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Many Early Jurassic marine predators were seemingly adapted to hunt soft and fast prey
items such as cephalopods. However, deciphering what these animals ate and, therefore,
the intensity of their competition is challenging, as fossilised gut content is biased by
multiple factors. In this paper, we report a loligosepiid vampyromorph coleoid in the gut of
a specimen of the ichthyosaurian Stenopterygius triscissus from the early Toarcian
Bascharage Lagerstätte of Southern Luxembourg. This is the ûrst report of octobrachian
predation in ichthyosaurians. The coeval pachycormid teleosts Pachycormus macropterus
and Saurostomus esocinushave recently been reported to feed on loligosepiid
octobrachians as well, indicating partial reliance on the same food resources. We use this
opportunity to compare the functional anatomy of these taxa and re-evaluate the aûnities
of coleoids preserved as ichthyosaurian gut content.
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21 Abstract

22 Many Early Jurassic marine predators were seemingly adapted to hunt soft and fast prey 

23 items such as cephalopods. However, deciphering what these animals ate and, therefore, 

24 the intensity of their competition is challenging, as fossilised gut content is biased by 

25 multiple factors. In this paper, we report a loligosepiid vampyromorph coleoid in the gut 

26 of a specimen of the ichthyosaurian Stenopterygius triscissus from the early Toarcian 

27 Bascharage Lagerstätte of Southern Luxembourg. This is the first report of octobrachian 

28 predation in ichthyosaurians.  The coeval pachycormid teleosts Pachycormus 

29 macropterus and Saurostomus esocinus have recently been reported to feed on 

30 loligosepiid octobrachians as well, indicating partial reliance on the same food resources. 

31 We use this opportunity to compare the functional anatomy of these taxa and re-evaluate 

32 the affinities of coleoids preserved as ichthyosaurian gut content.

33

34 Introduction

35 A series of Lagerstätten deposits have revealed, over the last 170 years, a formidable 

36 diversity of marine reptiles that populated the European epicontinental seas during the 

37 Toarcian (late Early Jurassic) (e.g. Hauff, 1953; Godefroit, 1994; Röhl et al., 2001; 

38 Großmann, 2007; Maisch, 2008; Benson et al., 2010, 2011; Johnson et al., 2018; Stöhr 

39 & Werneburg, 2022). These localities indicate the presence of several coeval predators: 

40 neoichthyosaurians, thalattosuchian crocodyliforms, and plesiosaurians. Many of them 

41 have long snout and small, acute teeth, suggesting that they relied on soft prey items 

42 such as cephalopods and small teleosts (Massare, 1987; Bardet, 1994; Godefroit, 1994; 

43 Fischer et al., 2022a). Competition among marine reptiles, as well as with other 
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44 vertebrates such as teleosts or chondrichthyans, is likely, as evidenced in some Mesozoic 

45 formations (Martin et al., 2017; Foffa et al., 2018; Cortés & Larsson, 2024). However, 

46 precise data on the prey items found in marine reptile gut content is generally lacking. 

47 The Bascharage Lagerstätte of Southern Luxembourg has recently revealed that multiple 

48 pachycormid teleosts fed on octobranchian cephalopods (Weis et al., 2024), while 

49 coleoids as a whole are often regarded as a resource consumed by other marine reptiles, 

50 notably ichthyosaurians and thalattosuchians based on gut content and dental anatomy 

51 (Massare, 1987; Böttcher, 1989; Lomax, 2010). Consumption of cephalopods by 

52 ichthyosaurians has indeed been known since the 19th century (Buckland, 1829; 

53 Quenstedt, 1858). Based on masses of arm hooks in their fossilised gut contents, 

54 ichthyosaurians have indeed been regarded as �teuthophages�, probably preferring 

55 belemnoid coleoids (Dick, Schweigert & Maxwell, 2016). Here, we add to this body of 

56 evidence by (i) describing the ecomorphology and the gut content of a specimen of the 

57 baracromian ichthyosaurian Stenopterygius triscissus from the Bascharage Lagerstätte, 

58 (ii) comparing it with those of coeval pachycormid teleosts, and (iii) reviewing the

59 systematic attribution of prey items in fossilised ichthyosaurian gut contents.

60

61

62 Materials & Methods

63 Geological setting

64 The �Schistes bitumineux�, also known as �Couches à Harpoceras falciferum� (Lo1) or the 

65 Bascharage Lagerstätte, is a geological formation in Luxembourg that crops out over an 

66 area approximately 30 km wide between Rodange and Bascharage in the west and 
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67 Bettembourg and Dudelange to the east (Dittrich, 1993); its thickness reaches 40-45 m 

68 (Lucius, 1945). This formation is the local expression of a widespread phenomenon of 

69 anoxia that affected the European epicontinental seas during the early Toarcian, known 

70 as the Toarcian Oceanic Anoxic Event (T-OAE) or the Jenkyns Event. As such, the 

71 Schistes bitumineux Formation is coeval with other bituminous formations in western 

72 Europe, such as the Posidonienschiefer Formation in southwestern Germany, the Jet 

73 Rock Formation in the UK, the Schistes Carton in France, and the Grandcourt Formation 

74 in Belgium (Muscente et al., 2023). 

75

76 The bituminous shales outcropping in the south of Luxembourg and the neighbouring 

77 Gaume and Lorraine regions in France and Belgium are known for their rich fossil record 

78 since the 19th century: Chapuis & Dewalque (1853) mentioned fossils of �fish� and �squids� 

79 in Aubange, on the Belgian-Luxembourgish border. Since the 1930s, when two 

80 ichthyosaurian skeletons were unearthed (Faber & De Muyser, 1947), marine reptiles are 

81 surely amongst the most iconic and mostly sought-after fossils from the �Schistes 

82 bitumineux� Formation. Several specimens have been discovered since; see Godefroit 

83 (1994) for a detailed analysis of this material, as well as Vincent et al. (2017), Johnson et 

84 al. (2018), Laboury et al. (2022), and Wallstedt et al. (2024) for recent contributions on 

85 plesiosaurians, thalattosuchians, and ichthyosaurians, respectively.

86

87 The ichthyosaurian specimen studied herein originates from the Schistes bitumineux 

88 Formation, more precisely the Serpentinum ammonite zone. It was found during 

89 construction works for the �Luxguard� factory in the industrial zone next to Dudelange 
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90 (coordinates: 49°30�06��N; 6°04�55��E) by D. Watrinelle, a private fossil collector, in the 

91 late �80s or early �90s and subsequently donated to the MNHNL. The specimen had been 

92 described and illustrated as Stenopterygius quadriscissus by Godefroit (1994: pl. 3, fig. 

93 c) and is exhibited in the permanent gallery at the MNHNL. A recent restoration by O. 

94 Kunze (Stuttgart, Germany) revealed further anatomical details. A 3D model of the full 

95 specimen can be accessed freely online: https://sketchfab.com/3d-

96 models/stenopterygius-quadriscissus-tv211-v2024-

97 930e539b4f6e4ef7816d2ad4f4a65227.

98

99 Functional traits

100 We gathered a series of craniodental and postcranial traits that summarise the feeding 

101 and swimming capabilities of three coeval species, known to have ingested loligosepiid 

102 coleoids: the ichthyosaurian Stenopterygius triscissus and the pachycormiforms 

103 Pachycormus macropterus and Saurostomus esocinus. We selected the following traits 

104 to be compared for each taxon: the absolute total body size (a proxy for energy 

105 consumption, among other factors), the mandibular aspect ratio (mandible area divided 

106 by the square of mandible length (Friedman, 2012); a proxy for lower jaw stiffness), the 

107 closing mechanical advantage of the jaw, computed at the middle part of the dentigerous 

108 section (distance from the quadrate/articular articulation to the coronoid process divided 

109 by the distance from the quadrate/articular articulation to the mid-dentigerous point in the 

110 mandible; a proxy for relative bite strength), the crown shape (crown height divided by 

111 crown basal diameter, for tooth in the middle part of the dentigerous section, a proxy for 

112 the piercing capability of the crown), the absolute diameter of the opening of the sclerotic 
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113 ring (a proxy for the size of the dilatated pupil and therefore of low-light vision), and the 

114 aspect ratio of the pectoral and caudal fins (fin area divided by the square of the fin 

115 proximo-distal length; a proxy for swimming speed). We obtained these data from the 

116 literature for pachycormids (Friedman, 2012; Williams, Benton & Ross, 2015; Cawley et 

117 al., 2019; Cooper & Maxwell, 2022) and from measurements of MNHNL TV211, 

118 complemented by the literature (Lingham-Soliar, 2001; Maisch, 2008) for the 

119 ichthyosaurian. The caudal aspect ratio for the ichthyosaurian is taken for the species 

120 Stenopterygius quadriscissus instead of Stenopterygius triscissus, as no specimen of the 

121 latter have been reported with an intact caudal fin outline preserved. Articulated apical 

122 and postflexural skeletal regions suggest that both species possessed a similarly shaped 

123 caudal fin (Maisch, 2008; Maxwell, 2012).

124

125 Institutional abbreviations: BRLSI: Bath Royal Literary and Scientific Institution, Bath, 

126 UK. GPIT: Paläontologische Sammlung der Universität Tübingen, Germany. MNHNL: 

127 Palaeontological collections of Musée National d�Histoire Naturelle, Luxembourg. 

128 NHMUK: Natural History Museum, London, UK. SMF: Natur-Museum Senckenberg, 

129 Frankfurt, Germany. SMNS: Staatliches Museum für Naturkunde Stuttgart, Germany.

130

131 Results

132 Identity and age of the ichthyosaurian

133 The specimen MNHNL TV211 is a partial ichthyosaurian preserving the skull, neck, torso, 

134 scapular girdle, and right anterior forefin, in articulation (total anteroposterior length = 

135 1047 mm; mandible length = 424 mm). The preserved portion suggests that the animal 
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136 was j2000 mm long in vivo. The prefrontal is small and does not participate in the bony 

137 narial aperture; the maxilla is anteroposteriorly short; the teeth are small, straight, and 

138 lack conspicuous enamel ornamentation but have apicobasal ridges texturing the root; 

139 the coracoid is rounded, with an anterior notch and lacks a posterolateral emargination; 

140 the scapula forms a large acromion; the humerus is constricted at mid-shaft and solely 

141 connects distally to two large epipodial hexagonal elements (radius and ulna); the radius 

142 and the radiale are notched and the intermedium solely contacts the distal carpal 3. This 

143 combination of features is unique to the genus Stenopterygius (Godefroit, 1994; Maisch, 

144 2008; Caine & Benton, 2011; Maxwell, 2012; Maxwell & Cortés, 2020; Fischer et al., 

145 2022b). 

146

147 The rostrum is g0.63 the length of the mandible (its anteriormost margin is broken off); 

148 the dorsoventral height of the maximal at the level of mid-naris is 0.38 times the 

149 dorsoventral height of the rostrum in the same zone; the maxilla forms the ventral border 

150 of the bony narial aperture; the trunk appears slender. This suite of features suggests that 

151 the specimen belongs to the species Stenopterygius triscissus (Godefroit, 1994; Maisch, 

152 2008; Maxwell, 2012), the most abundant ichthyosaurian species from the Toarcian of 

153 Luxembourg (Godefroit, 1994). Godefroit (1994) reported that the maxilla forms the 

154 ventral border of the naris in Stenopterygius longifrons (=Stenopterygius triscissus 

155 (Maisch, 2008)), yet a specimen from Strawberry Bank, UK, has the maxilla excluded 

156 from the bony narial aperture by a combination of the subnarial process of the premaxilla 

157 and the anteroventral process of the lacrimal (Caine & Benton, 2011). This feature 

158 therefore appears interspecifically variable and should not be used in isolation to identify 
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159 the species of Stenopterygius. Additionally, it is worth mentioning that the specimen is 

160 likely not a fully mature adult (the species is supposed to grow to a size of 3500 mm) and 

161 might not have developed all the diagnostic features of the species, notably the long 

162 rostrum (70% of total mandible length in adults only, only g63% in the present specimen) 

163 (Godefroit, 1994; Maisch, 2008). Its probable subadult growth stage also explains the 

164 presence of a fully functional dentition. Indeed, Stenopterygius is known to lose teeth 

165 upon reaching the adult stage; the timing and degree of tooth reduction appears however 

166 interspecifically variable (Godefroit, 1994; Maisch, 2008; Dick & Maxwell, 2015).

167

168 Functional anatomy of the ichthyosaurian

169 With an estimated body length of 2 m, the ichthyosaurian analysed here is about the same 

170 size as the common dolphin, Delphinus delphis (Ridgway & Harrison, 1999). Being an 

171 early thunnosaurian ichthyosaurian (Motani, 1999), Stenopterygius has a thunniform 

172 body outline (Lingham-Soliar & Plodowski, 2007) and was likely adapted for fast, 

173 sustained swimming (Motani, 2002; Gutarra et al., 2019). This is also evidenced by the 

174 high aspect ratio of the forefin and the caudal fin (Figure 3).

175

176 The rostrum is long and slender, as in most ichthyosaurians. The coronoid process of the 

177 surangular is small, as is the postorbital region of the skull. These factors result in a weak 

178 bite force; the mechanical advantage computed at the mesialmost tooth of the snout = 

179 0.08 (Figure 3). Such a value is, for example, one-third to one-half of the value found in 

180 most mosasaurids and short-necked plesiosaurians (MacLaren et al., 2022; Fischer et al. 

181 in prep). The long, slender, and tubular snout of Stenopterygius triscissus (mandibular 
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182 aspect ratio = 0.038; Figure 3) could be ideal for fast lateral snapping of small prey items, 

183 even in the context of reduced head mobility in ichthyosaurians (VanBuren & Evans, 

184 2016). The tooth crown in the middle part of the rostrum in MNHNL TV211 has an 

185 apicobasal height/basal ratio of 6.1 mm / 2.4 mm = 2.5 (Figure 3) and is therefore slender 

186 compared to many other marine amniotes. In Stenopterygius quadriscissus, the teeth 

187 (when retained) are usually blunter at mandible lengths of g400 mm (Dick, Schweigert & 

188 Maxwell, 2016). The small, narrow crowns of Stenopterygius triscissus are straight and 

189 lack enamel ornamentation. This suggests a diet of small, soft prey items (Massare, 1987; 

190 Fischer et al., 2022a). The eyes of Stenopterygius triscissus are large: the mean diameter 

191 of the right orbit of MNHNL TV211 is 91.5 mm, and that of the inner opening of the right 

192 sclerotic ring (a direct proxy for the size of the dilatated pupil) is 36.1 mm (Figure 3), 

193 slightly  larger than the pupil of the fast swimming swordfish (Nilsson, Warrant & Johnsen, 

194 2014). Such a pupil allows a j32 m vision range of a 10 cm black target at a depth of 

195 350m in clear oceanic waters (Nilsson, Warrant & Johnsen 2014).

196

197 Identity of the gut content in MNHNL TV221

198 The preserved gut content corresponds to the fragmentary remains of a gladius-bearing 

199 coleoid, more precisely a loligosepiid octobranchian. This assignation is based on the 

200 presence of an extended hyperbolar zone on the gladius, which also lacks the keel that 

201 is otherwise typical of contemporary teudopseid octobrachians. However, a more precise 

202 determination is hampered by the fragmentary preservation and the diagnostic course of 

203 the growth lines within the hyperbolar zone is not observable on this specimen. Fossils of 

204 loligosepiids are widespread in the Lower Toarcian sediments across Central and 
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205 Western Europe and have been described for instance from Southern Germany, France, 

206 Luxembourg and the UK (e.g. Riegraf, Werner & Lörcher, 1984; Doyle, 1990; Guérin-

207 Franiatte & Gouspy, 1993; Fuchs & Weis, 2008, 2010; Jattiot et al., 2024). In the Schistes 

208 bitumineux Formation, they usually have phosphatized soft tissue and ink sacs, in 

209 addition to the unmineralized gladius. The vampyromorph faunal list in this formation 

210 comprises three teudopsid species (Teudopsis bunelii, Teudopsis subcostata and 

211 Teudopsis bollensis) and three loligosepiid species (Loligosepia aalensis, Parabelopeltis 

212 flexuosa, Jeletzkyteuthis coriaceus) as well as one recently discovered species, 

213 Simoniteuthis michaelyi (Fuchs & Weis, 2008, 2010; Fuchs, Weis & Thuy, 2024). 

214

215 Functional anatomy of coeval octobranchian-eating pachycormids

216 Several species of pachycormids are found in the same deposits as MNHNL TV221: 

217 Pachycormus macropterus, Saurostomus esocinus, Sauropsis latus, Euthynotus 

218 incognitus, and Haasichthys michelsi (Delsate, 1999a,b) but only the former two have 

219 coleoid remains in their gut content (Weis et al. 2024). Both are smaller than 

220 Stenopterygius triscissus, with skull lengths of around 150mm for Saurostomus (of which 

221 mandible length accounts for 45-50 %; total body length up to 1374 mm  (Friedman, 2012; 

222 Cawley et al., 2019) and 170 mm for Pachycormus (of which mandible length accounts 

223 for 40-55 %; total body length up to 600 mm (Friedman, 2012; Cawley et al., 2019; Cooper 

224 & Maxwell, 2022)). Pachycormus macropterus and Saurostomus esocinus have a highly 

225 hydrodynamic, fusiform profile, suggesting rapid swimming. This is also supported by the 

226 aspect ratios of the pectoral and caudal fins, which are fairly similar for Stenopterygius 

227 and the three pachycormids considered (Figure 3).
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228

229 Besides these similarities in global body shape and fin aspect ratios, the ichthyosaurian 

230 and the pachycormids fundamentally differ in the shape and mechanism of their feeding 

231 apparatus. Firstly, Pachycormus and Saurostomus lack a rostrum; the anteorbital portion 

232 of their skull is short. This results in marked differences in the closing mechanical 

233 advantage, which is j 0.22 for Saurostomus esocinus, and 0.25 for Pachycormus 

234 macropterus, therefore nearly or more than three times that of Stenopterygius triscissus 

235 (Figure 3). Similarly, the mandible aspect ratio is about five times higher in Saurostomus 

236 esocinus and Pachycormus macropterus than in Stenopterygius triscissus (Figure 3). 

237 This suggests that Pachycormus macropterus and Saurostomus esocinus did not employ 

238 lateral snapping, but rather suction to aid capturing prey items. The tooth crowns of 

239 Pachycormus macropterus are small and elongated (crown shape ratio = 2.7; (Friedman, 

240 2012)), with a slight labio-lingual compression (Cooper & Maxwell, 2022), and lack any 

241 evident external texture (although 3 µm-wide apicobasal ridges are present; D.D. pers. 

242 obs.). Tooth crowns of Saurostomus esocinus are larger, and less elongated (crown 

243 shape ratio = 1.84 (Friedman, 2012), and curved lingually (Cooper & Maxwell, 2022), with 

244 conspicuous folds in the enamel. Pachycormus macropterus and Saurostomus esocinus 

245 possess pupils that are absolutely smaller than those of Stenopterygius triscissus (18 mm 

246 and 21 mm VS 36 mm; Figure 3), resulting in a vision range of a 10 cm black target at a 

247 depth of 350m in clear oceanic waters (j 23 m (Nilsson, Warrant & Johnsen, 2014), while 

248 it was j 32 m for Stenopterygius triscissus).

249

250
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251 Discussion

252 Gut content in Early Jurassic ichthyosaurians

253 Gut contents have been reported in ichthyosaurians, mostly in the Early Jurassic medium-

254 sized thunnosaurians Ichthyosaurus and Stenopterygius (Pollard, 1968; Massare, 1987; 

255 Dick, Schweigert & Maxwell, 2016). Buckland (1829, p. 226) inferred that Early Jurassic 

256 ichthyosaurians preyed upon cuttlefish (suborder Sepiida; crown Decabrachia), as he 

257 regarded ring-like structures in putative ichthyosaurian coproliths as the horny sucker 

258 rings of sepiids. The occurrence of sepiids in the Jurassic has however been repeatedly 

259 rejected (Fuchs, 2023 and references therein), because fossils with a minimum set of 

260 sepiid characters are recorded from the latest Cretaceous onward, thus well after the 

261 extinction of ichthyosaurians (Bardet, 1992; Fischer et al., 2016). Subsequently, the idea 

262 grew that hooklets associated with ichthyosaurian remains belonged to squids (suborder 

263 Oegopsida; crown Decabrachia) such as the present day Onychoteuthis (Moore, 1856). 

264 The idea of �fossil teuthids� was popular at that time popular, but has become obsolete 

265 since the works of Bandel & Leich (Bandel & Leich, 1986; Fuchs, 2020). More recently, 

266 the fossilised diet of Ichthyosaurus appears to be restricted to belemnoid hooklets 

267 (Pollard, 1968; Massare, 1987) and without much variation (nor more details) among 

268 species. Two specimens are also known to preserve teleost scales (Buckland, 1836; 

269 Lomax, 2010), along with multiple belemnoid hooklets. Keller (1976) and Massare (1987) 

270 reported belemnoid hooklets and rare fish fragments in Stenopterygius quadriscissus, 

271 Stenopterygius crassicostatus (=Stenopterygius quadriscissus or Stenopterygius uniter), 

272 and Stenopterygius megalorhinus (=Stenopterygius triscissus or Stenopterygius uniter) 

273 (Maisch, 2008). The diet of the species Stenopterygius quadriscissus seems to follow an 
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274 ontogenetic trend increasing the proportion of cephalopods while decreasing that of 

275 teleosts (Dick, Schweigert & Maxwell 2016). Individuals with mandible length > 420 mm 

276 seemingly solely relied on cephalopods; which corresponds to the moment when teeth 

277 reduce in relative size, eventually becoming non-functional (Dick & Maxwell, 2015). In 

278 Stenopterygius triscissus, teeth remain large enough to protrude from the dental groove 

279 at larger skull sizes (Maisch, 2008; this work). Larger species of Early Jurassic 

280 ichthyosaurians seem to add amniotes to their diet (Fischer et al., 2022a): fragments of a 

281 smaller ichthyosaurian have been reported in the gastric content of �Leptopterygius 

282 acutirostris� (Massare, 1987) (some specimens of that entity are now referrable to the 

283 large parvipelvian Temnodontosaurus zetlandicus, while some smaller specimens 

284 possibly belong to early baracromians (Maisch 2010; Laboury et al. 2022)). Böttcher 

285 (1989) reported 200 ichthyosaur centra (as well as a series of coleoid hooklets) in the 

286 gastric mass of �Leptopterygius burgundiae� (=Temnodontosaurus trigonodon) (Maisch 

287 1998; McGowan & Motani 2003; Bennion et al. 2024).

288

289 However, there has been confusion, or perhaps a lack a precision, in the literature 

290 regarding the possible owners of hooklets found in ichthyosaurian guts. These claw-like 

291 structures were interpreted as the arm hooklets of �belemnites� (Pollard, 1968) and this 

292 somehow became the interpretation by default. In fact, the coleoid order Belemnitida is 

293 essentially typified by ten hooklet-bearing arms (Fuchs & Hoffmann, 2017), and a massive 

294 calcitic rostrum covering the primary shell, as well as the presence of mega-onychites 

295 (Hoffmann & Stevens, 2020). The absence of such rostra in the stomach of 

296 ichthyosaurians was longtime enigmatic until Valente et al. (2010) suggested that most 
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297 of the arm hooklets in the stomachs of Early Jurassic parvipelvians do not belong to 

298 �belemnites� sensu stricto, but rather to rostrum-less clades, essentially referrable to 

299 Phragmoteuthida, Belemnoteuthina, and Diplobelida (Fuchs, Donovan & Keupp, 2013; 

300 Fuchs, 2019). So far, unambiguous evidence of ichthyosaurians feeding on belemnitids 

301 is rare; sporadic records of mega-onychites (Dick, Schweigert & Maxwell, 2016) suggest 

302 that Early Jurassic thunnosaurians occasionally preyed upon rostrum-bearing 

303 belemnites, potentially snapping off the hard part (Valente, Edwards & Pollard, 2010), but 

304 preferentially hunted rostrum-less coleoids. 

305

306 Competition or chance?

307 The fossil record of octobrachian coleoids as ichthyosaurian gut content is exceedingly 

308 rare; the specimen we described above represents the first evidence of this behaviour, 

309 even though Dick et al. (2016) noted that these species may have been part of 

310 ichthyosaurian diets. The fossil record of octobrachians as gut content has been regarded 

311 as certainly biased, because octobrachians usually lack strongly mineralised tissues and 

312 hooklets (Dick, Schweigert & Maxwell, 2016). The fact that none are preserved in German 

313 specimens of Stenopterygius quadriscissus prompted Dick et al. (2016) to suggest that 

314 this species avoided octobrachians. With hundreds of specimens known (Hauff, 1953), 

315 Stenopterygius quadriscissus dominates the marine reptile fossil record in early Toarcian 

316 German localities and is usually regarded as the ideal representative of the ecology of 

317 Stenopterygius. Yet, Stenopterygius triscissus is more common in Luxembourg 

318 (Godefroit, 1994, 1996) and only 15 German specimens of Stenopterygius triscissus are 

319 preserved with gut content (Dick, Schweigert & Maxwell, 2016). Moreover, there are 
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320 subtle differences in the gross anatomy (Maisch, 2008; Maxwell, 2012) and in the 

321 retention of functional teeth at adult size (Dick & Maxwell, 2015; Dick, Schweigert & 

322 Maxwell, 2016) between the two species, which could lead to slightly distinct diets.

323

324 Fossilised gut contents represent a biased record of the diet of marine predators, whose 

325 fossil record is also strongly biased (e.g. Benson et al., 2010). It is therefore difficult to 

326 assess the biological significance of our find, as a frequent or infrequent ingestion of easily 

327 dissolved prey would result in fossil records that are difficult to dissociate. If this 

328 occurrence is chance fossilisation of a rare behaviour, it slightly improves our 

329 understanding of the ecological capabilities of Stenopterygius triscissus. However, if 

330 octobrachian consumption was not uncommon in Stenopterygius triscissus, it would 

331 document a case of competition among dissimilar predators. Indeed, our comparisons of 

332 Stenopterygius triscissus with coeval, loligosepiid-eating pachycormid teleosts (Figure 3) 

333 indicate that these taxa differ in most aspects of their craniodental shapes. This is 

334 reinforced by the complexity of the jaw opening and closing in teleosts, as the maxilla and 

335 the ceratohyals can rotate, markedly widening the bucco-pharyngeal cavity. This adds 

336 suction as an essential mechanism in prey capture (e.g. Day et al., 2015). Closing the 

337 mouth forces water to exit behind the operculas, causing a stronger water flux (pushing 

338 the prey) at the entry of the oesophagus than in reptiles. This enabled pachycormids to 

339 capture and consume relatively larger prey items than ichthyosaurians did. Indeed, 

340 Pachycormus is known to feed on juveniles of its own kin (Cooper, 2023) as well as 

341 ammonites (Cooper & Maxwell, 2023). Such profound functional differences between 

342 marine amniotes and �fish� result in the absence of a �convergence requirement� to feed 
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343 on similar prey items in the marine realm, which likely explains why attempts to unify the 

344 feeding guilds of marine amniotes and sharks have been challenging (Ciampaglio, Wray 

345 & Corliss, 2005), despite palaeontological and neontological evidence that both groups 

346 competed for similar resources (e.g. Martin et al., 2017). Exceptional preservation in the 

347 early Toarcian Bascharage Lagerstätte of Southern Luxembourg indicates that this might 

348 also have applied between Stenopterygius triscissus, Pachycormus macropterus, and 

349 Saurostomus esocinus, although the true intensity of this competition remains far from 

350 clear.

351

352

353 Conclusions

354 We report on the gut content of a specimen of the ichthyosaurian Stenopterygius 

355 triscissus from the early Toarcian Bascharage Lagerstätte of Southern Luxembourg. The 

356 gut contains an identifiable gladius of a loligosepiid vampyromorph; this marks the first 

357 record of gladius-bearing octobrachians in the diet of ichthyosaurians. The coeval 

358 pachycormid teleosts Pachycormus macropterus and Saurostomus esocinus have also 

359 been reported to feed on the same food resource, although through a fully distinct 

360 mechanism given the functional differences between these taxa. The intensity of the 

361 competition between ichthyosaurians and pachycormids during the Early Jurassic 

362 remains, however, elusive.

363

364
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602 Figure captions

603

604 Figure 1. Localisation of the Bascharage locality.

605

606 Figure 2. Photographs and interpretation of specimen MNHNL TV211. A, overview 

607 of the specimen. B, anatomical interpretation of the right lateral portion of the skull. C, 

608 zoom on the fossilised gut content, showing a vampyromorph gladius.

609

610 Figure 3. Comparison of functional traits of the vampyromorphan predators from 

611 the Bascharage Laggerstätte. See Table 1 and supplementary information 1 for 

612 details.

613

614

615 Tables

616

617 Table 1. Functional traits used to compare vampyromorphan predators from the 

618 Bascharage Laggerstätte. See supplementary information 1 for the individual 

619 measurements and data sources. Uncited references used: (Lingham-Soliar, 2001; 

620 Williams, Benton & Ross, 2015; Wretman, Blom & Kear, 2016).
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Figure 1
Localisation of the Bascharage locality
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Figure 2
Photographs and interpretation of specimen MNHNL TV211

A, overview of the specimen. B, anatomical interpretation of the right lateral portion of the
skull. C, zoom on the fossilised gut content, showing a vampyromorph gladius.

PeerJ reviewing PDF | (2025:03:116115:0:0:NEW 19 Mar 2025)

Manuscript to be reviewed



PeerJ reviewing PDF | (2025:03:116115:0:0:NEW 19 Mar 2025)

Manuscript to be reviewed

Anonymous
Sticky Note
this figure is not referred to anywhere in the text



Figure 3
Comparison of functional traits of the vampyromorphan predators from the Bascharage
Laggerstätte

See Table 1 and supplementary information 1 for details.
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