562676	3.0065317
s esocinus	67					72	14

Figure 1

Localisation of the Bascharage locality

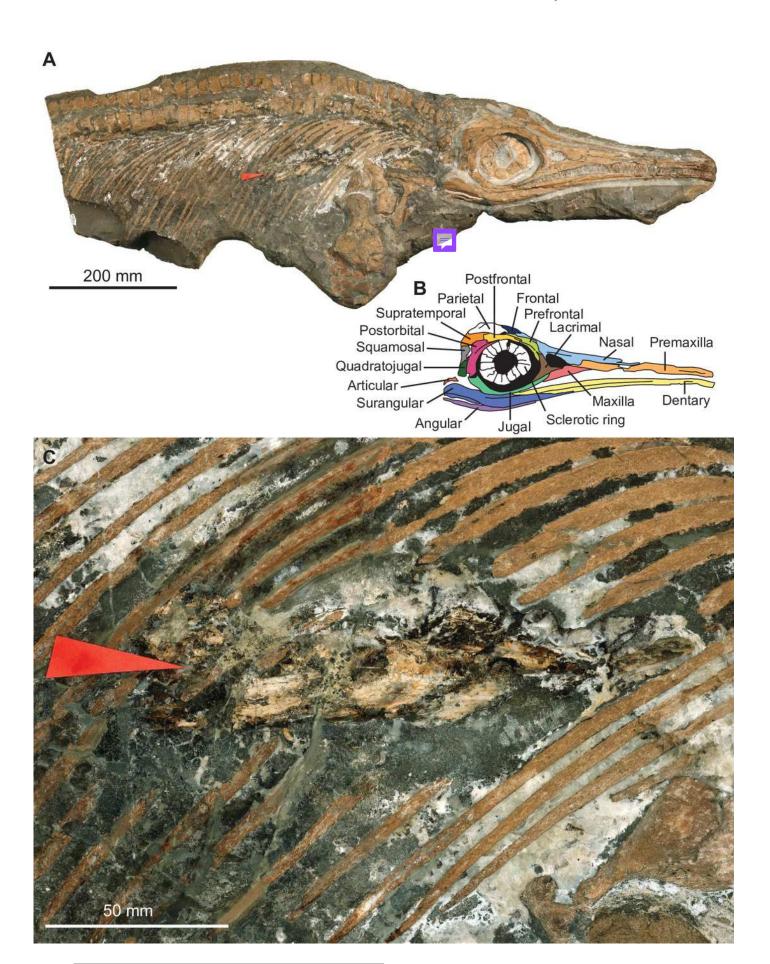


Figure 2

Photographs and interpretation of specimen MNHNL TV211

A, overview of the specimen. B, anatomical interpretation of the right lateral portion of the skull. C, zoom on the fossilised gut content, showing a vampyromorph gladius.

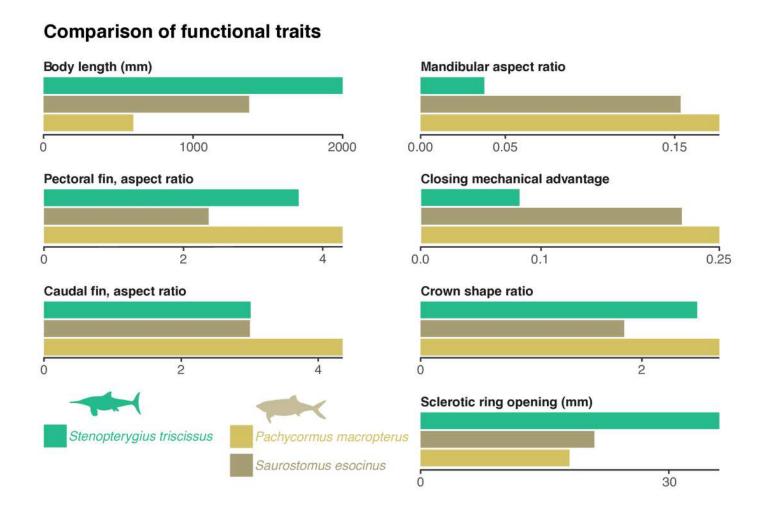


Figure 3

Comparison of functional traits of the vampyromorphan predators from the Bascharage Laggerstätte

See Table 1 and supplementary information 1 for details.

