

The role of macrophages in renal fibrosis and therapeutic prospects

Di Niu^{1,*}, Jun Jie Yang^{2,*} and Dan Feng He²

¹ Department of Otolaryngology, The Eighth Hospital of Wuhan, Wuhan, China

² Department of Pharmacy, The Eighth Hospital of Wuhan, Wuhan, China

* These authors contributed equally to this work.

ABSTRACT

Monocytes/macrophages are the key regulators of tissue repair, regeneration, and fibrosis. Monocyte-derived macrophages, which are characterized by high heterogeneity and plasticity, are recruited, activated, and polarized throughout the process of renal fibrosis in response to the local microenvironment. Increasing evidence suggests that phenotypic changes in macrophages are essential for chronic kidney disease (CKD) development and progression. Advanced bioinformatics and single-cell RNA sequencing analyses have revealed the critical mechanisms of macrophage iron homeostasis dysregulation and macrophage-to-myofibroblast transition (MMT), which may be a novel therapeutic target for renal fibrosis. In this review, we systematically examine the dynamic phenotype transitions of macrophages across distinct phases of kidney injury progression. Notably, we provide new insights into the multifaceted crosstalk between renal macrophages and neighboring parenchymal cells, including tubular epithelial cells, fibroblasts, podocytes, mesangial cells, and endothelial cells, mediated through diverse mechanisms, including soluble factors, extracellular vesicles, and direct cell-cell contact, and highlight the therapeutic potential of targeting macrophages.

Subjects Cell Biology, Immunology, Nephrology

Keywords CKD, Macrophages, M1 and M2 phenotypes, Interstitial fibrosis, MMT

Submitted 1 April 2025

Accepted 27 June 2025

Published 23 July 2025

Corresponding author

Dan Feng He, rain251@126.com

Academic editor

Stefano Menini

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.19769

© Copyright
2025 Niu et al.

Distributed under
Creative Commons CC-BY-NC 4.0

OPEN ACCESS

INTRODUCTION

The definition of chronic kidney disease (CKD) refers to chronic structural and functional abnormalities of the kidneys caused by various factors (with a history of kidney damage lasting more than 3 months) (*Jadoul, Aoun & Masimango Imani, 2024; Kidney Disease: Improving Global Outcomes CKDWG. KDIGO, 2024*). This condition includes pathological damage with or without abnormal glomerular filtration rate (GFR), abnormalities in blood or urine composition, imaging abnormalities, or an unexplained decline in GFR (<60 mL/min 1.73 m²) persisting for more than 3 months (*Kidney Disease: Improving Global Outcomes CKDWG. KDIGO, 2024; Naber & Purohit, 2021; Collaboration GBDCKD, 2020*). In recent years, with the increasing aging population and increasing number of patients with diabetes, obesity, and hypertension, the prevalence of CKD has shown an annual upward trend. According to incomplete statistics, approximately 850 million people worldwide are affected by CKD (*Chen & Abramowitz, 2019; Kalantar-Zadeh & Li, 2020*). If CKD is not promptly and effectively treated, it can ultimately progress to

end-stage renal disease (ESRD), necessitating long-term renal replacement therapy or kidney transplantation (Ryu *et al.*, 2022; Romagnani *et al.*, 2025).

Renal fibrosis is a common feature of CKD and a critical pathogenic factor that leads to ESRD (Meng, Nikolic-Paterson & Lan, 2016; Liu, 2011; Shi *et al.*, 2023). Increasing evidence indicates that progressive renal fibrosis involves multiple contributing factors, including classical risk factors, microvascular damage, and inflammation. These pathological processes are closely associated with metabolic alterations mediated by hyperactive renin-angiotensin system, dysregulated aryl hydrocarbon receptor (AHR) signaling, aberrant Wnt/β-catenin and TGF-β/Smad pathways, as well as disturbances in endogenous metabolite homeostasis and the microbiome (Huang, Fu & Ma, 2023; Krukowski *et al.*, 2023; Ravid, Kamel & Chitalia, 2021). A microbiome study comparing healthy controls and patients with CKD (stages 1–5) revealed that the abundance of *Lactobacillus johnsonii* was closely associated with clinical renal markers. Targeting *L. johnsonii* ameliorates membranous nephropathy by suppressing the aryl hydrocarbon receptor (AHR) signaling pathway (Miao *et al.*, 2024). Epigenetic alterations play a crucial role in renal fibrosis development. Histone crotonylation (H3K9cr), which is significantly upregulated during renal fibrosis, promotes macrophage activation and tubular cell injury, exacerbating renal tissue fibrosis (Li *et al.*, 2024b). Additionally, Sirtuin 6 attenuates renal fibrosis by epigenetically inhibiting the Wnt1/β-catenin pathway (Cai *et al.*, 2020).

The progression of renal fibrosis is associated with various cellular activities, including dysregulated extracellular matrix remodeling, epithelial-mesenchymal transition of renal tubular cells, activation of mesangial cells and fibroblasts, inflammatory cell infiltration, and apoptosis (Shi *et al.*, 2023; Chen *et al.*, 2021). Multiple cell types, including immune cells, tubular epithelial cells (TECs), myofibroblasts, and podocytes, play a role in CKD development and contribute to progressive renal fibrosis (Yamashita & Kramann, 2024; Sun *et al.*, 2022; Zhang *et al.*, 2023). Immune cells, particularly macrophages, play crucial roles in CKD (Abbad, Esteve & Chatziantoniou, 2025). High densities of CD163⁺ macrophages in kidney tissues are associated with poor renal function and an increased risk of ESRD (Pfenning *et al.*, 2023).

Macrophages are highly heterogeneous plastic immune cells that are recruited, activated, and polarized in response to local microenvironmental signals during kidney injury. Their biological functions, ranging from promoting renal tissue damage to facilitating repair or driving fibrosis, are critically determined by their phenotypic polarization states and surrounding microenvironment (Yonemoto *et al.*, 2006; Calle & Hotter, 2020; Novak & Koh, 2013).

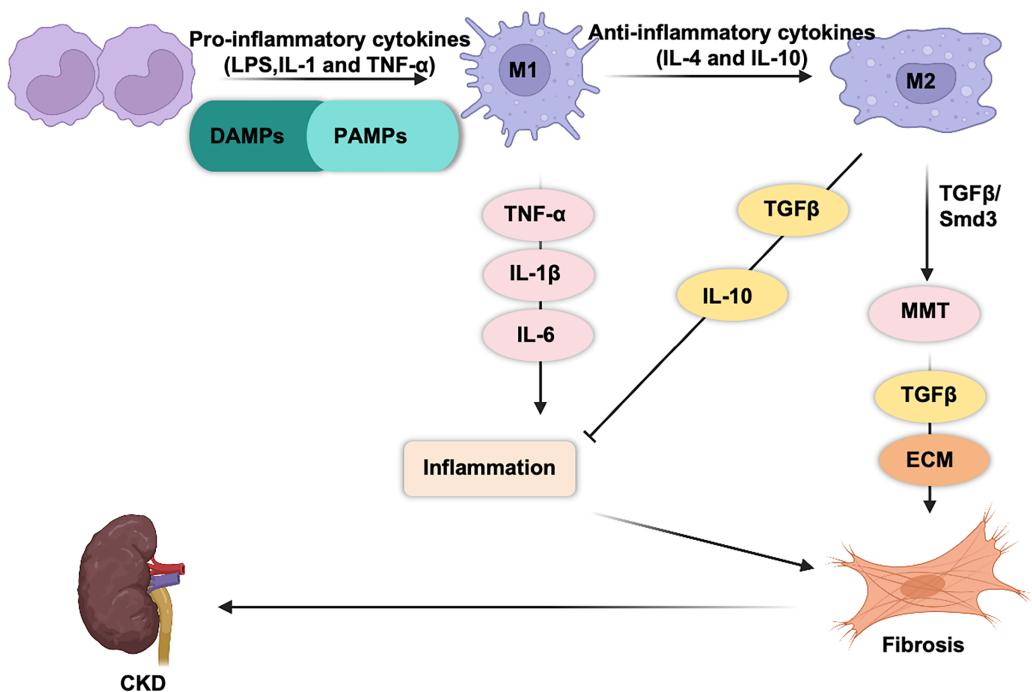
Macrophages promote the pathogenesis of renal fibrosis by establishing intricate interaction networks with key cell types, including tubular cells, fibroblasts, and endothelial cells through direct interactions and/or secretion of soluble molecules such as hormones, growth factors, and cytokines (Tian *et al.*, 2024; Hoeft *et al.*, 2023). Advanced bioinformatics and single-cell RNA sequencing analyses have revealed critical mechanisms by which the macrophage-to-myofibroblast transition and dysregulation of macrophage iron homeostasis promote renal fibrosis. These findings may reveal novel therapeutic targets for renal fibrosis (Wu *et al.*, 2024; Chen *et al.*, 2022).

This review systematically elucidates the pivotal roles of macrophages in patients with CKD and animal models. We comprehensively summarize the multifunctional effects of dynamic macrophage phenotypic changes during CKD progression, including their intricate interactions with other cells in the renal microenvironment and their profound impact on cellular metabolic reprogramming and inflammatory regulation networks. Furthermore, we explored novel therapeutic strategies targeting the phenotypic modulation of macrophages in CKD.

THE ROLE OF MACROPHAGES IN RENAL FIBROSIS

Macrophages are the primary immune cell population in normal kidneys and are regarded as crucial sentinels that play vital roles in the establishment and pathogenesis of acute kidney injury (Meng, Jin & Lan, 2022; Privratsky *et al.*, 2023). Because of their diverse polarization states, macrophages infiltrating the kidneys exert profound effects on renal injury, repair, and fibrosis (Cohen *et al.*, 2024; Niculae *et al.*, 2023). Different macrophage subtypes are involved in the various stages of CKD. Macrophages exhibit high plasticity, allowing them to evolve into multiple phenotypes based on their microenvironment, thereby playing distinct roles in processes such as kidney injury, repair, or fibrosis (Patino *et al.*, 2023; Li *et al.*, 2024a).

Macrophage origins and phenotypic diversity


Renal macrophages encompass resident and infiltrating cell populations. Resident macrophages in the kidney originate from diverse sources, including yolk sac-derived erythromyeloid progenitors (EMPs), fetal liver EMP-derived macrophages, and hematopoietic stem cells (HSCs)-derived macrophages (Ma *et al.*, 2022; Chen, Liu & Zhuang, 2022). Notably, a subset of HSCs migrates to the bone marrow and spleen and subsequently differentiates into circulating monocytes that enter the bloodstream. These monocytes contribute to the pool of tissue-resident macrophages within the kidneys (Cheung, Agarwal & George, 2022; Cheung *et al.*, 2022).

Macrophages can be classified based on their origin into bone marrow-derived macrophages and tissue-resident macrophages, and based on their function, activation state, and secreted factors, are categorized into M1 and M2 types (according to the level of lymphocyte antigen 6C [Ly6C]). Furthermore, these types can be divided into three subtypes: CD11b+/Ly6Chigh, CD11b+/Ly6Cintermediate, and CD11b+/Ly6Clow (Table 1) (Fu *et al.*, 2022; Duffield, 2011).

M1 and M2 macrophages play opposing roles in renal inflammation (Fig. 1). During the initial phase of kidney injury, macrophages are activated by pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), interferon-gamma (IFN- γ), and pro-inflammatory cytokines such as interleukin (IL)-1 and tumor necrosis factor (TNF)- α (Cho *et al.*, 2014; You *et al.*, 2022; Fu *et al.*, 2023; Zhou *et al.*, 2019; Zhang *et al.*, 2012). This activation drives their differentiation into proinflammatory M1 macrophages, which respond to infections or cellular damage. Simultaneously, circulating monocytes (CD11b+Ly6Chigh) are recruited to the kidney, where they differentiate into proinflammatory M1 macrophages. Proinflammatory macrophages are the first responders

Table 1 Mouse monocyte/macrophage markers.

Phenotype	Stimulant	Markers
M1	IFN- γ , LPS, GM-CSF, TNF- α	CXCL9, IL-12 ^{high} /IL-10 ^{low} , iNOS, IL-6, CD80, CD86, TNF- α
M2a	IL-4, IL-13	CCL17, IL-1R, Dectin-1, IL-10, Arg-1, Chil3, FIZZ1
M2b	LPS+IC, IL-1 β +IC	CCL1, IL-10 ^{high} /IL-12 ^{low} , TNF- α , CD86, IL-6, LIGHT
M2c	IL-10, Glucocorticoids	CXCL13, CD206, CD163, IL-10, TGF- β , MerTK
M2d	LPS+A2R ligands, IL-6	VEGF, IL-10, TGF- β , iNOS

Figure 1 Macrophages are generally classified into classic M1 and alternative M2 macrophages. M1 macrophages express and secrete inflammatory cytokines (TNF- α , IL-1 β , IL-6, IL-23, CCL2...) and promote tissue inflammation. M2 macrophages secrete anti-inflammatory (IL-10) and pro-fibrotic cytokines (TGF- β) that promote tissue repair and fibrosis.

Full-size DOI: 10.7717/peerj.19769/fig-1

to injury. These macrophages engulf cellular debris and secrete cytotoxic agents such as inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) (Fang *et al.*, 2021; Tran & Mills, 2024; West *et al.*, 2011), both of which can induce mitochondrial damage and cell apoptosis (Alexander *et al.*, 2020). M1 macrophages release pro-inflammatory cytokines (TNF- α , IL-1 β , and IL-6), which exacerbate tissue inflammation and injury (Hirani *et al.*, 2022; Beyranvand Nejad *et al.*, 2021; Tang, Nikolic-Paterson & Lan, 2019).

M2 macrophages play a dual role in kidney repair. M2 macrophages secrete a variety of pro-fibrotic factors (such as TGF- β 1, FGF-2, and PDGF) (Luo *et al.*, 2023), which stimulate

the activation and proliferation of myofibroblasts and lead to excessive deposition of collagen in the extracellular matrix (ECM), thereby promoting fibrosis. In contrast, they release anti-inflammatory cytokines, such as IL-10, which help suppress renal inflammation (Sun *et al.*, 2024b; Liao *et al.*, 2023).

M2 macrophages can be further categorized into four subtypes: M2a, M2b, M2c, and M2d (Yao, Xu & Jin, 2019; Shapouri-Moghaddam *et al.*, 2018). Among these, M2a macrophages express high levels of CD206, which are induced by IL-4 and IL-13 (Luo *et al.*, 2023; Chen *et al.*, 2019; Rao *et al.*, 2021). M2a macrophages secrete pro-fibrotic mediators, including transforming growth factor- β (TGF- β), insulin-like growth factor (IGF), and fibronectin, thereby contributing to tissue repair and wound healing (Sindrilaru & Scharffetter-Kochanek, 2013). M2b macrophages are induced by dual activation of Toll-like receptor (TLRs) or IL-1 receptor (IL-1R) ligands. This subtype plays a key role in immunoregulation and promotes T helper 2 (Th2)-like activation (Wang *et al.*, 2019). M2c macrophages are polarized by IL-10, TGF- β , and glucocorticoids. This subtype exhibits potent immunosuppressive properties while actively participating in extracellular matrix remodeling and facilitating tissue repair (Lurier *et al.*, 2017). M2d macrophages, which are activated by TLR ligands and A2 adenosine receptor agonists, play a pivotal role in regulating tumor progression, angiogenesis, and metastasis (Hao *et al.*, 2012; Li *et al.*, 2023a).

The role of macrophages in renal fibrosis

Anti-inflammatory macrophages facilitate tubular reepithelialization by secreting trophic factors. However, persistent or severe inflammatory responses can also trigger renal fibrosis. Macrophage depletion alleviates renal fibrosis, highlighting the pro-fibrotic role of macrophages in various kidney pathologies (Cohen *et al.*, 2024; Ma *et al.*, 2022).

Recent single-cell sequencing studies have shown that macrophage infiltration increases significantly on the first day after ischemia/reperfusion, reaching a second peak by the 14th day. Spatial transcriptomic analysis revealed that during the early stages of AKI, macrophages extensively infiltrate the corticomedullary junction region, where tubular damage is severe, whereas in the chronic phase, they exhibit spatial proximity to fibroblasts (Zhang *et al.*, 2024b).

Further, pseudotime analysis has identified two distinct macrophage lineages during the transition from AKI to CKD: kidney-resident macrophages can self-renew and differentiate into pro-repair subtypes, whereas monocyte-derived macrophages are involved in chronic renal inflammation and fibrosis. A novel subset of monocyte-derived macrophages, EAMs, has been identified and characterized by their ability to promote extracellular matrix remodeling. EAMs infiltrate the kidneys during the early stages of AKI and persist during the fibrotic phase. This subset facilitates chronic renal inflammation and fibrosis through intercellular communication with fibroblasts *via* an insulin-like growth factor (IGF) signaling pathway (Zhang *et al.*, 2024b; Du *et al.*, 2019).

Single-cell sequencing analysis of left ventricular myocardial infarction in mice revealed a distinct population of macrophages characterized by expression of Spp1, Fn1, and Arg1. This macrophage subset is upregulated in response to injury not only in the heart, but also

in other organs, including the kidney, where it actively promotes the progression of fibrotic processes (Hoeft *et al.*, 2023). Differential gene expression analysis demonstrated that the most significantly altered factor in Spp1+ macrophages was chemokine ligand 4 (CXCL4). Genetic ablation of CXCL4 suppresses the activation of this macrophage population and attenuates fibrosis following renal injury (Yang *et al.*, 2022).

Increased macrophage infiltration during renal aging leads to chronic low-grade inflammation, with enhanced communication between macrophages and renal tubular cells (Li *et al.*, 2024b; Sun *et al.*, 2024a). Ferroptosis inhibition can alleviate macrophage-mediated partial epithelial-mesenchymal transition in the renal tubules *in vitro*, thereby reducing the expression of fibrosis-related genes (Cheng *et al.*, 2023). The natural small-molecule compound, rutin, which can inhibit macrophage senescence and ferroptosis by preserving Pcbp1, is a potential therapeutic agent for mitigating age-related chronic low-grade inflammation and fibrosis in kidneys (Wu *et al.*, 2024). In addition, an interaction between hematopoietic cell kinase (HCK), an Src family kinase member, and ATG2A and CBL (two autophagy-related proteins) was found in unilateral ureteral obstruction and unilateral ureteral obstruction (UUO) models. Macrophage activation induced by autophagy inhibition promotes renal fibrosis (Chen *et al.*, 2023).

Single-cell RNA sequencing analysis of a murine glomerulonephritis model revealed that VISTA-positive macrophages exert protective effects against glomerulonephritis and subsequent renal fibrosis. Mechanistically, these macrophages attenuate disease progression by suppressing IFN- γ production in infiltrating T cells, which in turn reduces IL-9 cytokine production in downstream parenchymal response cells, ultimately alleviating glomerulonephritis-associated renal fibrosis (Kim *et al.*, 2022). Recent studies have provided compelling evidence of the pivotal role of macrophages in diabetic nephropathy progression. Pathological analysis of renal autopsy specimens from 88 patients with type 2 diabetes and confirmed diabetic nephropathy revealed significant correlations; glomerular CD163+ macrophage infiltration was associated with disease severity, including interstitial fibrosis, tubular atrophy, and glomerulosclerosis, whereas interstitial CD68+ macrophages showed an inverse correlation with glomerular filtration rate and a positive association with albuminuria (Klessens *et al.*, 2017). Advancements in single-cell RNA sequencing (scRNA-seq) technology have further elucidated macrophage dynamics in diabetic kidneys. Analysis of streptozotocin-induced diabetic mice demonstrated increased immune cell infiltration into glomeruli, with macrophage populations being particularly prominent (Fu *et al.*, 2019). Furthermore, longitudinal single-cell transcriptomic profiling of CD45+ kidney immune cells in OVE26 type 1 diabetic mice revealed the temporal expansion of macrophage subsets accompanied by upregulated pro-inflammatory gene signatures (Fu *et al.*, 2022).

MACROPHAGE AND RENAL CELL CROSSTALK IN RENAL FIBROSIS

Macrophage infiltration in both the glomerular and interstitial compartments is a hallmark of CKD pathogenesis. The complex crosstalk between infiltrating macrophages and resident

renal cells, including tubular epithelial cells, fibroblasts, podocytes, endothelial cells, and mesangial cells plays a pivotal role in disease progression. Following renal injury, these renal cells secrete cytokines to communicate with each other, creating a pro-fibrotic microenvironment that drives disease advancement.

The relationship between macrophages and epithelial cells

Thymic epithelial cells (TECs) or invading pathogens initiate immune responses by releasing damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). These molecular signatures are primarily detected in tissue-resident macrophages, which serve as the first line of immune surveillance. Macrophages recognize danger signals through their pattern recognition receptors (PRRs) and initiate a cytokine cascade. This inflammatory response not only activates local macrophages but also recruits additional monocyte-derived macrophages from the bone marrow, amplifying the immune reaction.

Macrophage-derived exosomes carrying miR-155 can be internalized by TECs, where the microRNA exerts its regulatory function by binding to the 3'-UTR region of TRF1. This interaction leads to downregulation of TRF1 expression, subsequently promoting telomere shortening and functional impairment in TECs. The resulting cellular senescence of TECs and exacerbation of renal fibrosis highlights the critical role of this macrophage-mediated exosomal pathway in kidney pathology (Yin *et al.*, 2024). FKBP5 deficiency in TECs can reduce apoptosis, promote the proliferation of TECs, and inhibit M1 polarization and chemotaxis of macrophages to alleviate CaOx kidney stone injury in mice (Song *et al.*, 2023).

Macrophage infiltration around lipotoxic TECs is a hallmark of diabetic nephropathy. Despite their clinical significance, the precise molecular mechanisms governing bidirectional communication between these cell populations remain poorly understood. Recent research has revealed that TECs can release specialized extracellular vesicles (EVs) enriched with LGR4, which serve as potent activators of macrophage functions. Conversely, activated macrophages can reciprocate by secreting distinct EV populations that initiate apoptotic pathways in the TECs, thereby establishing a vicious cycle of renal injury (Jiang *et al.*, 2022).

In a murine model of adriamycin (ADR)-induced chronic proteinuric nephropathy, exosomal miR-19b-3p was derived from injured tubular epithelial cells. TECs are critical mediators of intercellular communication between damaged TECs and resident macrophages. This exosome-mediated signaling pathway specifically promotes polarization and activation of M1 macrophages, exacerbating renal inflammation and tissue injury (Lv *et al.*, 2020).

The relationship between macrophages and fibroblasts

The pathogenesis of renal fibrosis is characterized by the activation, proliferation, and phenotypic transformation of multiple renal cell types, including resident fibroblasts, epithelial cells, podocytes, and macrophages, into myofibroblasts. These activated myofibroblasts exhibit a distinctive secretory profile, characterized by the excessive

production of α -smooth muscle actin (α -SMA), various collagen subtypes, vimentin, platelet-derived growth factor receptor- β (PDGFR- β), and fibroblast-specific protein 1 (FSP-1). This aberrant extracellular matrix deposition and growth factor signaling creates a self-perpetuating fibrotic microenvironment that progressively compromises renal architecture and function.

Emerging evidence from recent investigations has fundamentally reshaped our understanding of the pathogenesis of renal fibrosis, highlighting the pivotal role of macrophages in CKD progression. Notably, lineage-tracing studies have demonstrated that bone marrow-derived macrophages can undergo phenotypic transformation into myofibroblasts through a well-defined process called macrophage-to-myofibroblast transition (MMT) ([Chen et al., 2022](#); [Zhuang et al., 2024](#); [Wang et al., 2017](#)). This cellular trans-differentiation process contributes to pathological extracellular matrix (ECM) deposition and serves as a key driver of fibrotic progression in various CKD models ([Chen et al., 2022](#); [Wei, Xu & Yan, 2022](#)).

Investigations into MMT have primarily focused on characterizing intermediate transitional cell populations that exhibit dual expression of both myofibroblast and macrophage markers, specifically α -SMA and CD68. Notably, these α -SMA+CD68+ double-positive cells within fibrotic lesions co-express CD206, a well-established marker of M2 macrophage polarization, suggests a potential preferential involvement of M2-like macrophages in the MMT process ([Wang et al., 2022](#); [Han et al., 2022](#)). In UUO mouse models, sophisticated lineage-tracing studies utilizing fluorescent protein labeling techniques have demonstrated that approximately 50% of α -smooth muscle actin-positive (α -SMA+) myofibroblasts are derived from myeloid lineage cells. Notably, a significant subset of these α -SMA+CD68+ transitional cells co-express CD206, a characteristic marker of M2 macrophage polarization ([Meng et al., 2016](#)). These findings suggest a potential differentiation cascade in which circulating myeloid cells migrate to sites of renal injury, initially adopting an M2-like macrophage phenotype before ultimately undergoing MMT to become fully differentiated myofibroblasts. This proposed multistep differentiation pathway (involving sequential phenotypic transitions from myeloid cells to M2 macrophages and finally to myofibroblasts) may represent a critical mechanism driving fibrotic progression in renal disease ([Wang et al., 2017](#)).

The estrogen membrane receptor, GPER1, alleviates the progression of renal fibrosis by inhibiting macrophage polarization towards both M1 and M2 phenotypes. GPER1 activation in M1 macrophages suppresses inflammatory signaling pathways, thereby protecting tubular epithelial cells (TECs) from immune-mediated activation and injury. Furthermore, GPER1 activation in M2 macrophages inhibits the transformation of resident fibroblasts into myofibroblasts, ultimately mitigating renal fibrosis ([Xie et al., 2023](#)).

Epigenetic modifications play a pivotal role in fibrotic progression in kidney diseases. Specifically, METTL3 promotes M2 macrophage-driven macrophage-to-myofibroblast transition (MMT) *via* modulation of the TGF- β 1/Smad3 pathway, thereby exacerbating renal fibrosis in chronic renal transplant rejection ([Yao et al., 2025](#)). Macrophage Dectin-1 exacerbates Ang II-induced renal fibrosis by modulating TGF- β 1 production and mediating macrophage-renal fibroblast interactions ([Ye et al., 2023](#)). Endogenous metabolites

promote tubulointerstitial fibrosis progression through aryl hydrocarbon receptor (AhR) signaling. The metabolite 1-methoxypyrene (MP) is a crucial metabolite that activates the AhR signaling pathway, thereby promoting tubulointerstitial fibrosis through both epithelial-mesenchymal transition and macrophage-myofibroblast transition (Cao *et al.*, 2022). Consequently, targeting the cellular origins of myofibroblasts and elucidating the molecular mechanisms governing MMT have emerged as promising therapeutic strategies for modulating fibrotic progression (Yuan *et al.*, 2023; Xu *et al.*, 2023; Zeng *et al.*, 2022).

The relationship between macrophages and podocyte

Podocytes are highly specialized, terminally differentiated glomerular epithelial cells that play a crucial role in maintaining the kidney filtration barrier (Nagata, 2016). In diabetic nephropathy (DN), activated macrophages contribute to podocyte injury through multiple mechanisms including apoptosis induction and cytoskeletal disruption. Podocyte depletion directly correlates with the development and progression of proteinuria, a hallmark clinical manifestation of DN. Given their limited regenerative capacity, the degree of podocyte injury serves as a critical prognostic indicator to assess disease severity and predict renal outcomes in patients with DN (Li *et al.*, 2023b; Barutta, Bellini & Gruden, 2022).

Single-cell RNA sequencing (scRNA-seq) analysis has demonstrated significant upregulation of TNF- α signaling pathways in human podocytes following growth hormone stimulation (Wu *et al.*, 2019). Conditioned media collected from growth hormone-treated podocytes potently induced monocyte-to-macrophage differentiation. Notably, this differentiation capacity was substantially attenuated when the media were pretreated with a TNF- α neutralizing antibody, suggesting a TNF- α -dependent mechanism. *In vivo* studies using growth hormone-treated mice have revealed a pathological triad of increased macrophage infiltration, podocyte injury, and proteinuria development, further supporting the critical role of this signaling axis in glomerular pathology. Podocytes exposed to high-glucose culture conditions demonstrate a marked increase in their capacity to induce macrophage migration, with approximately 2.5-fold higher chemotactic activity than that of podocytes maintained under normal glucose conditions (You *et al.*, 2013). Under diabetic conditions, podocytes undergo significant phenotypic alterations, leading to the sustained release of pro-inflammatory mediators including TNF- α and monocyte chemoattractant protein-1 (MCP-1). These cytokines orchestrate a complex inflammatory cascade by promoting macrophage chemotaxis and upregulating T-cell immunoglobulin and mucin domain-3 (TIM-3) expression in renal macrophages through activation of the NF- κ B/TNF- α signaling pathway. M1 macrophage-derived exosomal miR-21a-5p and miR-25-3p promote podocyte apoptosis by directly targeting Tnpo1 and Atxn3, respectively (Zhuang *et al.*, 2022). This self-perpetuating inflammatory cycle exacerbates podocyte injury and drives the progression of diabetic nephropathy, ultimately contributing to the deterioration of renal function in diabetic kidney disease (Yang *et al.*, 2019).

Persistently high proteinuria levels are associated with poor long-term renal outcomes in patients with lupus nephritis (LN). Podocyte injury is responsible for substantial proteinuria. Thus, podocytes are key targets for LN therapy. Piezo1 knockout significantly reduced glomerulonephritis, tubulointerstitial injury, and podocyte foot process fusion,

and improved renal function and proteinuria in MRL/lpr mice ([Fu et al., 2024](#)). In IgAN, dysglycosylated IgA1 induces NLRP3 expression in podocytes, initiates podocyte macrophage transdifferentiation, and contributes to the inflammatory cascade and renal fibrosis changes associated with IgAN ([Qi, 2024](#)).

The relationship between macrophages and mesangial cells

Mesangial cells, derived from mesenchymal stromal progenitors, form a critical structural and functional component of the glomerular tuft, where they interact with the mesangial matrix to maintain the glomerular architecture and regulate the glomerular microvascular network. These specialized perivascular cells play a central role in glomerular homeostasis and their dysfunction contributes significantly to the pathogenesis of various glomerular diseases. Upon pathological stimulation, mesangial cells are activated through the MAPK and PKC signaling cascades, triggering a series of molecular events that drive both inflammatory responses and fibrotic processes within the glomerulus ([Zhao, 2019](#); [Hu et al., 2024](#)). Injured mesangial cells actively recruit circulating monocytes and macrophages to the sites of glomerular damage through the secretion of chemotactic factors. Notably, these infiltrating macrophages predominantly exhibit an M1-polarized phenotype, a phenomenon potentially mediated by intricate crosstalk between the NOTCH signaling pathway and NF- κ B activation, which collectively establishes a proinflammatory microenvironment within the glomerulus ([Ma et al., 2022](#)).

Exosomes serve as crucial mediators of intercellular communication between macrophages and mesangial cells in the renal microenvironment ([Zhu et al., 2020](#); [Phu et al., 2022](#)). Specifically, exosomes secreted by macrophages exposed to high glucose conditions have been shown to potently induce mesangial cell activation and proliferation, leading to pathological mesangial expansion and the subsequent secretion of pro-inflammatory cytokines. Mechanistic studies have revealed that these macrophage-derived exosomes contain elevated levels of TGF- β 1, which activates the TGF- β 1/Smad3 signaling cascade in recipient mesangial cells, ultimately driving excessive extracellular matrix deposition in both *in vitro* and *in vivo* models of diabetic nephropathy ([Zhu et al., 2020](#)). Macrophages regulate mesangial cell proliferation and migration through CXC motif chemokine ligand 12 (CXCL12)/dipeptidyl peptidase 4 (DPP4) axis interaction, leading to disruption of the LN filtration barrier and impaired renal function ([Li et al., 2024c](#)).

The relationship between macrophages and endothelial cells

As integral components of the glomerular filtration barrier, glomerular endothelial cells maintain a direct interface with the circulatory system, making them particularly vulnerable to physiological and pathological blood-borne factors ([Zhang et al., 2024a](#)). Renal-resident macrophages are predominantly localized in the periglomerular interstitial space and are strategically positioned to monitor glomerular function. The pro-inflammatory cytokine, TNF- α , upregulates endothelial adhesion molecule expression, thereby promoting leukocyte extravasation and subsequent infiltration into renal parenchymal tissue ([Summers et al., 2011](#)).

In a recent study on septic mice, the authors utilized single-cell sequencing revealed that F4/80hi macrophages undergo the most significant changes, with a notable reduction in the

proportion of this macrophage subset following sepsis. Compared to other macrophage subsets, F4/80hi macrophages highly express anti-inflammatory genes, such as *Socs3*, *Il1r2*, and *Il1rn*. Ablation of F4/80hi macrophages exacerbated sepsis-induced AKI. Mechanistically, F4/80hi macrophages inhibit endothelial cell expression of IL-6 through IL1ra (an IL-1 receptor antagonist), ultimately mitigating sepsis-induced kidney damage (Privratsky *et al.*, 2023).

Under hyperglycemic conditions, endothelial cells exhibit significant upregulation of the hypoxia-inducible factor-1α (HIF-1α)/Notch1 signaling pathway, which orchestrates the recruitment of pro-inflammatory M1 macrophages to renal tissue, thereby exacerbating renal injury in db/db diabetic mice (Torres *et al.*, 2020). Therapeutic intervention with fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, effectively attenuates this pathological process by suppressing HIF-1α/Notch1 signaling, resulting in reduced M1 macrophage infiltration and subsequent protection against diabetic nephropathy progression (Torres *et al.*, 2020).

Macrophage-renal cell crosstalk in AKI-to-CKD transition

The crosstalk between renal macrophages and tubular epithelial cells

The CSF family is comprised of a group of cytokines involved in the differentiation and maturation of bone marrow cells in mammals. Injured proximal tubules are an important source of colony-stimulating factor 1. In a mouse model of ischemia-reperfusion-induced AKI, the tubule-specific conditional knockout of CSF-1 drives macrophage proliferation and M2 phenotype polarization, thereby promoting kidney recovery and reducing renal interstitial fibrosis (Wang *et al.*, 2015). In addition, injured tubular cells secrete granulocyte-macrophage colony-stimulating factor (GM-CSF), which promotes monocyte/macrophage infiltration in a macrophage chemoattractant protein-1 (MCP-1)-dependent manner, leading to sustained inflammation and tubular apoptosis (Xu, Sharkey & Cantley, 2019).

Macrophage polarization is dynamically regulated by miRNA levels within the microenvironment (Essandoh *et al.*, 2016). Notably, macrophage-derived exosomal miRNAs serve as key mediators of intercellular communication with renal cells by modulating critical signaling pathways. In the LPS-induced AKI murine model, we observed significant upregulation of exosomal miR-19b-3p in tubular epithelial cells (TECs), which promoted M1 macrophage polarization. Similarly, miR-374b-5p exhibits comparable pro-inflammatory effects. Mechanistic studies have revealed that both miRNAs activate NF-κB signaling by directly suppressing SOCS1 expression (Lv *et al.*, 2020; Ding *et al.*, 2020).

Crosstalk between renal macrophages and fibroblasts

Recent studies have emphasized the role of platelet activation and platelet-derived factors in mediating macrophage-fibroblast crosstalk after kidney injury (Jansen, Florquin & Roelofs, 2018). In a murine model of ischemia-reperfusion injury (IRI)-induced AKI, integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics identified a distinct subset of macrophages, termed cycling M2 macrophages, which exhibited heightened proliferative activity. These macrophages, which are regulated by platelet-derived thrombospondin-1 (THBS1), adopt a profibrotic phenotype and frequently

interact with fibroblasts, particularly in the presence of platelets, during AKI-to-CKD progression. Treatment with a THBS1-blocking antibody (R300) markedly reduces the abundance of cycling M2 macrophages and downregulates fibroblast-expressing profibrotic genes linked to collagen synthesis and immune modulation ([Liu et al., 2024](#)).

Crosstalk between renal macrophages and vascular endothelial cells

During injury and inflammation, endothelial cells serve as key regulators by secreting chemoattractants and expressing adhesion molecules, thereby facilitating leukocyte recruitment to sites of renal damage. Macrophages play a crucial immunomodulatory role in VECs, helping maintain tissue homeostasis post-injury. For example, vascular-resident CD169+ macrophages downregulate intercellular adhesion molecule-1 (ICAM-1) expression in VECs, thereby limiting excessive neutrophil infiltration and subsequent inflammatory cascades in mouse models of ischemia/reperfusion injury-induced AKI ([Karasawa et al., 2015](#)). Similarly, macrophage-expressed interleukin-1 receptor antagonist antagonize the IL-1 signaling pathway in endothelial cells, thereby suppressing IL-6 production and attenuating sepsis-induced renal inflammation in mice ([Privratsky et al., 2023](#)).

THERAPEUTIC POTENTIALS OF MACROPHAGES IN CKD

Immune regulation plays a pivotal role in CKD pathogenesis and progression by orchestrating a complex cascade of pathological events. These include the recruitment and infiltration of diverse immune cell populations, sustained release of proinflammatory cytokines and chemokines, and deposition of immune complexes within the renal tissue, collectively contributing to the development of tubular and tubulointerstitial injury.

Recent single-cell RNA sequencing studies in a murine model of ischemia-reperfusion injury-induced renal fibrosis suggested that Fn1+Spp1+Mrc1+ macrophages may be a critical subset mediating renal fibrosis. To target this pro-fibrotic macrophage population, a novel bioactivatable *in vivo* assembly peptide (BIVA-PK) was developed. This innovative therapeutic agent specifically targets pro-fibrotic macrophages and undergoes enzyme-triggered self-assembly upon cleavage by cathepsin B, which is highly expressed in kidneys. Self-assembled nanostructures incorporate cell-penetrating peptides that induce selective macrophage apoptosis, thereby remodeling the renal immune microenvironment and effectively attenuating fibrosis progression ([Ouyang et al., 2024](#)).

Researchers developed a targeted nanoparticle system for the co-delivery of an endoplasmic reticulum stress (ERS) inhibitor (Ceapin 7) and conventional glucocorticoid (dexamethasone) to precisely modulate the ATF6/TGF- β /Smad3 signaling axis in macrophages. This innovative approach promotes macrophage polarization towards the M2c phenotype while suppressing excessive MMT, thereby effectively attenuating renal fibrosis progression ([Luo et al., 2023](#)).

In a nephrotoxic serum nephritis (NTN) model, myeloid-specific deletion of Krüppel-like factor 4 (KLF4) exacerbated both glomerular and tubular injury. Mechanistically, KLF4 attenuates renal inflammation and fibrosis by suppressing TNF- α production. Notably, the pharmacological inhibition of TNF- α receptor 1 significantly ameliorates renal fibrosis

and necrosis in mice with myeloid-specific KLF4 deficiency during NTN progression ([Wen et al., 2019](#)).

LIMITATIONS

Current limitations in understanding the role of macrophages in renal fibrosis primarily include the following. First, while most studies rely on the M1/M2 dichotomy, macrophages in renal fibrosis likely exhibit a more complex phenotypic spectrum (e.g., Fn1+Spp1+Mrc1+ pro-fibrotic subsets), with their polarization states dynamically changing across disease stages. Conventional techniques (e.g., flow cytometry and immunohistochemistry) lack sufficient resolution to comprehensively capture this dynamic heterogeneity. Second, macrophage-targeted therapies (such as BIVA-PK nanoparticle-induced M2 apoptosis) may inadvertently affect other immune cell functions, potentially leading to immunosuppression.

SUMMARY

In this comprehensive review, we systematically explore the multifaceted interplay between macrophages and renal fibrosis in the context of CKD progression. By integrating recent advances in single-cell omics and molecular biology, we aimed to provide a mechanistic understanding of how macrophage heterogeneity and plasticity contribute to the pathogenesis of CKD-related fibrosis and discuss emerging therapeutic strategies targeting macrophage-mediated pathways.

Although essential for tissue homeostasis, the process of renal injury repair paradoxically serves as the driving force for renal fibrosis. Within this context, the M2a and M2c macrophage subsets play crucial roles in facilitating MMT, a key pathological mechanism. Renal fibrosis primarily originates from the activation, proliferation, and phenotypic transformation of multiple renal cell types, including resident fibroblasts, epithelial cells, podocytes, and macrophages into ECM-producing myofibroblasts in response to renal injury. This cellular reprogramming leads to excessive ECM deposition and the progressive deterioration of renal function. MMT has emerged as a central mechanism of renal fibrosis.

We propose that MMT is a critical mechanistic link between renal inflammation and fibrosis. Although significant progress has been made in understanding MMT, several enigmatic aspects of this cellular transdifferentiation process remain to be elucidated, and additional molecular mechanisms underlying MMT regulation are likely to be discovered. From a therapeutic perspective, targeting the MMT pathway represents a promising and innovative strategy for developing novel interventions to prevent or attenuate the progression of renal fibrosis in CKD. Future research focusing on MMT modulation may pave the way for effective and precise antifibrotic therapies.

Survey methodology

Literature searches were conducted using PubMed and Web of Science. In addition to articles published in 2019, earlier articles were considered. The following keywords were used: chronic kidney disease, macrophages, M1 and M2 phenotypes, interstitial fibrosis,

crosstalk, and therapeutic potential. As our work gradually unfolded, we then searched literature by keywords macrophages and renal cells, macrophages and epithelial cells, macrophages and fibroblasts, macrophages and podocyte, macrophages and mesangial cells, macrophages and endothelial cells, and therapeutic potentials of macrophages in CKD after removing duplicate articles and the articles with little relevance, 118 articles were selected for this review.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Di Niu conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Jun Jie Yang performed the experiments, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Dan Feng He conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

This is a literature review.

REFERENCES

Abbad L, Esteve E, Chatziantoniou C. 2025. Advances and challenges in kidney fibrosis therapeutics. *Nature Reviews Nephrology* 21:314–329 DOI [10.1038/s41581-025-00934-5](https://doi.org/10.1038/s41581-025-00934-5).

Alexander RK, Liou YH, Knudsen NH, Starost KA, Xu C, Hyde AL, Liu S, Jacobi D, Liao NS, Lee CH. 2020. Bmal1 integrates mitochondrial metabolism and macrophage activation. *eLife* 9:e54090 DOI [10.7554/eLife.54090](https://doi.org/10.7554/eLife.54090).

Barutta F, Bellini S, Gruden G. 2022. Mechanisms of podocyte injury and implications for diabetic nephropathy. *Clinical Science* 136(7):493–520 DOI [10.1042/CS20210625](https://doi.org/10.1042/CS20210625).

Beyranvand Nejad E, Labrie C, van Elsas MJ, Kleinovink JW, Mittrucker HW, Franken K, Heink S, Korn T, Arens R, van Hall T, vander Burg SH. 2021. IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors. *The Journal for ImmunoTherapy of Cancer* 9(4):e002460 DOI [10.1136/jitc-2021-002460](https://doi.org/10.1136/jitc-2021-002460).

Cai J, Liu Z, Huang X, Shu S, Hu X, Zheng M, Tang C, Liu Y, Chen G, Sun L, Liu H, Liu F, Cheng J, Dong Z. 2020. The deacetylase sirtuin 6 protects against kidney fibrosis

by epigenetically blocking beta-catenin target gene expression. *Kidney International* 97(1):106–118 DOI 10.1016/j.kint.2019.08.028.

Calle P, Hotter G. 2020. Macrophage phenotype and fibrosis in diabetic nephropathy. *International Journal of Molecular Sciences* 21(8):2806 DOI 10.3390/ijms21082806.

Cao G, Miao H, Wang YN, Chen DQ, Wu XQ, Chen L, Guo Y, Zou L, Vaziri ND, Li P, Zhao YY. 2022. Intrarenal 1-methoxypyrene an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice. *Acta Pharmacologica Sinica* 43(11):2929–2945 DOI 10.1038/s41401-022-00914-6.

Chen W, Abramowitz MK. 2019. Advances in management of chronic metabolic acidosis in chronic kidney disease. *Current Opinion in Nephrology and Hypertension* 28(5):409–416 DOI 10.1097/MNH.0000000000000524.

Chen T, Cao Q, Wang Y, Harris DCH. 2019. M2 macrophages in kidney disease: biology, therapies, and perspectives. *Kidney International* 95(4):760–773 DOI 10.1016/j.kint.2018.10.041.

Chen YT, Jhao PY, Hung CT, Wu YF, Lin SJ, Chiang WC, Lin SL, Yang KC. 2021. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-beta signaling in kidney fibroblasts. *Journal of Clinical Investigation* 131(5):e143645 DOI 10.1172/JCI143645.

Chen H, Liu N, Zhuang S. 2022. Macrophages in renal injury, and repair, fibrosis following acute kidney injury and targeted therapy. *Frontiers in Immunology* 13:934299 DOI 10.3389/fimmu.2022.934299.

Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, Lee SW, Dai Y, Anandakrishnan N, Azeloglu EU, Lee K, Zhang W, Das B, He JC, Wei C. 2023. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. *Nature Communications* 14:4297 DOI 10.1038/s41467-023-40086-3.

Chen J, Tang Y, Zhong Y, Wei B, Huang XR, Tang PM, Xu A, Lan HY. 2022. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. *Molecular Therapy* 30(9):3017–3033 DOI 10.1016/j.ymthe.2022.06.019.

Cheng Q, Mou L, Su W, Chen X, Zhang T, Xie Y, Xue J, Lee PY, Wu H, Du Y. 2023. Ferroptosis of CD163(+) tissue-infiltrating macrophages and CD10(+) PC(+) epithelial cells in lupus nephritis. *Frontiers in Immunology* 14:1171318 DOI 10.3389/fimmu.2023.1171318.

Cheung MD, Agarwal A, George JF. 2022. Where are they now: spatial and molecular diversity of tissue-resident macrophages in the kidney. *Seminars in Nephrology* 42(3):151276 DOI 10.1016/j.semephrol.2022.10.002.

Cheung MD, Erman EN, Moore KH, Lever JM, Li Z, LaFontaine JR, Ghajar-Rahimi G, Liu S, Yang Z, Karim R, Yoder BK, Agarwal A, George JF. 2022. Resident macrophage subpopulations occupy distinct microenvironments in the kidney. *JCI Insight* 7(20):e161078 DOI 10.1172/jci.insight.161078.

Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y. 2014. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone

marrow-derived macrophages. *Experimental & Molecular Medicine* **46**(1):e70 DOI [10.1038/emm.2013.135](https://doi.org/10.1038/emm.2013.135).

Cohen C, Mhaidly R, Croizer H, Kieffer Y, Leclere R, Vincent-Salomon A, Robley C, Anglicheau D, Rabant M, Sannier A, Timsit MO, Eddy S, Kretzler M, Ju W, Mechta-Grigoriou F. 2024. WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease. *Nature Communications* **15**(1):743 DOI [10.1038/s41467-024-44886-z](https://doi.org/10.1038/s41467-024-44886-z).

Collaboration GBDCKD. 2020. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet* **395**(10225):709–733 DOI [10.1016/S0140-6736\(20\)30045-3](https://doi.org/10.1016/S0140-6736(20)30045-3).

Ding C, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P, Ding X, Xue W. 2020. Exosomal microRNA-374b-5p from tubular epithelial cells promoted m1 macrophages activation and worsened renal ischemia/reperfusion injury. *Frontiers in Cell and Developmental Biology* **8**:587693 DOI [10.3389/fcell.2020.587693](https://doi.org/10.3389/fcell.2020.587693).

Du L, Lin L, Li Q, Liu K, Huang Y, Wang X, Cao K, Chen X, Cao W, Li F, Shao C, Wang Y, Shi Y. 2019. IGF-2 preprograms maturing macrophages to acquire oxidative phosphorylation-dependent anti-inflammatory properties. *Cell Metabolism* **29**(6):1363–1375.e1368 DOI [10.1016/j.cmet.2019.01.006](https://doi.org/10.1016/j.cmet.2019.01.006).

Duffield JS. 2011. Macrophages in kidney repair and regeneration. *Journal of the American Society of Nephrology* **22**(2):199–201 DOI [10.1681/ASN.2010121301](https://doi.org/10.1681/ASN.2010121301).

Essandoh K, Li Y, Huo J, Fan GC. 2016. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. *Shock* **46**(2):122–131 DOI [10.1097/SHK.0000000000000604](https://doi.org/10.1097/SHK.0000000000000604).

Fang S, Wan X, Zou X, Sun S, Hao X, Liang C, Zhang Z, Zhang F, Sun B, Li H, Yu B. 2021. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. *Cell Death & Disease* **12**(1):88 DOI [10.1038/s41419-020-03357-1](https://doi.org/10.1038/s41419-020-03357-1).

Fu J, Akat KM, Sun ZG, Zhang WJ, Schlondorff D, Liu ZH, Tuschl T, Lee K, He JC. 2019. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. *Journal of the American Society of Nephrology* **30**(4):533–545 DOI [10.1681/ASN.2018090896](https://doi.org/10.1681/ASN.2018090896).

Fu J, Sun Z, Wang X, Zhang T, Yuan W, Salem F, Yu SM, Zhang W, Lee K, He JC. 2022. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. *Kidney International* **102**(6):1291–1304 DOI [10.1016/j.kint.2022.08.026](https://doi.org/10.1016/j.kint.2022.08.026).

Fu R, Wang W, Huo Y, Li L, Chen R, Lin Z, Tao Y, Peng X, Huang W, Guo C. 2024. The mechanosensitive ion channel Piezo1 contributes to podocyte cytoskeleton remodeling and development of proteinuria in lupus nephritis. *Kidney International* **106**(4):625–639 DOI [10.1016/j.kint.2024.06.025](https://doi.org/10.1016/j.kint.2024.06.025).

Fu B, Xiong Y, Sha Z, Xue W, Xu B, Tan S, Guo D, Lin F, Wang L, Ji J, Luo Y, Lin X, Wu H. 2023. SEPTIN2 suppresses an IFN-gamma-independent, proinflammatory macrophage activation pathway. *Nature Communications* **14**(1):7441 DOI [10.1038/s41467-023-43283-2](https://doi.org/10.1038/s41467-023-43283-2).

Han Y, Xian Y, Gao X, Qiang P, Hao J, Yang F, Shimosawa T, Chang Y, Xu Q. 2022. Eplerenone inhibits the macrophage-to-myofibroblast transition in rats with UUO-induced type 4 cardiorenal syndrome through the MR/CTGF pathway. *International Immunopharmacology* 113(Pt A):109396 DOI [10.1016/j.intimp.2022.109396](https://doi.org/10.1016/j.intimp.2022.109396).

Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM. 2012. Macrophages in tumor microenvironments and the progression of tumors. *Clinical and Developmental Immunology* 2012:948098 DOI [10.1155/2012/948098](https://doi.org/10.1155/2012/948098).

Hirani D, Alvira CM, Danopoulos S, Milla C, Donato M, Tian L, Mohr J, Dinger K, Vohlen C, Selle J, VK-R S, Barbarino V, Pallasch C, Rose-John S, Odenthal M, Pryhuber GS, Mansouri S, Savai R, Seeger W, Khatri P, Al Alam D, Dotsch J, Alejandre Alcazar MA. 2022. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia. *European Respiratory Journal* 59(2):2002248 DOI [10.1183/13993003.02248-2020](https://doi.org/10.1183/13993003.02248-2020).

Hoeft K, Schaefer GJL, Kim H, Schumacher D, Bleckwehl T, Long Q, Klinkhamer BM, Peisker F, Koch L, Nagai J, Halder M, Ziegler S, Liehn E, Kuppe C, Kranz J, Menzel S, Costa I, Wahida A, Boor P, Schneider RK, Hayat S, Kramann R. 2023. Platelet-instructed SPP1(+) macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. *Cell Reports* 42(2):112131 DOI [10.1016/j.celrep.2023.112131](https://doi.org/10.1016/j.celrep.2023.112131).

Hu SW, Hang X, Wei Y, Wang H, Zhang LL, Zhao LH. 2024. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. *Cell Communication and Signaling* 22(1):136 DOI [10.1186/s12964-024-01502-3](https://doi.org/10.1186/s12964-024-01502-3).

Huang R, Fu P, Ma L. 2023. Kidney fibrosis: from mechanisms to therapeutic medicines. *Signal Transduction and Targeted Therapy* 8(1):129 DOI [10.1038/s41392-023-01379-7](https://doi.org/10.1038/s41392-023-01379-7).

Jadoul M, Aoun M, Masimango Imani M. 2024. The major global burden of chronic kidney disease. *The Lancet Global Health* 12(3):e342-e343 DOI [10.1016/S2214-109X\(24\)00050-0](https://doi.org/10.1016/S2214-109X(24)00050-0).

Jansen MPB, Florquin S, Roelofs JJTH. 2018. The role of platelets in acute kidney injury. *Nature Reviews Nephrology* 14(7):457–471 DOI [10.1038/s41581-018-0015-5](https://doi.org/10.1038/s41581-018-0015-5).

Jiang WJ, Xu CT, Du CL, Dong JH, Xu SB, Hu BF, Feng R, Zang DD, Meng XM, Huang C, Li J, Ma TT. 2022. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. *Theranostics* 12(1):324–339 DOI [10.7150/thno.63735](https://doi.org/10.7150/thno.63735).

Kalantar-Zadeh K, Li PK. 2020. Strategies to prevent kidney disease and its progression. *Nature Reviews Nephrology* 16(3):129–130 DOI [10.1038/s41581-020-0253-1](https://doi.org/10.1038/s41581-020-0253-1).

Karasawa K, Asano K, Moriyama S, Ushiki M, Monya M, Iida M, Kuboki E, Yagita H, Uchida K, Nitta K, Tanaka M. 2015. Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. *Journal of the American Society of Nephrology* 26(4):896–906 DOI [10.1681/ASN.2014020195](https://doi.org/10.1681/ASN.2014020195).

Kidney Disease: Improving Global Outcomes CKDWG. KDIGO. 2024. Clinical practice guideline for the evaluation and management of chronic kidney disease. *Kidney International* **105**(4S):S117–S314 DOI [10.1016/j.kint.2023.10.018](https://doi.org/10.1016/j.kint.2023.10.018).

Kim MG, Yun D, Kang CL, Hong M, Hwang J, Moon KC, Jeong CW, Kwak C, Kim DK, Oh KH, Joo KW, Kim YS, Lee DS, Han SS. 2022. Kidney VISTA prevents IFN-gamma/IL-9 axis-mediated tubulointerstitial fibrosis after acute glomerular injury. *Journal of Clinical Investigation* **132**(1) DOI [10.1172/JCI151189](https://doi.org/10.1172/JCI151189).

Klessens CQF, Zandbergen M, Wolterbeek R, Bruijn JA, Rabelink TJ, Bajema IM, IJ DHT. 2017. Macrophages in diabetic nephropathy in patients with type 2 diabetes. *Nephrology Dialysis Transplantation* **32**(8):1322–1329 DOI [10.1093/ndt/gfw260](https://doi.org/10.1093/ndt/gfw260).

Krukowski H, Valkenburg S, Madella AM, Garssen J, van Bergenhenegouwen J, Overbeek SA, Huys GRB, Raes J, Glorieux G. 2023. Gut microbiome studies in CKD: opportunities, pitfalls and therapeutic potential. *Nature Reviews Nephrology* **19**(2):87–101 DOI [10.1038/s41581-022-00647-z](https://doi.org/10.1038/s41581-022-00647-z).

Li L, Xiang T, Guo J, Guo F, Wu Y, Feng H, Liu J, Tao S, Fu P, Ma L. 2024b. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1beta-dependent macrophage activation and tubular cell senescence. *Nature Communications* **15**:3200 DOI [10.1038/s41467-024-47315-3](https://doi.org/10.1038/s41467-024-47315-3).

Li M, Yang Y, Xiong L, Jiang P, Wang J, Li C. 2023a. Metabolism, and metabolites, and macrophages in cancer. *Journal of Hematology & Oncology* **16**:80 DOI [10.1186/s13045-023-01478-6](https://doi.org/10.1186/s13045-023-01478-6).

Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. 2024a. The role of macrophages in fibrosis of chronic kidney disease. *Biomedicine & Pharmacotherapy* **177**:117079 DOI [10.1016/j.biopha.2024.117079](https://doi.org/10.1016/j.biopha.2024.117079).

Li W, Yao C, Guo H, Ni X, Zhu R, Wang Y, Yu B, Feng X, Gu Z, Da Z. 2024c. Macrophages communicate with mesangial cells through the CXCL12/DPP4 axis in lupus nephritis pathogenesis. *Cell Death & Disease* **15**(5):344 DOI [10.1038/s41419-024-06708-4](https://doi.org/10.1038/s41419-024-06708-4).

Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. 2023b. Podocyte injury of diabetic nephropathy: novel mechanism discovery and therapeutic prospects. *Biomedicine & Pharmacotherapy* **168**:115670 DOI [10.1016/j.biopha.2023.115670](https://doi.org/10.1016/j.biopha.2023.115670).

Liao Z, Lan H, Jian X, Huang J, Wang H, Hu J, Liao H. 2023. Myofiber directs macrophages IL-10-Vav1-Rac1 efferocytosis pathway in inflamed muscle following CTX myoinjury by activating the intrinsic TGF-beta signaling. *Cell Communication and Signaling* **21**:168 DOI [10.1186/s12964-023-01163-8](https://doi.org/10.1186/s12964-023-01163-8).

Liu Y. 2011. Cellular and molecular mechanisms of renal fibrosis. *Nature Reviews Nephrology* **7**(12):684–696 DOI [10.1038/nrneph.2011.149](https://doi.org/10.1038/nrneph.2011.149).

Liu J, Zheng B, Cui Q, Zhu Y, Chu L, Geng Z, Mao Y, Wan L, Cao X, Xiong Q, Guo F, Yang DC, Hsu SW, Chen CH, Yan X. 2024. Single-cell spatial transcriptomics unveils platelet-fueled cycling macrophages for kidney fibrosis. *Advanced Science* **11**(29):e2308505 DOI [10.1002/advs.202308505](https://doi.org/10.1002/advs.202308505).

Luo L, Wang S, Hu Y, Wang L, Jiang X, Zhang J, Liu X, Guo X, Luo Z, Zhu C, Xie M, Li Y, You J, Yang F. 2023. Precisely regulating m2 subtype macrophages for renal fibrosis resolution. *ACS Nano* 17(22):22508–22526 DOI [10.1021/acsnano.3c05998](https://doi.org/10.1021/acsnano.3c05998).

Lurier EB, Dalton D, Dampier W, Raman P, Nassiri S, Ferraro NM, Rajagopalan R, Sarmady M, Spiller KL. 2017. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. *Immunobiology* 222(7):847–856 DOI [10.1016/j.imbio.2017.02.006](https://doi.org/10.1016/j.imbio.2017.02.006).

Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, Wu WJ, Chen J, Ni HF, Tang TT, Tang RN, Lan HY, Liu BC. 2020. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. *Cell Death & Differentiation* 27:210–226 DOI [10.1038/s41418-019-0349-y](https://doi.org/10.1038/s41418-019-0349-y).

Ma T, Li X, Zhu Y, Yu S, Liu T, Zhang X, Chen D, Du S, Chen T, Chen S, Xu Y, Fan Q. 2022. Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. *Frontiers in Immunology* 13:835879 DOI [10.3389/fimmu.2022.835879](https://doi.org/10.3389/fimmu.2022.835879).

Meng X, Jin J, Lan HY. 2022. Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. *Chinese Medical Journal* 135(7):757–766 DOI [10.1097/CM9.0000000000002100](https://doi.org/10.1097/CM9.0000000000002100).

Meng XM, Nikolic-Paterson DJ, Lan HY. 2016. TGF-beta: the master regulator of fibrosis. *Nature Reviews Nephrology* 12(6):325–338 DOI [10.1038/nrneph.2016.48](https://doi.org/10.1038/nrneph.2016.48).

Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ, Lan HY. 2016. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. *Cell Death & Disease* 7:e2495 DOI [10.1038/cddis.2016.402](https://doi.org/10.1038/cddis.2016.402).

Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, Vaziri ND, Ma SX, Su W, Shang YQ, Gao M, Zhang JH, Zhang L, Zhao YY, Cao G. 2024. Targeting *Lactobacillus johnsonii* to reverse chronic kidney disease. *Signal Transduction and Targeted Therapy* 9(1):195 DOI [10.1038/s41392-024-01913-1](https://doi.org/10.1038/s41392-024-01913-1).

Naber T, Purohit S. 2021. Chronic kidney disease: role of diet for a reduction in the severity of the disease. *Nutrients* 13(9):3277 DOI [10.3390/nu13093277](https://doi.org/10.3390/nu13093277).

Nagata M. 2016. Podocyte injury and its consequences. *Kidney International* 89(6):1221–1230 DOI [10.1016/j.kint.2016.01.012](https://doi.org/10.1016/j.kint.2016.01.012).

Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. 2023. Pathway from acute kidney injury to chronic kidney disease: molecules involved in renal fibrosis. *International Journal of Molecular Sciences* 24(18):14019 DOI [10.3390/ijms241814019](https://doi.org/10.3390/ijms241814019).

Novak ML, Koh TJ. 2013. Macrophage phenotypes during tissue repair. *Journal of Leukocyte Biology* 93(6):875–881 DOI [10.1189/jlb.1012512](https://doi.org/10.1189/jlb.1012512).

Ouyang Q, Wang C, Sang T, Tong Y, Zhang J, Chen Y, Wang X, Wu L, Wang X, Liu R, Chen P, Liu J, Shen W, Feng Z, Zhang L, Sun X, Cai G, Li LL, Chen X. 2024. Depleting profibrotic macrophages using bioactivated in vivo assembly peptides ameliorates kidney fibrosis. *Cellular & Molecular Immunology* 21(8):826–841 DOI [10.1038/s41423-024-01190-6](https://doi.org/10.1038/s41423-024-01190-6).

Patino E, Bhatia D, Vance SZ, Antypiuk A, Uni R, Campbell C, Castillo CG, Jaouni S, Vinchi F, Choi ME, Akchurin O. 2023. Iron therapy mitigates chronic kidney disease progression by regulating intracellular iron status of kidney macrophages. *JCI Insight* 8(1):e159235 DOI [10.1172/jci.insight.159235](https://doi.org/10.1172/jci.insight.159235).

Pfenning MB, Schmitz J, Scheffner I, Schulte K, Khalifa A, Tezval H, Weidemann A, Kulschewski A, Kunzendorf U, Dietrich S, Haller H, Kielstein JT, Gwinner W, Brasen JH. 2023. High macrophage densities in native kidney biopsies correlate with renal dysfunction and promote ESRD. *Kidney International Reports* 8(2):341–356 DOI [10.1016/j.kir.2022.11.015](https://doi.org/10.1016/j.kir.2022.11.015).

Phu TA, Ng M, Vu NK, Bouchareychas L, Raffai RL. 2022. IL-4 polarized human macrophage exosomes control cardiometabolic inflammation and diabetes in obesity. *Molecular Therapy* 30(6):2274–2297 DOI [10.1016/j.ymthe.2022.03.008](https://doi.org/10.1016/j.ymthe.2022.03.008).

Privratsky JR, Ide S, Chen Y, Kitai H, Ren J, Fradin H, Lu X, Souma T, Crowley SD. 2023. A macrophage-endothelial immunoregulatory axis ameliorates septic acute kidney injury. *Kidney International* 103(3):514–528 DOI [10.1016/j.kint.2022.10.008](https://doi.org/10.1016/j.kint.2022.10.008).

Qi H. 2024. Desmosterol-driven atypical macrophage polarization regulates podocyte dynamics in diabetic nephropathy. *Molecular Biology Reports* 51:213 DOI [10.1007/s11033-023-09198-3](https://doi.org/10.1007/s11033-023-09198-3).

Rao LZ, Wang Y, Zhang L, Wu G, Zhang L, Wang FX, Chen LM, Sun F, Jia S, Zhang S, Yu Q, Wei JH, Lei HR, Yuan T, Li J, Huang X, Cheng B, Zhao J, Xu Y, Mo BW, Wang CY, Zhang H. 2021. IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. *Cell Death & Differentiation* 28(4):1270–1283 DOI [10.1038/s41418-020-00650-6](https://doi.org/10.1038/s41418-020-00650-6).

Ravid JD, Kamel MH, Chitalia VC. 2021. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. *Nature Reviews Nephrology* 17(6):402–416 DOI [10.1038/s41581-021-00408-4](https://doi.org/10.1038/s41581-021-00408-4).

Romagnani P, Agarwal R, Chan JCN, Levin A, Kalyesubula R, Karam S, Nangaku M, Rodriguez-Iturbe B, Anders HJ. 2025. Chronic kidney disease. *Nature Reviews Disease Primers* 11:8 DOI [10.1038/s41572-024-00589-9](https://doi.org/10.1038/s41572-024-00589-9).

Ryu S, Shin JW, Kwon S, Lee J, Kim YC, Bae YS, Bae YS, Kim DK, Kim YS, Yang SH, Kim HY. 2022. Siglec-F-expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis. *Journal of Clinical Investigation* 132(12):e156876 DOI [10.1172/JCI156876](https://doi.org/10.1172/JCI156876).

Shapouri-Moghadam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. 2018. Macrophage plasticity, polarization, and function in health and disease. *Journal of Cellular Physiology* 233(9):6425–6440 DOI [10.1002/jcp.26429](https://doi.org/10.1002/jcp.26429).

Shi Y, Tao M, Chen H, Ma X, Wang Y, Hu Y, Zhou X, Li J, Cui B, Qiu A, Zhuang S, Liu N. 2023. Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis. *Kidney International* 103(3):544–564 DOI [10.1016/j.kint.2022.11.027](https://doi.org/10.1016/j.kint.2022.11.027).

Sindrilaru A, Scharffetter-Kochanek K. 2013. Disclosure of the culprits: macrophages—versatile regulators of wound healing. *Advances in Wound Care* **2**(7):357–368 DOI [10.1089/wound.2012.0407](https://doi.org/10.1089/wound.2012.0407).

Song Q, Song C, Chen X, Xiong Y, Li L, Liao W, Xue L, Yang S. 2023. FKBP5 deficiency attenuates calcium oxalate kidney stone formation by suppressing cell-crystal adhesion, apoptosis and macrophage M1 polarization via inhibition of NF- κ B signaling. *Cellular and Molecular Life Sciences* **80**(10):301 DOI [10.1007/s00018-023-04958-7](https://doi.org/10.1007/s00018-023-04958-7).

Summers SA, Chan J, Gan PY, Dewage L, Nozaki Y, Steinmetz OM, Nikolic-Paterson DJ, Kitching AR, Holdsworth SR. 2011. Mast cells mediate acute kidney injury through the production of TNF. *Journal of the American Society of Nephrology* **22**(12):2226–2236 DOI [10.1681/ASN.2011020182](https://doi.org/10.1681/ASN.2011020182).

Sun H, Li H, Yan J, Wang X, Xu M, Wang M, Fan B, Liu J, Lin N, Wang X, Li L, Zhao S, Gong Y. 2022. Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease. *Nature Communications* **13**:1600 DOI [10.1038/s41467-022-29277-6](https://doi.org/10.1038/s41467-022-29277-6).

Sun L, Liu H, Shi K, Wei M, Jiang H. 2024a. Mincle maintains M1 polarization of macrophages and contributes to renal aging through the Syk/NF- κ B pathway. *Journal of Biochemical and Molecular Toxicology* **38**(12):e70062 DOI [10.1002/jbt.70062](https://doi.org/10.1002/jbt.70062).

Sun Z, Xu Y, Shao B, Dang P, Hu S, Sun H, Chen C, Wang C, Liu J, Liu Y, Hu J. 2024b. Exosomal circPOLQ promotes macrophage M2 polarization via activating IL-10/STAT3 axis in a colorectal cancer model. *The Journal for ImmunoTherapy of Cancer* **12**(5):e008491 DOI [10.1136/jitc-2023-008491](https://doi.org/10.1136/jitc-2023-008491).

Tang PM, Nikolic-Paterson DJ, Lan HY. 2019. Macrophages: versatile players in renal inflammation and fibrosis. *Nature Reviews Nephrology* **15**(3):144–158 DOI [10.1038/s41581-019-0110-2](https://doi.org/10.1038/s41581-019-0110-2).

Tian Y, Chen J, Huang W, Ren Q, Feng J, Liao J, Fu H, Zhou L, Liu Y. 2024. Myeloid-derived Wnts play an indispensable role in macrophage and fibroblast activation and kidney fibrosis. *International Journal of Biological Sciences* **20**(6):2310–2322 DOI [10.7150/ijbs.94166](https://doi.org/10.7150/ijbs.94166).

Torres A, Munoz K, Nahuelpan Y, RS AP, Mendoza P, Jara C, Cappelli C, Suarez R, Oyarzun C, Quezada C, San Martin R. 2020. Intraglomerular monocyte-/macrophage infiltration and macrophage-myofibroblast transition during diabetic nephropathy is regulated by the A(2B) adenosine receptor. *Cells-Basel* **9**(4):1051 DOI [10.3390/cells9041051](https://doi.org/10.3390/cells9041051).

Tran N, Mills EL. 2024. Redox regulation of macrophages. *Redox Biology* **72**:103123 DOI [10.1016/j.redox.2024.103123](https://doi.org/10.1016/j.redox.2024.103123).

Wang Y, Chang J, Yao B, Niu A, Kelly E, Breeggemann MC, Abboud Werner SL, Harris RC, Zhang MZ. 2015. Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. *Kidney International* **88**(6):1274–1282 DOI [10.1038/ki.2015.295](https://doi.org/10.1038/ki.2015.295).

Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF, To KF, Nikolic-Paterson DJ, Lan HY, Chen JH. 2017. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. *Journal of the American Society of Nephrology* **28**(7):2053–2067 DOI [10.1681/ASN.2016050573](https://doi.org/10.1681/ASN.2016050573).

Wang Y, Li Y, Chen Z, Yuan Y, Su Q, Ye K, Chen C, Li G, Song Y, Chen H, Xu Y. 2022. GSDMD-dependent neutrophil extracellular traps promote macrophage-to-myofibroblast transition and renal fibrosis in obstructive nephropathy. *Cell Death & Disease* **13**(8):693 DOI [10.1038/s41419-022-05138-4](https://doi.org/10.1038/s41419-022-05138-4).

Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. 2019. M2b macrophage polarization and its roles in diseases. *Journal of Leukocyte Biology* **106**(2):345–358 DOI [10.1002/JLB.3RU1018-378RR](https://doi.org/10.1002/JLB.3RU1018-378RR).

Wei J, Xu Z, Yan X. 2022. The role of the macrophage-to-myofibroblast transition in renal fibrosis. *Frontiers in Immunology* **13**:934377 DOI [10.3389/fimmu.2022.934377](https://doi.org/10.3389/fimmu.2022.934377).

Wen Y, Lu X, Ren J, Privratsky JR, Yang B, Rudemiller NP, Zhang J, Griffiths R, Jain MK, Nedospasov SA, Liu BC, Crowley SD. 2019. KLF4 in macrophages attenuates TNF α -mediated kidney injury and fibrosis. *Journal of the American Society of Nephrology* **30**(10):1925–1938 DOI [10.1681/ASN.2019020111](https://doi.org/10.1681/ASN.2019020111).

West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. *Nature* **472**(7344):476–480 DOI [10.1038/nature09973](https://doi.org/10.1038/nature09973).

Wu H, Kirita Y, Donnelly EL, Humphreys BD. 2019. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. *Journal of the American Society of Nephrology* **30**(1):23–32 DOI [10.1681/ASN.2018090912](https://doi.org/10.1681/ASN.2018090912).

Wu L, Lin H, Li S, Huang Y, Sun Y, Shu S, Luo T, Liang T, Lai W, Rao J, Hu Z, Peng H. 2024. Macrophage iron dyshomeostasis promotes aging-related renal fibrosis. *Aging Cell* **23**(11):e14275 DOI [10.1111/acel.14275](https://doi.org/10.1111/acel.14275).

Xie L, Cheng Y, Du W, Fu L, Wei Z, Guan Y, Wang Y, Mei C, Hao C, Chen M, Gu X. 2023. Activation of GPER1 in macrophages ameliorates UUO-induced renal fibrosis. *Cell Death & Disease* **14**(12):818 DOI [10.1038/s41419-023-06338-2](https://doi.org/10.1038/s41419-023-06338-2).

Xu L, Jiang H, Xie J, Xu Q, Zhou J, Lu X, Wang M, Dong L, Zuo D. 2023. Mannan-binding lectin ameliorates renal fibrosis by suppressing macrophage-to-myofibroblast transition. *Helijon* **9**(11):e21882 DOI [10.1016/j.helijon.2023.e21882](https://doi.org/10.1016/j.helijon.2023.e21882).

Xu L, Sharkey D, Cantley LG. 2019. Tubular GM-CSF promotes Late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury. *Journal of the American Society of Nephrology* **30**(10):1825–1840 DOI [10.1681/ASN.2019010068](https://doi.org/10.1681/ASN.2019010068).

Yamashita N, Kramann R. 2024. Mechanisms of kidney fibrosis and routes towards therapy. *Trends in Endocrinology & Metabolism* **35**(1):31–48 DOI [10.1016/j.tem.2023.09.001](https://doi.org/10.1016/j.tem.2023.09.001).

Yang C, Bachu M, Du Y, Brauner C, Yuan R, Kioon MDAH, Chesi G, Barrat FJ, Ivashkiv LB. 2022. CXCL4 synergizes with TLR8 for TBK1-IRF5 activation,

epigenomic remodeling and inflammatory response in human monocytes. *Nature Communications* 13:3426 DOI 10.1038/s41467-022-31132-7.

Yang H, Xie T, Li D, Du X, Wang T, Li C, Song X, Xu L, Yi F, Liang X, Gao L, Yang X, Ma C. 2019. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-kappaB/TNF-alpha pathway. *Molecular Metabolism* 23:24–36 DOI 10.1016/j.molmet.2019.02.007.

Yao Y, Xu XH, Jin L. 2019. Macrophage polarization in physiological and pathological pregnancy. *Frontiers in Immunology* 10:792 DOI 10.3389/fimmu.2019.00792.

Yao Q, Zheng X, Zhang X, Wang Y, Zhou Q, Lv J, Zheng L, Lan J, Chen W, Chen J, Chen D. 2025. METTL3 potentiates M2 macrophage-Driven MMT to aggravate renal allograft fibrosis via the TGF-beta1/Smad3 pathway. *Advanced Science* 12(11):e2412123 DOI 10.1002/advs.202412123.

Ye S, Huang H, Xiao Y, Han X, Shi F, Luo W, Chen J, Ye Y, Zhao X, Huang W, Wang Y, Lai D, Liang G, Fu G. 2023. Macrophage Dectin-1 mediates Ang II renal injury through neutrophil migration and TGF-beta1 secretion. *Cellular and Molecular Life Sciences* 80(7):184 DOI 10.1007/s00018-023-04826-4.

Yin Q, Tang TT, Lu XY, Ni WJ, Yin D, Zhang YL, Jiang W, Zhang Y, Li ZL, Wen Y, Gan WH, Zhang AQ, Lv LL, Wang B, Liu BC. 2024. Macrophage-derived exosomes promote telomere fragility and senescence in tubular epithelial cells by delivering miR-155. *Cell Communication and Signaling* 22:357 DOI 10.1186/s12964-024-01708-5.

Yonemoto S, Machiguchi T, Nomura K, Minakata T, Nanno M, Yoshida H. 2006. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus. *Clinical and Experimental Nephrology* 10(3):186–192 DOI 10.1007/s10157-006-0426-7.

You H, Gao T, Cooper TK, Brian Reeves W, Awad AS. 2013. Macrophages directly mediate diabetic renal injury. *American Journal of Physiology-Renal Physiology* 305(12):F1719–F1727 DOI 10.1152/ajprenal.00141.2013.

You Y, Tian Z, Du Z, Wu K, Xu G, Dai M, Wang Y, Xiao M. 2022. M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. *Journal of Experimental & Clinical Cancer Research* 41:10 DOI 10.1186/s13046-021-02222-z.

Yuan T, Xia Y, Pan S, Li B, Ye Z, Yan X, Hu W, Li L, Song B, Yu W, Li H, Rao T, Lin F, Zhou X, Cheng F. 2023. STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation. *Inflammation Research* 72(12):2111–2126 DOI 10.1007/s00011-023-01803-2.

Zeng H, Gao Y, Yu W, Liu J, Zhong C, Su X, Wen S, Liang H. 2022. Pharmacological inhibition of STING/TBK1 signaling attenuates myeloid fibroblast activation and macrophage to myofibroblast transition in renal fibrosis. *Frontiers in Pharmacology* 13:940716 DOI 10.3389/fphar.2022.940716.

Zhang K, Kan H, Mao AQ, Yu F, Geng L, Zhou TT, Feng L, Ma X. 2024a. Integrated single-cell transcriptomic atlas of human kidney endothelial cells. *Journal of the American Society of Nephrology* 35(5):578–593 DOI 10.1681/ASN.0000000000000320.

Zhang YL, Tang TT, Wang B, Wen Y, Feng Y, Yin Q, Jiang W, Zhang Y, Li ZL, Wu M, Wu QL, Song J, Crowley SD, Lan HY, Lv LL, Liu BC. 2024b. Identification of a novel ECM remodeling macrophage subset in AKI to CKD transition by integrative spatial and single-cell analysis. *Advanced Science* 11(38):e2309752 DOI 10.1002/advs.202309752.

Zhang Y, Yang Y, Yang F, Liu X, Zhan P, Wu J, Wang X, Wang Z, Tang W, Sun Y, Zhang Y, Xu Q, Shang J, Zhen J, Liu M, Yi F. 2023. HDAC9-mediated epithelial cell cycle arrest in G2/M contributes to kidney fibrosis in male mice. *Nature Communications* 14:3007 DOI 10.1038/s41467-023-38771-4.

Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, Yin H, Wong K, Miyazawa T, Chen J, Chang I, Singh A, Harris RC. 2012. CSF-1 signaling mediates recovery from acute kidney injury. *Journal of Clinical Investigation* 122(12):4519–4532 DOI 10.1172/JCI60363.

Zhao JH. 2019. Mesangial cells and renal fibrosis. *Advances in Experimental Medicine and Biology* 1165:165–194 DOI 10.1007/978-981-13-8871-2_9.

Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, Zhang C, Zheng X, Xu X, Xue S, Hui L, Ji H, Wei B, Wang H. 2019. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. *Cell Reports* 27(4):1176–1189.e1175 DOI 10.1016/j.celrep.2019.03.028.

Zhu M, Sun X, Qi X, Xia L, Wu Y. 2020. Exosomes from high glucose-treated macrophages activate macrophages and induce inflammatory responses via NF- κ B signaling pathway *in vitro* and *in vivo*. *International Immunopharmacology* 84:106551 DOI 10.1016/j.intimp.2020.106551.

Zhuang T, Chen MH, Wu RX, Wang J, Hu XD, Meng T, Wu AH, Li Y, Yang YF, Lei Y, Hu DH, Li YX, Zhang L, Sun AJ, Lu W, Zhang GN, Zuo JL, Ruan CC. 2024. ALKBH5-mediated m6A modification of IL-11 drives macrophage-to-myofibroblast transition and pathological cardiac fibrosis in mice. *Nature Communications* 15(1):1995 DOI 10.1038/s41467-024-46357-x.

Zhuang Y, Zheng H, Yang Y, Ni H. 2022. GABA alleviates high glucose-induced podocyte injury through dynamically altering the expression of macrophage M1/M2-derived exosomal miR-21a-5p/miR-25-3p. *Biochemical and Biophysical Research Communications* 618:38–45 DOI 10.1016/j.bbrc.2022.06.019.