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ABSTRACT

Background. Ovarian cancer (OC) is a highly aggressive malignancy in the reproduc-
tive system of women, with a high recurrence rate. The present research was designed
to establish a relapse-based RiskScore model to assess the drug sensitivity and prognosis
for patients with OC.

Methods. Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA)
databases were accessed to obtain relevant sample data. The single-cell atlas of primary
and relapse OC was characterized using the “Seurat” package. Differentially expressed
genes (DEGs) between primary and relapse samples were identified by FindMarkers
function. Subsequently, univariate Cox, least absolute shrinkage and selection operator
(LASSO) and stepwise regression analysis were employed to determine independent
prognostic genes related to relapse in OC to establish a RiskScore model. Applying
“timeROC” package, the predictive performance of RiskScore model was assessed.
Drug sensitivity of different risk groups was evaluated using “pRRophetic” package.
The effects of relapse-related prognostic genes on OC cells were detected with in vitro
assays.

Results. The single-cell atlas revealed that compared to primary OC, fibroblasts were
reduced but epithelial cells were increased in relapse OC. Five prognostic genes
(LDHA, NOP58, NMU, KRT19, and RPS23) independently linked to relapse in OC
were identified to construct a RiskScore model, which showed high robustness in
the prognostic prediction for OC patients. High-risk group tended to have worse
outcomes in terms of different clinical features than the low-risk group. Further, six
drugs (Vinorelbine, GW-2580, S-Trityl-L-cysteine, BI-2536, CP466722, NSC-87877)
were found to be correlated with the RiskScore. While the high-risk group had higher
ICsp values to these drugs, the low-risk group was more sensitive to the six drugs. In
addition, KRT19 silencing markedly inhibited the invasion and migration of OC cells.
Conclusion. This study established a relapse-related RiskScore model based on five
prognostic genes (LDHA, NOP58, NMU, KRT19, and RPS23), offering novel insights
into the recurrence mechanisms in OC and contributing to the development of
individualized treatment strategies.
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INTRODUCTION

Ovarian cancer (OC) is a fatal female reproductive system malignancy that shows a 5-year
overall survival (OS) rate lower than 50% (Ma, Shao ¢ Zhu, 2024; Jiang et al., 2024). Global
Cancer Observatory reports showed that OC accounted for about 313,959 new cases and
207,252 deaths globally in 2020 (Salima et al., 2022; Ma et al., 2023). Moreover, non-
specific symptoms and absence of reliable methods for screening have caused a late-stage
diagnosis (FIGO III or IV) in about 75% of OC patients, who often have extensive intra-
abdominal metastasis (Cheung et al., 2020). OC is considered as a particularly challenging
cancer due to its genetic and non-genetic risk factors (Hua ef al., 2023). At present,

the standard-of-care strategy for primary OC is cytoreductive surgery combined with
platinum/paclitaxel adjuvant chemotherapy (Wang et al., 2024a). Recently, some new
regimens such as intraperitoneal injection and targeted therapies (such as poly ADP-ribose
polymerase inhibitors) have emerged as the first-line treatments for OC (Emmings et al.,
2019). However, most patients with advanced OC still have unfavorable survival, pointing
to the need to develop novel molecular indicators for OC.

The progression of OC can be inhibited if treated properly but subsequent
chemoresistance and recurrence remain difficult to be overcome (Chesnokov, Yadav ¢
Chefetz, 2022), which is also a major contributor to a worse prognosis (Boylan et al., 2020).
Recurrence occurs to around 25% of OC patients in early-stage within 6 months of initial
treatment (Zhao et al., 2021b), and around 70% of OC patients in advanced-stage relapse
within 3 years (Johnston et al., 2023). Most of OC patients ultimately develop platinum-
resistance (Howard et al., 2020), which will notably reduce the therapeutic effects. Hence,
there is an increasing need to explore the molecular mechanism of OC recurrence and
develop novel sensitive drugs for OC patients. Recent single-cell RNA-sequencing (scRNA-
seq) analysis has provided novel understanding of OC development (Zhao et al., 2021a;
Kodous, Balaiah ¢ Ramanathan, 2023). For instance, previous study applied scRNA-seq
and bulk expression dataset to establish a recurrence-related 13-gene risk model for
assessing OC prognosis (Zhang et al., 2022). However, the etiopathology associated with
relapse in OC is incomprehensively understood.

The present study downloaded OC samples from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) databases. The single-cell atlas of primary and relapse
OC was then characterized by scRNA-seq analysis. Thereafter, prognostic genes related to
relapse in OC were identified through univariate Cox, lease absolute shrinkage and selection
operator (LASSO) Cox and stepwise regression analysis. Afterwards, a RiskScore model
was constructed and verified under different clinical features. In addition, we assessed the
differences of enriched pathways and drug sensitivity between the risk groups. In vitro
experiments were also utilized to evaluate the effects of the relapse-related prognostic genes
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on OC cells. The current findings were expected to provide novel understanding to the
improvement of personalized treatment of OC and the prognostic prediction.

MATERIAL AND METHODS

Acquisition and preprocessing of data

The scRNA-seq dataset GSE130000 (https:/www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE130000), which contained four primary and two relapse OC samples, was obtained
from the GEO database.

The TCGA database (https:/portal.gdc.cancer.gov) was accessed to collect the clinical
data and gene expression data of OC patients. Then, the FPKM value of RNA-seq data was
converted into transcripts per million (TPM) and then log2-tranformed. A total of 177 OC
samples with disease-free interval (DFI) collected from the TCGA-OC cohort served as the
training set.

The GSE63885 dataset (GPL570 platform, https:/www.ncbi.nlm.nih.gov/geo/query/acc.
cgitacc=GSE63885) containing the gene expression data and clinical information of OC
patients was downloaded from the GEO database as well. A total of 101 OC samples with
complete DFI information in the GSE63885 dataset served as the validation set.

Analysis of scRNA-seq data

The single-cell atlas of primary and relapse OC was characterized based on the scRNA-seq
data in GSE130000 dataset applying the “Seurat” R package (Zulibiya et al., 2023). The
Read10X function in Seurat was employed to read the scRNA-seq data of each OC sample
and retain cells with gene number between 200 and 1,500. Then, after data normalization
using SCTransform function, dimensionality reduction was achieved applying principal
component analysis (PCA), followed by removing batch effects among different OC
samples with the “harmony” R package (Mu et al., 2024; Chen et al., 2025). Next, uniform
manifold approximation and projection (UMAP) analysis was carried out using the
RunUMAP function for dimensionality reduction. The FindNeighbors and FindClusters
functions (parameters: dims = 1:20 and resolution = 0.1) were employed to cluster the cells.
Furthermore, cell types were annotated utilizing the marker genes from the CellMarker2.0
database.

Differentially expressed genes analysis

The differentially expressed genes (DEGs) between primary and relapse OC samples in
GSE130000 dataset were identified by the FindMarkers function. Next, Gene Ontology
(GO) enrichment analysis in biological process (BP) term was conducted on the DEGs
applying the gseGO function in “clusterProlifer” R package (Ding et al., 2022b).

Development and validation of RiskScore model

Relapse-related prognostic genes for OC were screened from the DEGs using univariate
Cox proportional hazard regression analysis (p < 0.05) and further refined by LASSO Cox
regression analysis in “glmnet” R package (Li et al., 2024). Then, the prognostic genes
independently related to relapse in OC were determined by stepwise regression analysis
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and used to create a RiskScore model as follow (Y, Zhao ¢~ Yu, 2024):
RiskScore = Z Pi*ExPi

Pi refers to the coefficient of a gene in Cox regression model, ExPi denotes the gene
expression value.

OC patients were split by the median value of RiskScore into low- and high-risk groups.
DFI and OS between different risk groups were compared using Kaplan—Meier (K-M)
curve. The receiver operating characteristic (ROC) curve was plotted by the “timeROC” R
package (Gao, Zhang ¢ Tian, 2024) to test the predictive accuracy of the RiskScore model.
Additionally, the accuracy and robustness of RiskScore was verified in GSE63885 dataset.

Gene set enrichment analysis

Differences of the enriched pathways between the two risk groups were compared by
Gene Set Enrichment Analysis (GSEA) (Jia et al., 2024) under the screening threshold of
false discovery rate (FDR) < 0.05. The HALLMARK pathway of “h.all.v7.5.1.symbols.gmt”
downloaded from the MSigDB database (https:/iwvww.gsea-msigdb.org/gsea/msigdb/) served
as the background gene set. Single-sample GSEA (ssGSEA) with the “GSVA” R package (Vi
et al., 2023) was employed to compute the HALLMARK enrichment scores for different
risk groups.

Analysis of drug sensitivity

Applying the “pRRophetic” R package, the half-maximal inhibitory concentration (IC5) of
chemotherapy agents in different risk groups in TCGA-OC cohort was assessed (Geeleher,
Cox & Huang, 2014). Moreover, the correlation between the ICsy and RiskScore was

examined to screen drugs with p < 0.05 and |cor|[>0.3.

Cell line culture and transfection

To conduct in vitro assays for validation, human normal ovarian epithelial cell line (IOSE-
80, XY-H366) and OC cell line (SK-OV-3, XY-H005) were ordered from the Shanghai
Xinyu Biotechnology Co., Ltd. Specifically, IOSE-80 cells were cultivated in the RPMI-1640
medium (XY-HM366) with 10% fetal bovine serum (FBS) and penicillin/streptomycin
(P/S). SK-OV-3 cells were cultured in the DMEM medium (XY-HMO005) with 10% FBS and
P/S. All the cell lines were placed in the incubators with 5% CO, at 37 °C for subsequent
experiments.

Shanghai Sangon Biological Engineering Co., Ltd provided the siRNA of KRT19 (si-
KRT19: 5-AAGATCACTACAACAATTTGTCT-3') and negative control (si-NC). For
silencing KRT19, Lipofectamine 2000 Reagent (Invitrogen, Carlsbad, CA, USA) was
utilized to transfect the SK-OV-3 cell lines with siRNA.

Quantitative real-time PCR

The relative mRNA expressions of the key prognostic genes in IOSE-80 and SK-OV-3 cells
were detected by real time quantitative polymerase chain reaction (RT-qPCR) test. Firstly,
Trizol (abs9331-1kit, Absin, Shanghai, China) was employed for isolating total RNA, which
was subsequently reverse-transcribed into cDNA employing First Strand cDNA Synthesis
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Table 1 Primer sequences utilized in RT-qPCR assay.

Gene Primers (5'-3’)
NMU Forward: GTCAAATGTTGTGTCGTCAGTTG
Reverse: CCATTCCGTGGCCTGAATAAA
RPS23 Forward: GGTGCTTCTCATGCAAAAGGA
Reverse: GCAACCGTCATTGGGTACAAA
KRTI19 Forward: TGAGTGACATGCGAAGCCAAT
Reverse: CTCCCGGTTCAATTCTTCAGTC
LDHA Forward: ATGGCAACTCTAAAGGATCAGC
Reverse: CCAACCCCAACAACTGTAATCT
NOP58 Forward: ACAGAAAGTTGGCGATAGGAAG
Reverse: AGCTGGGTTCGATATTCAGAGA
GAPDH Forward: CTGGGCTACACTGAGCACC

Reverse: AAGTGGTCGTTGAGGGCAATG

Kit (abs601510, Absin, Shanghai, China). Thereafter, RT-qPCR was conducted with the
SYBR Green I (abs47043115, Absin, Shanghai, China) (Zhang et al., 2023a). See Table 1 for
primer sequences of this study. GAPDH was an internal control for computing the gene

2—AACT

expression using method (Nomiri et al., 2022). All the samples were analyzed in

triplicate.

Cell invasion and migration assays

Transwell assay was employed to detect the invasion of OC cells with KRT19 silencing.
Specifically, Matrigel was firstly pre-coated on the Transwell chamber (pore: 8.0 wm,
Corning, Inc., Corning, NY, USA). Then, the transfected OC cells (5 x 10° cells/well)
were inoculated into the upper chamber, while the lower chamber contained 600 L
DMEM with 10% FBS and P/S. After incubation for 48 hours (h), the OC cells in the
lower Transwell chamber were fixed by 4% paraformaldehyde, dyed by 0.1% crystal violet.
Wound healing assay was conducted to evaluate the migratory ability of KRT19-silenced
OC cells. Briefly, the OC cells (2 x 10# cells/well) were cultured in 6-well plate to form a full
confluent monolayer. Hereafter, the OC cell monolayer was wounded by sterile tips and
continued to be cultured for another 48 h. Finally, an Olympus IX71 inverted microscope
was applied to capture representative photographs, and invaded cell number and wound
closure (%) of OC cells were quantified and measured by Image]J (x64) 1.8.0 software (Yu
et al., 2023; Zhang et al., 2024).

Statistical analysis

R software (version3.6.0) and GraphPad Prism (version 8.0) were employed in all statistical
analyses. Wilcoxon rank-sum test was utilized to compare differences between two
continuous variables, whereas survival differences across different risk groups were
compared with log-rank test. Spearman method was employed in correlation analysis.

A p < 0.05 denoted statistical significance, and the data were shown in mean =+ standard
deviation. Two-way analysis of variance and unpaired ¢ test were applied to compare the
experimental data.
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RESULTS

Single-cell atlas of primary and relapse OC was characterized

The scRNA-seq analysis was utilized to delineate the single-cell atlas of primary and relapse
OCin GSE130000 dataset. After cell filtering, data normalization, dimensionality reduction,
and clustering analysis, a sum of 23,079 cells were divided and annotated into four cell types
(Fig. 1A), including fibroblasts (COL1AI, COL3A1, DCN ), endothelial cells (SPARCLI,
VWEF), myeloid cells (SPP1, CD74), and epithelial cells (WFDC2, CD24, KRT18, KRT19,
EPCAM) (Fig. 1B). Compared with primary OC samples, the proportion of fibroblasts
was markedly reduced and that of epithelial cells was notably increased in relapse OC
samples (Figs. 1C and 1D). Furthermore, GO enrichment analysis showed that the DEGs
between primary and relapse OC samples were mainly enriched in cytoplasmic translation,
G protein-coupled receptor signaling pathway, cellular amide metabolic process, peptide
metabolic process, cell-cell adhesion, response to chemical, efc. in GO-BP term (Fig. 1E),
indicating that these biological processes may play crucial roles in the recurrence of OC.

Identification of key relapse-related genes

Initial screening using univariate Cox proportional hazard regression analysis selected 27
prognostic genes linked to relapse OC (p < 0.05), including 16 risk genes with hazard ratio
(HR) > 1 and 11 protective genes with HR < 1 (Fig. 2A). Subsequently, the candidate
genes in the model were refined by LASSO Cox regression analysis (Figs. 2B and 2C).
Applying stepwise regression analysis, five independent genes related to relapse in OC were
identified, including 2 protective genes with HR < 1 (LDHA, NOP58) and 3 risk genes with
HR > 1 (NMU, KRT19, RPS23) (Figs. 2D and 2E). These genes were employed to formulate
the RiskScore model: Riskscore = 0.29 * NMU 4 0.39 * RPS23 + 0.33 * KRT19—0.48 *
LDHA—-0.41 * NOP58.

Construction of a relapse-related RiskScore model and prediction of
prognosis in OC

All the patients in the TCGA-OC cohort were separated by the median value of RiskScore
into high- and low-risk groups. The area under ROC curve (AUC) was calculated to test the
prediction performance of the RiskScore model. It was observed that in TCGA-OC cohort,
the RiskScore model had 1-year AUC of 0.68, 2-year AUC of 0.71, 3-year AUC of 0.74,
4-year AUC of 0.75, and 5-year AUC of 0.82, showing a high performance in predicting
OC patients’ prognosis (Fig. 3A). K-M curves displayed that high-risk group had lower
DFI and OS than low-risk group in TCGA-OC cohort (Figs. 3B and 3C), indicating a worse
prognosis in high-risk OC group. Additionally, the RiskScore model reached 1-year AUC
of 0.61, 2-year AUC of 0.74, 3-year AUC of 0.69, and 4-year AUC of 0.74 in GSE63885
dataset (Fig. 3D). Similarly, compared to low-risk group, high-risk group had a shorter
DFI and worse outcome in GSE63885 dataset (Fig. 3E). These results validated the accuracy
and robustness of RiskScore model in the prognostic evaluation in OC.

Validation of the expressions of the five key prognostic genes in OC
The expressions of the five independent prognostic genes were compared in different risk
groups. In both TCGA-OC cohort and GSE63885 dataset, NMU, RPS23, and KRT19 were
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all high-expressed but LDHA and NOP58 were low-expressed in high-risk group compared
with low-risk group (Figs. 4A and 4B). Moreover, the expression pattern of the five genes
in single-cell dataset GSE130000 was further analyzed. RPS23 was high-expressed in the
Epithelial cells, Fibroblasts and Myeloid cells of primary OC samples, whereas NMU,
KRT19, LDHA, and NOP58 were mainly expressed in relapse OC samples (Figs. 4C and
4D).

Evaluation of the predictive performance of the RiskScore model in
different clinical characteristics of OC patients

The prognostic differences between low- and high-risk OC groups with different clinical
characteristics were compared. It was found that high-risk group had shorter DFI and
worse prognosis with different Age (Figs. 5A and 5B), Stage (Figs. 5C and 5D), and Grade
(Figs. 5E and 5F). These outcomes further demonstrated that the present RiskScore model
was independent and reliable in the prognostic prediction for OC patients with different
clinical features.

GSEA and drug sensitivity analysis in different risk groups

Compared to low-risk group, GSEA revealed that high-risk group had notably activated
coagulation pathway and observably suppressed pathways of G2M checkpoint, E2F targets,
mitotic spindle, Wnt beta catenin signaling, PI3K AKT mTOR signaling, interferon
alpha response, and interferon gamma response (Fig. 6A). In addition, we screened six
chemotherapy drugs closely linked to RiskScore (|cor| > 0.3), namely, Vinorelbine, GW-
2580, S-Trityl-L-cysteine, BI-2536, CP466722, and NSC-87877 (Fig. 6B). The ICs( values
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(DFI) in Kaplan—Meier (K-M) curve analysis for different risk groups in TCGA-OC cohort; (C) Overall
survival (OS) in K-M curve analysis for different risk groups in TCGA-OC cohort; (D) ROC curve
of RiskScore model in GSE63885 dataset; (E) DFI in K—M curve analysis for different risk groups in
GSE63885 dataset.
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of the six chemotherapy drugs were all markedly higher in high-risk group in comparison
to low-risk group (Fig. 6C), which indicated that OC patients in low-risk group had higher
sensitivity to these drugs. These findings could provide novel insights for the drug selection
in the personalized treatment of OC.

In vitro cellular experiments to validate the expression and potential
function of the screened key genes

RT-qPCR assay showed that compared to human normal ovarian epithelial cells
IOSE-80, three genes related to relapse (KRT19, LDHA, NOP58) were all significantly
upregulated in OC cells SK-OV-3 (Fig. 7A). As KRT19 expression was most significantly
upregulated in OC cells and its pro-carcinogenic effects on tumors have been
previously reported (Sun et al., 2023b; Shi et al., 2024), KRT19 was therefore selected
as a representative gene in this study and in vitro experiments were carried out

to validate its potential function in the metastatic process of OC cells. Hereafter,
KRT19 was used for silencing to evaluate its impacts on OC cell invasion and
migration via Transwell and Wound healing assays. The number of invaded cells
and wound closure rate of SK-OV-3 were markedly reduced after silencing KRT19
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(Figs. 7B—7E). These findings suggested that KRTI19 might play an imperative role in

the OC developed.

DISCUSSION

OC is a prevalent malignant tumor in gynecology with high metastasis and recurrence rates
and unfavorable survival (Song & Qu, 2022; Zheng, Li ¢ Zhan, 2022). Hence, it is of great
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importance to discover effective prognostic predictors and risk assessment model associated
with relapse in OC. By performing scRNA-seq analysis, the present work observed that the
proportion of Fibroblasts was reduced yet that of Epithelial cells was increased in relapse
OC in comparison with primary OC. Subsequently, five independent prognostic genes
related to the relapse in OC were identified to establish a RiskScore model, which was robust
in predicting patients’ prognosis. Compared to low-risk group, the patients in high-risk
OC group showed worse outcomes under different clinical features and higher 1Cs values
of the six predicted chemotherapy drugs. In vitro assays revealed that the invasive and
migratory abilities of OC cells were inhibited by KRT19 silencing. The present findings
contributed to the prognosis assessment and individualized therapy of OC patients.

Since scRNA-seq analysis can provide novel understanding for the pathological
mechanisms of OC progression and recurrence at the single-cell level (Yuan et al., 2024),
this technique has been employed to help develop new signatures for OC to improve the
current therapeutic paradigms (Talukdar et al., 2021). In this study, the single-cell atlas
revealed four cell types (endothelial cells, epithelial cells, fibroblasts, myeloid cells), and the
proportion of fibroblasts was markedly decreased yet that of Epithelial cells was notably
increased in relapse OC samples in comparison to primary OC samples. Cancer-associated
fibroblasts are implicated in the tumor growth and peritoneal metastasis of OC through
remodeling extracellular matrix and tumor microenvironment (TME) (Yang, Zhou &
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Huang, 2023; Ding et al., 2022a). Moreover, OC derives from ovarian surface epithelium or
serous intra-epithelial carcinoma (Long et al., 2022). Previous scRNA-seq study indicated
that MYBL2 in malignant epithelial cells is correlated with OC progression (Shao et al.,
2024). epithelial-mesenchymal transition (EMT) functions crucially in OC metastasis and
recurrence, during which epithelial cells reduce cell-cell adhesion and cell polarity while
acquiring aggressive features to enhance mesenchymal phenotypes (Padilla et al., 2019).
These findings demonstrated the underlying effects of epithelial cells in OC relapse.

Our relapse-related RiskScore model for OC consisted of two protective genes (LDHA,
NOP58) and three risk genes (NMU, KRT19, RPS23), and exhibited strong robustness
and independence in predicting the prognosis for patients with different clinical features.
Compared to low-risk group, OC patients in high-risk group showed worse outcomes
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with lower DFI and OS rate. Lactate dehydrogenase A (LDHA) as a critical enzyme in
glycolytic pathway can modulate the synthesis and transport of lactate (Dong et al., 2023).
LDHA is involved in the deteriorative progression of cancers via regulating multiple cellular
mechanisms (Wang et al., 2024b). Han et al. (2017) manifested that miR-383 suppresses cell
proliferation, invasion, and glycolysis in OC via targeting LDHA. It has been reported that
LDHA is frequently overexpressed in OC than in normal tissue, which is often linked to poor
survival outcomes and treatment resistance (Xintaropoulou et al., 2018). Nucleolar protein
58 (NOP58), a key component of box C/D small nucleolar ribonucleoprotein, functions
importantly in maintaining cell homeostasis (Warng et al., 2023). NOP58 is considered to
be involved in tumor development and exhibits potential diagnostic and prognostic values
in various cancers (Qian et al., 2024), including hepatocellular carcinoma (Wang et al.,
2021), colorectal cancer (Wu et al., 2020), and prostate cancer (Guo et al., 2024). NOP58
has also been identified as a relapse-associated hub gene in lung adenocarcinoma (Shen
et al., 2021). However, studies of the role of NOP58 in OC are limited. Neuromedin U
(NMU) is a small neuropeptide with strong activity as an inducer of uterine smooth muscle
contraction in rats, and plays a critical role in tumor genesis and metastasis of numerous
cancers (Przygodzka et al., 2019). NMU and one of its receptors (NMUR?2) are mainly
expressed in the central nervous system such as hypothalamus as well as female ovarian
and endometrial tissues (Lin et al., 2015). NMU signaling could promote endometrial
cancer development, and the level of NMU is linked to the malignant grade and patient
survival (Lin et al., 2016). Keratin 19 (KRT19), a member of the keratin family, encodes
the cytoskeletal intermediate filament protein and its abnormal expression is vital in tumor
progression (Shi et al., 2024). KRT19 is recognized as a promising prognostic biomarker
for OC, with high-expressed KRT19 indicating worse prognosis and malignant progression
(Sun et al., 2023b; Ivansson et al., 2024). Ribosomal protein S23 (RPS23) is a member of
antimicrobial peptide with ancient origin and high conservation (Ma et al., 2020). RPS23
plays an essential part in protein synthesis and immune response (Wang et al., 2022a).
RPS23 has been identified as a significant hub gene in hepatocellular carcinoma (Sur et al.,
2023a), gastric cancer (Dong et al., 2020), and breast cancer (Zhang et al., 2023b). However,
the specific regulatory mechanism of RPS23 in cancers is less studied, especially in OC. Our
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in vitro assays revealed that these five genes were all upregulated in OC cells and KRT19
silencing notably inhibited the OC cell invasion and migration. Collectively, these genes
might be involved in the initiation and development of OC, showing the potential to serve
as predictors for OC relapse.

Furthermore, six chemotherapy drugs (Vinorelbine, GW-2580, S-Trityl-L-cysteine,
BI-2536, CP466722, NSC-87877) were discovered to be notably correlated with RiskScore.
Notably, high-risk group had higher ICsy values, which inversely indicated that low-risk
OC patients were more sensitive to the six drugs. In a Phase II clinical study, Vinorelbine
is an anti-microtubule drug that exhibits similar efficacy to paclitaxel in treating OC
(Xu et al., 2021). Vinorelbine combined with cisplatin could be employed as second- or
higher-line palliative chemotherapy in advanced OC (Yeon et al., 2023). GW-2580 is a
colony-stimulating factor 1 receptor kinase inhibitor (Edwards et al., 2019). Moughon et al.
(2015) showed that administration of GW-2580 for advanced epithelial OC patients could
reduce the infiltration of protumorigenic (M2) macrophage and markedly reduce the
volume of malignant ascites. S-Trityl-L-cysteine, an inhibitor of human mitotic kinesin
Eg5, is well recognized as an anticancer lead compound (Radwan et al., 2019). BI-2536
is an effective inhibitor of polo-like kinase 1, which is often overexpressed in OC and is
a promising therapeutic target (Rizvi et al., 2019; Wang et al., 2022b). As an inhibitor of
ataxia telangiectasia mutated (ATM) kinase, CP466722 suppresses the EMT and metastatic
ability of drug-resistant lung cancer (Shen et al., 2019; Jin et al., 2022). NSC-87877 could
inhibit the activation of Shp2 protein tyrosine phosphatase induced by epidermal growth
factors in cell cultures (Chen et al., 2006). These findings have significant implications for
guiding drug selection in the personalized treatment of OC.

Nevertheless, the present research also had several limitations. Firstly, a small sample
size included in the single-cell dataset may limit a systematic identification of cellular
heterogeneity and DEGs, potentially introducing bias. Subsequent studies should integrate
more publicly available single-cell data or autonomously collect more primary and
recurrent OC samples to establish a larger single-cell transcriptome cohort, so as to more
accurately analyze changes in the TME and to enhance the robustness of the model-based
data. Secondly, although this study verified the effects of KRT19 on OC cell migration
and invasion through in vitro experiments, we lacked in-depth functional validation
for other key genes in the model, which limited a comprehensive understanding of its
mechanism of action in OC. To provide a more reliable biological support for the model,
we plan to examine the specific function of each candidate gene in OC recurrence and its
regulatory mechanism based on in vivo functional experiments in the future. Finally, GSEA
analysis revealed changes in the activity of several important pathways (e.g., coagulation,
Wnt/B-catenin, PI3K-AKT-mTOR, etc.) in high-risk OC group, but the specific roles
or interactions of these pathways in the recurrence of OC remained unclear. For this
reason, subsequent studies may combine immune microenvironment analysis, pathway
intervention experiments, and spatial transcriptome technology to explore the synergistic
roles and key nodes between the pathways, thereby further improving the understanding
of the association between the model and the biological mechanisms of OC.
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CONCLUSION

In summary, this study established a relapse-related RiskScore model in OC with two
protective genes (LDHA, NOP58) and three risk genes (NMU, KRT19, RPS23). The
RiskScore showed a strong robustness and independence in predicting patient prognosis

under different clinical features. Furthermore, six chemotherapy drugs (Vinorelbine,
GW-2580, S-Trityl-L-cysteine, BI-2536, CP466722, NSC-87877) closely linked to the
RiskScore were screened for the potential treatment of OC. Overall, our current findings

may facilitate the drug selection, prognostic assessment, and personalized treatment of

OC.

Abbreviation

ATM ataxia telangiectasia mutated
AUC area under ROC curve

BP biological process

DEGs differentially expressed genes

DFI disease-free interval

EMT epithelial-mesenchymal transition
FBS fetal bovine serum

FDR false discovery rate

GEO Gene Expression Omnibus

GO Gene Ontology

GSEA gene set enrichment analysis

HR hazard ratio

IC50 half-maximal inhibitory concentration
K-M Kaplan—Meier

KRT19 Keratin 19

LASSO least absolute shrinkage and selection operator
LDHA lactate dehydrogenase A

MSigDB Molecular Signature Database
NMU neuromedin U

NOP58 nucleolar protein 58

oC ovarian cancer

oS overall survival

PCA principal component analysis

P/S penicillin/streptomycin

ROC receiver operating characteristic
RPS23 ribosomal protein S23

RT-qPCR  quantitative real-time PCR
scRNA-seq single-cell RNA-sequencing

si small interfering

ssGSEA single-sample GSEA

TCGA the Cancer Genome Atlas

TPM transcripts per million

UMAP uniform manifold approximation and projection
h hours
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