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ABSTRACT

Background. Natural regeneration is pivotal for sustaining evolutionary processes
in plant species. Identifying determinants that shape recruitment dynamics could
elucidate key factors governing this critical biological process. However, the relationship
between environmental variables and recruitment patterns in Fagus hayatae remains
uninvestigated, despite its dual significance as a species endemic to China and a National
Grade IT Protected Plant. This knowledge gap persists even though understanding such
ecological interactions could enhance conservation management for this vulnerable
endemic tree species.

Methods. This study employed Pearson correlation analysis, redundancy analysis
(RDA), and structural equation modeling (SEM) to examine environmental factors of
natural regeneration in Fagus hayatae populations across ontogenetic stages (seedling,
sapling, small tree) within three stratified elevational bands (low: 1,670-1,700 m; mid:
1,770-1,800 m; high: 1,890-1,940 m) of Micangshan Nature Reserve, located in Sichuan
Province, China.

Conclusions. Structural equation modeling (SEM) revealed altitude-specific envi-
ronmental regulation of Fagus hayatae regeneration dynamics. In low-altitude stands
(1,670-1,700 m), the litter layer emerged as the primary limiting factor for seedling
density (direct effect: —0.80), while diameter at breast height (DBH) suppressed sapling
density through direct negative pathways (—0.63). Soil pH exhibited indirect positive
mediation on seedling establishment via litter layer modification (0.42), suggesting
synergistic management of litter removal and soil acidity regulation enhances regen-
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INTRODUCTION

Natural regeneration serves as a pivotal mechanism for generational succession in
forest ecosystems (Christopher, Deborah ¢ Damien, 2005; Dech, Robinson ¢ Nosko, 2008;
Beckage, Lavine ¢ Clark, 2005; Tinya et al., 2009). This ecological process plays a crucial
role in maintaining long-term forest sustainability (Lewis et al., 2019) and facilitates
post-disturbance ecosystem recovery (Pham et al., 2022; Shive et al., 2018; Johnson et al.,
2021). Compared to artificial regeneration, seed-based natural regeneration offers a more
economical and ecologically efficient method for stand restoration (Zhao, Sun ¢ Gao,
2023). The success of natural regeneration depends on complex interactions among
aboveground factors (such as canopy structure, light availability, and litter dynamics),
belowground factors (including soil nutrient stoichiometry and pH gradients), and climatic
and topographic drivers (Coomes ¢ Grubb, 2000; Redmond ¢ Kelsey, 2018; Liu et al., 2020).
These multidimensional regulators collectively determine regeneration success rates, forest
resilience, and ecosystem functionality through direct physiological effects and indirect
ecological feedbacks (Coomes & Grubb, 20005 Johnson et al., 2021; Noguchi ¢ Yoshida,
20045 Norghauer ¢» Newbery, 2014). Canopy density exerts differential effects on natural
regeneration dynamics: studies have demonstrated positive correlations between canopy
density and regeneration success (Addm, Odor ¢ Béloni, 2013; Ali et al., 2019; Xu et al.,
2017), while other research confirms that severe light limitation suppresses pioneer species
establishment (Tinya et al., 2009). Natural regeneration is also regulated by soil nutrient
availability and physicochemical properties (Wang et al., 2017; Bharathi & Prasad, 2017).
Under nutrient-poor conditions, soil moisture and nutrient availability may exert stronger
control over seedling survival and growth than light regimes (Coomies ¢ Grubb, 2000).
In Guandi Mountain, the regeneration of Larix principis-rupprechtii exhibits particular
sensitivity to soil pH (Li et al., 2005a). Furthermore, experimental evidence confirms
that nitrogen (N), phosphorus (P), and potassium (K) act as limiting nutrients during
stand regeneration processes, demonstrating dual regulatory effects on plant growth
and development (Mueller et al., 2013; Menge, Hedin ¢» Pacala, 2012). In addition to the
aforementioned factors, litter thickness, air humidity, air temperature, soil temperature
and a series of other factors exert significant influences on natural regeneration (Liang ¢
Wei, 2021; Hu et al., 2016).

Elevation, as a comprehensive factor affecting natural regeneration, exerts strong control
over seedling and sapling growth by regulating the spatial distribution of ecological factors
including light availability, temperature regimes, water accessibility, and soil nutrient
gradients (Puhlick, Laughlin & Moore, 2012; Tinya et al., 2009).

Environmental factors demonstrate phase-dependent dynamics throughout
regeneration life cycles (Wang et al., 2022). Pinus tabuliformis regeneration exemplifies this
pattern, requiring moderate shading during initial establishment phases but demanding
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increased irradiance for subsequent developmental stages (Wang et al., 2017). Empirical
evidence from Pinus sylvestris ecosystems documents differential regulation of seedling
versus sapling densities by vegetation coverage, hydrological regimes, and organic horizon
depth (Mirschel, Zerbe & Jansen, 2011). These findings underscore the necessity for
phase-specific delineation of critical environmental thresholds to optimize target species
regeneration.

Fagus hayatae Palib. ex Hayata (Fagaceae), a paleoendemic tree species restricted to
China, is currently designated as a Class II National Key Protected Plant Species in China
and classified as Vulnerable on the IUCN Red List (http:/www.iucn.org)) (Zhang, 2017).
Recent decades have witnessed progressive habitat insularization across its distribution
range, a phenomenon attributed to synergistic effects of global climate warming, persistent
anthropogenic disturbances, and intrinsic biological constraints including its naturally
restricted biogeographic range and diminutive wild population sizes. This conservation
crisis is further exacerbated by the species’ observed low natural regeneration capacity
(Lietal, 2016a; Li et al., 2016b), creating urgent challenges for population persistence.
Notably, no comprehensive studies have systematically investigated the environmental
determinants influencing natural regeneration processes in F. hayatae populations to date
(Li et al., 2016a; Li et al., 2016b).

This study systematically investigated environmental drivers governing natural
regeneration across distinct ontogenetic stages (seedlings, saplings, and small trees) in
F. hayatae populations along three elevation ranges within the Micangshan Nature Reserve,
Sichuan Province: low-elevation (1,670-1,700 m), mid-elevation (1,770-1,800 m), and
high-elevation (1,890—1,940 m). The research objectives were threefold: (i) to evaluate
critical environment factors influencing F. hayatae regeneration dynamics, (ii) to identify
key environmental determinants regulating regeneration success across developmental
stages, and (iii) to develop science-based management strategies for enhancing natural
regeneration efficacy. These findings are expected to provide critical insights for optimizing
F. hayatae population restoration and informing sustainable forest regeneration practices
in temperate montane ecosystems.

MATERIALS & METHODS

Study site

The Sichuan Micangshan Nature Reserve (32°29'-32°41'N, 106°24'-106°39'E) occupies
the northern margin of the Sichuan Basin. This protected area features a subtropical
humid monsoon climate with elevational ranges spanning 1,500-2,000 m. Key climatic
parameters include a 260-day frost-free period, mean annual temperature of 13 °C,
annual sunshine duration of 1,355.3 h, and mean annual precipitation of 1,350 mm. The
vegetation is dominated by subtropical evergreen-deciduous broadleaved mixed forests,
with characteristic F. hayatae communities primarily occurring in deciduous broadleaved
forests at 1,500—1,900 m elevation (Li et al., 2016a; Li et al., 2016b).
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Table 1 Sample plot information sheet.

Elevation classes

Low elevation

Mid-elevation

High elevation

Sample plot name Longitude Latitude Elevation Slope Slope Canopy
direction density
106.553122 32.669247 1,679 49.8 W-§ 62.9
106.551783 32.672961 1,678 41.8 W-N 66.6
Luoshuidong 106.551908 32.667725 1,681 35.72 W-S 67.1
106.557317 32.658717 1,778 46.68 N 83.1
Zhongshanbao 106.557286 32.660628 1,781 57.28 E-N 67.4
106.557933 32.656017 1785 47.2 E-S 66.9
Huangbailinya 106.573794 32.657325 1,933 56 N 65.3
Huangbailin 106.573131 32.658022 1,906 45 W 67.2
Miaojaiping 106.572242 32.657089 1,922 45.35 W 67.8

Notes.

W, west; W-N, northwest; W-S, southwest; E-S, southeast; E-N, northeast.

Experimental design

In July 2022, three vertical transects were established along an elevational gradient within
the Micangshan Nature Reserve in Sichuan. The vertical spacing between adjacent elevation
bands was 100-130 m. The elevation bands were: low elevation band: 1,670-1,700 m; mid
elevation band: 1,770-1,800 m; high elevation band: 1,890-1,940 m. The low-elevation site
(1,670-1,700 m) was established to ensure coverage of the upper elevational limit of Fagus
hayatae within the study area while comprehensively assessing regeneration constraints
across the species’ entire elevational gradient. Within each elevation band, three main plots
(totaling nine plots; Table 1; Fig. 1), dominated by F. hayatae, were established, with a
minimum distance of >1,000 m between adjacent main plots. Within each main plot, five
20 m x 20 m subplots were arranged in an X-shaped distribution pattern, with a spacing of
>50 m between subplots. All F. hayatae individuals taller than two m were comprehensively
surveyed within each plot; their diameter at breast height (DBH), tree height, and crown
width were measured. Nested within each subplot, five 5m x 5 m quadrats were established
(maintaining the X-shaped distribution pattern) to monitor seedlings, saplings, small trees,
and shrubs. Furthermore, nested within each of these 5 m x 5 m quadrats, five I m x 1 m
herbaceous quadrats were placed, also maintaining the X-shaped distribution pattern.

To minimize precipitation effects on soil moisture, sampling was conducted >72 h
post-rainfall. Within each nested quadrat, we removed the litter layer and collected
200 g soil samples (0—15 cm depth) following an X-shaped sampling pattern using a
stainless-steel auger. We then homogenized soils from five quadrats to create composite
samples were immediately stored in insulated containers and transported to the laboratory.
Post-processing involved: Debris removal through manual sorting sieving (<1 mm mesh).
Division into two aliquots: air-dried samples for physicochemical analyses (soil moisture,
pH); Fresh samples preserved at 4 °C for enzymatic assays (e.g., urease activity).

The environmental factors investigated in this study were categorized into four groups:
geographic factors: slope (S) and elevation (A); stand factors: canopy density (CD), litter
thickness (LT), shrub cover (SC), herbaceous cover (HC), number of adult trees (ANP),
diameter at breast height (DBH); Climatic factors: light intensity (LI), air temperature
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Figure 1 Experimental plots. The study site location in Wangcang County (A). (B) Sampling plots in

Micangshan Nature Reserve.
Full-size & DOL: 10.7717/peerj.19761/fig-1

(AT), soil temperature (ST), air humidity (AH), and soil moisture (SM); soil factors:
pH, available phosphorus (AP), cation exchange capacity (CEC), total nitrogen (TN),
soil organic content (SOM), soil water content (SWC), available potassium (AK), urease
activity (UA), and catalase activity (CAT).

Indicator measurement methods

Diameter at breast height (DBH) was measured at 1.20 m above ground level using

a diameter tape. Geospatial parameters including elevation, longitude, latitude, and
slope were recorded using a TX35-S300 GPS receiver (China) with satellite navigation
timing (Liang ¢ Wei, 2021). Litter layer thickness was measured following the vertical
insertion method of a metal ruler to the soil surface (Liang ¢ Wei, 2020). Canopy density
was estimated through hemispherical photography analysis using the Canopy Capture
application.

Vegetation coverage metrics were determined through systematic grid sampling: Shrub
cover (SC) and herbaceous cover (HC) were quantified using a 10 x 10 grid system,
calculated as the percentage of grid cells occupied by vegetation. Light intensity was
measured using a Hipoint HR-350 sensor. Soil temperature (ST) and soil moisture (SM)
were recorded between 10:00 and 16:00 local time using a TES-1365 thermohygrometer.
Ambient air temperature (AT) and air humidity (AH) were measured with a Sunrise digital
thermohygrometer.

Soil analyses followed standardized protocols: pH measurement using calibrated pH
meter. Moisture content determination through constant-temperature drying (105 °C).
Total nitrogen (TN) quantification via Kjeldahl digestion. Soil organic matter (SOM)
analysis using dichromate oxidation. Cation exchange capacity (CEC) determination
by sodium acetate method. Available phosphorus (AP) extraction via Olsen’s sodium
bicarbonate method (Yan et al., 2015). Available potassium (AK) measurement using
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ammonium acetate extraction. Enzyme activities (urease and catalase) analyzed with
microplate kits (Suzhou Keming Biotechnology).

Data analysis

Since natural regeneration data (seedling density, SED; seedling height, SEH; sapling
density, SAD; sapling height, SAH; small tree density, STD; and small tree height, STH)
could not be standardized using conventional methods, nonparametric Kruskal-Wallis
ANOVA was employed to analyze treatment effects, with raw data ranked to examine
interactions among multiple factors (Zhao, Sun ¢ Gao, 2023). These regeneration metrics
were designated as response variables, while environmental factors were divided into four
categories to represent the explanatory variable: geographic factors: slope (S), elevation
(A); stand factors: canopy density (CD), litter thickness (LT), shrub cover (SC), herbaceous
cover (HC), number of adult trees (ANP), and diameter at breast height (DBH); climatic
factors: light intensity (LI), air temperature (AT), soil temperature (ST), air humidity
(AH), and soil moisture (SM).

Soil factors: pH, available phosphorus (AP), cation exchange capacity (CEC), total
nitrogen (TN), soil organic content (SOM), soil water content (SWC), available potassium
(AK), urease activity (UA), and catalase activity (CAT). The relationships between
environmental factors and F. hayatae regeneration were analyzed using CANOCO 5.0.
Preliminary detrended correspondence analysis (DCA) of Fagus regeneration data revealed
gradient lengths <3.0, indicating linear responses of this species to environmental variation,
thereby justifying linear multivariate methods (Li et al., 2018; Zhao, Sun & Gao, 2023;
Liang & Wei, 2020). Based on this, species-environment redundancy analysis (RDA) was
implemented to identify dominant drivers impacting Fagus regeneration. The ordination
focused on environment-regeneration correlations, with eigenvalue significance evaluated
via Monte Carlo permutation tests (99% confidence) (Chen ¢» Cao, 2014; Chen, 2003).
Regeneration data were log-transformed to mitigate extreme value effects (Gazer, 2011),
while environmental variables were square-root transformed prior to analysis to ensure
variance homogeneity. Transformed datasets were analyzed using ANOVA, with Pearson
correlation coefficients calculated to quantify associations between environmental factors
and regeneration. Statistical analyses were performed in SPSS 22.0 (Chicago, IL, USA).

Structural equation modeling (SEM) is a robust multivariate technique for examining
hypothesized causal relationships among latent variables through analysis of direct and
indirect associations (Zhao et al., 2019). This method simulates multivariate interactions
using two or more structural equations (Gazer, 2011) and visualizes complex variable
relationships via intuitive network diagrams. SEM enables quantification of partial
contributions from correlated variables, distinction between direct and indirect effects,
identification of multiple influence pathways, and estimation of pathway strength
comparisons (Lv et al., 2023; Eisenhauer et al., 2015).

In this study, we implemented SEM using Amos 26 (IBM SPSS, USA) to assess the effects
of diverse environmental factors on six regeneration parameters: seedling density (SED),
seedling height (SEH), sapling density (SAD), sapling height (SAH), small tree density
(STD), and small tree height (STH). Path coefficients between factors were systematically
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analyzed. The initial model underwent iterative refinement until achieving validation
criteria: chi-square to degrees of freedom ratio (x?/DF < 3), goodness-of-fit index
(GFI > 0.90), comparative fit index (CFI > 0.90), root mean square error of approximation
(RMSEA < 0.08), and non-significant P-values (P > 0.05) (Zhu et al., 2022; Trivedi et al.,
2016). Final SEM diagrams were generated using Visio 2021 (Microsoft Corp., USA).

RESULTS

Distribution of Fagus hayatae at different elevations
We assessed the regeneration patterns of F. hayatae across ontogenetic stages (seedlings:
mean height 0.2 m; saplings: 1.14 m; small trees: 2.96 m) along an elevation ranges. The
census recorded 685 seedlings, 125 saplings, and 72 small trees, showing distinct elevational
zonation.

Low-elevation zone (<1,200 m): 132 seedlings, 34 saplings, 42 small trees. Mid-elevation
zone (1,201-1,800 m): 480 seedlings, 62 saplings, 10 small trees. High-elevation zone
(>1,801 m): 73 seedlings, 29 saplings, 20 small trees.

Regeneration correlation with environmental factors

The Pearson correlation analysis revealed significant associations between environmental
factors and F. hayatae developmental stages (Fig. 2). Seedling density demonstrated
strong negative correlations with litter thickness (—0.498, P < 0.01) and soil pH (—0.556,
P < 0.01). Sapling density showed a significant negative correlation with soil moisture
content (—0.376, P < 0.05). Small tree height exhibited positive correlations with available
potassium (0.300, P < 0.05) and litter thickness (0.411, P < 0.01). Notably, soil water
content was inversely associated with pH (r—0.369, P < 0.01).

Environmental factors for RDA analysis and SEM

Redundancy analysis (RDA) was conducted to quantify the relative contributions of
environmental factors to regeneration dynamics and evaluate variable associations within
multidimensional data structures. This analytical approach enabled identification of
optimal vegetation regeneration predictors through rigorous statistical frameworks. In the
ordination diagram, the cosine values between environmental vectors indicate pairwise
correlations, with this angular metric effectively projecting multivariate relationships
onto a reduced-dimensional space. The geometric projection graphically represents the
covariance structure between environmental variables and regeneration parameters. Cosine
values approximating +1 reflect strong positive alignment with ordination axes, values
approaching —1 indicate pronounced negative associations, and those near 0 demonstrate
statistically insignificant relationships.

The RDA revealed that habitat factors collectively accounted for 68.1% of the variance
across the first two ordination axes for F. hayatae density parameters (saplings, small trees,
and seedlings; Fig. 3A). Regarding height parameters, the first two axes explained 47.2% of
the cumulative variance (Fig. 3B). While inter-factor correlations showed concordance with
Fig. 2 findings, the diffuse variable associations in RDA constrained precise identification
of dominant drivers and their proportional impacts on density and height variations. To
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Figure 2 Correlation analysis of environmental factors and regeneration. A, altitudes; S, slope; CD,
canopy density; LT, litter thickness; SC, shrub cover; HC, herbaceous cover; APN, number of adult plants;
DBH, average diameter at breast height of mature plants; LI, light intensity; ST, soil temperature; SM,
soil moisture; AT, air temperature; AH, air humidity; PH; SWC, soil moisture content; SOM, soil organic
matter; TN, total nitrogen; AP, available phosphorus; AK, available potassium; CEC, cation exchange
capacity; UA, urease activity; CAT, catalase activity; SED, seedling density; SAD, saplings density; STD,
small tree density; SEH, seedling height; SAH, saplings height; STH, small tree height.

Full-size Gl DOI: 10.7717/peer;j.19761/fig-2

address this, we conducted Monte Carlo permutation tests to quantify environmental factor
significance, with results integrated into Fig. 3’s tabular summary. The contribution ranking
of habitat factors to density variation emerged as: pH > cation exchange capacity > soil
temperature. Key determinants of height development followed the hierarchy: litter
depth > air humidity > soil water content.

Based on correlation analysis results, structural equation models (SEMs) were
constructed by selecting environmental factors with high correlation coefficients and those
demonstrating contribution rates exceeding 10% through Monte Carlo permutation tests.
Environmental factors showing non-significant effects on regeneration were systematically
eliminated according to established model fit criteria. Through iterative refinements via
multiple modifications, seven environmental factors exhibiting the strongest associations
with regeneration were ultimately retained. Subsequently, three stratified SEMs (low-,
mid-, and high-elevation levels) were developed using elevation gradient as a covariate.

Low-elevation SEM (Fig. 4): litter thickness demonstrated the strongest negative direct
effect on seedling density (—0.80), followed by available potassium’s influence on sapling
density (—0.46) and diameter at breast height (DBH) on small tree height (—0.63). While
pH showed no direct effects on seedling density, it exhibited indirect positive effects
through covarying factors (total effect: +0.32). These results establish litter thickness,
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available potassium, and DBH as pivotal drivers of F. hayatae regeneration in low-elevation
habitats.

Mid-elevation SEM (Fig. 5): DBH displayed positive direct effects on sapling density
(+0.46), small tree height (+0.57), and small tree density (+0.79). Contrastingly, negative
direct effects emerged for pH on seedling density (—0.50), air temperature on small
tree density (—0.41), and soil moisture on sapling density (—0.49). Available potassium
manifested complex mediation pathways: while lacking direct effects on small tree density,
it exerted substantial indirect negative influence through DBH mediation (total effect:
—0.64), alongside indirect positive effects on seedling abundance (SAD) and small tree
height (STH).

High-elevation SEM (Fig. 5): Available potassium emerged as the strongest positive
predictor for sapling density (+0.70), followed by air temperature (+0.58) and litter
thickness (+0.53) impacts on STH. A notable indirect relationship was observed where pH
influenced small tree height exclusively through indirect pathways (total effect: +0.26),
underscoring the complex interaction networks governing high-elevation regeneration

dynamics.

DISCUSSION

This study elucidates the complex interactions between environmental factors and natural
regeneration dynamics across different developmental stages of F. hayatae along elevational
gradients, revealing stage- and elevation-specific regulatory mechanisms. Our structural
equation modeling (SEM) results highlight how key factors exert differential effects

on regeneration outcomes at varying developmental stages and elevations, providing
significant implications for conservation strategies.
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The transition from the seedling to sapling stage has been identified as a critical
developmental phase in tree ontogeny (Yarn et al., 2015). Our investigation quantified
this population dynamic through demographic censuses of 685 F. hayatae seedlings, 125
saplings, and 72 small trees. The observed progressive reduction in abundance across
successive life stages (seedling: sapling: small tree ratio = 685:125:72) provides quantitative
evidence supporting this recognized developmental bottleneck.

Factors affecting regeneration at low elevations

Excessively thick litter layers may inhibit seedling establishment through mechanisms
such as light interception (Wang ¢» Zhang, 2008), prevention of seed-soil contact (Willis
et al., 2021; Koorem, Price ¢ Moora, 2011), and release of autotoxic substances (Willis et
al., 2021; Pardos et al., 2007). In this study, the litter layer exhibited the strongest direct
negative effect on seedling density (—0.80) (Fig. 4), which aligns with previous findings
on the mechanical barrier effect of litter accumulation (Eckstein ¢~ Donath, 2005; Yu et
al., 2017). The negative effect of available potassium on sapling density (—0.46) (Fig. 4)
may stem from a mismatch between soil nutrient supply and regenerating individuals’
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demands. Specifically, when potassium released through litter decomposition fails to
meet sapling growth requirements, soil available potassium shows a negative correlation
with regeneration (Li et al., 2021; Zhang et al., 2011). In the low-elevation SEM (Fig. 4),
although pH exhibited no direct effect on seedling density, it showed an indirect positive
effect via the litter layer (0.42). Shen ¢ Zhao (2015) demonstrated that soil microorganisms
not only enhance nutrient uptake efficiency but also influence plants through nutrient
mobilization and transfer. Therefore, we hypothesize that this phenomenon may relate to
soil microbial activity, as elevated pH could stimulate proliferation of specific microbial
taxa, accelerating litter decomposition. This process would reduce litter thickness and
mitigate mechanical shading on seedlings (Eckstein ¢» Donath, 2005; Wang ¢» Zhang,
2008), thereby indirectly increasing seedling density. Similarly, the indirect negative
effect of available potassium on seedling density via the litter layer (—0.45) (Fig. 4) may
arise from antagonistic mechanisms: on the one hand, high available potassium may
enhance litter input by promoting mature tree growth (Zhang et al., 2011), intensifying
its physical obstruction on seedlings (Koorerm, Price & Moora, 2011); on the other hand,
potassium enrichment might inhibit microbial-driven litter decomposition (Li et al., 2021),
exacerbating the litter layer’s adverse effects. The SEM at low elevations revealed that air
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temperature had no direct effect on sapling density but demonstrated an indirect negative
effect via tree diameter at breast height (—0.42), highlighting a cascading interaction
between climatic factors and canopy structure. A plausible pathway is that relatively higher
air temperatures enhance mature tree growth, leading to increased trunk diameter and
canopy closure (Liu et al., 2020), which subsequently reduces understory light availability
(Balandier et al., 2007). Given that saplings require significantly more light resources than
seedlings (Wang et al., 2017; Zhao, Sun & Gao, 2023), canopy shading may suppress sapling
survival and establishment by limiting photosynthetic product accumulation, ultimately
manifesting as an indirect negative effect of temperature elevation on sapling density. This
finding parallels observations reported by (Kovdcs, Tinya ¢ Odor, 2017).

Factors affecting regeneration at mid elevations

As shown in the mid-elevation SEM: the negative effects at mid-elevations primarily
manifested as pH constraints on seedling density (—0.50) and soil moisture limitations
on sapling density (—0.49). This aligns with (Dyderski et al., 2018), who reported reduced
seedling survival under higher pH conditions, while we hypothesize that the inhibitory
effect of soil moisture on saplings may relate to root hypoxia. Studies indicate that Fagaceae
species require high light availability (Alfaro Reyna, Martinez-Vilalta ¢ Retana, 2019). In
our study, the positive effects of diameter at breast height (DBH) on sapling density (0.46),
small tree density (0.79), and small tree height (0.57) likely originate from canopy openness
regulating light conditions (Liu et al., 2020). Available potassium showed no direct effect
on sapling density but exerted an indirect negative effect (—0.53) through two pathways:
a negative effect via DBH (—0.66) and a positive effect via soil moisture (0.46). Similarly,
available potassium had no direct effect on small tree density but generated an indirect
negative effect (—0.64) through the same pathways: DBH (—0.66) and soil moisture (0.46).
Lietal. (2005) demonstrated that mother trees with larger DBH typically acquire more
soil water, light, and other resources to support seedling growth, thereby maintaining
dominance in forests. As available potassium negatively affects mature trees, this indirectly
reduces their support for saplings. Conversely, its positive effect on soil moisture may lead
to hypoxia-induced root rot under elevated moisture levels. We hypothesize that available
potassium suppresses the growth of saplings and small trees through these interactive
pathways, ultimately decreasing their densities.

Factors affecting regeneration at high elevations

The strong positive effect of available potassium on sapling density (0.70) at high elevations
(Fig. 6) corroborates the classical theory of nitrogen, phosphorus, and potassium as limiting
elements for forest regeneration (Harpole et al., 2011; Wang et al., 2022). The positive effect
of the litter layer on small tree height (0.53) (Fig. 6) may stem from its water and nutrient
retention functions (Wang et al., 2022). The facilitative effect of air temperature (0.58)
(Fig. 6) underscores the critical role of thermal conditions in high-elevation regeneration
(Zadworny et al., 2021). The indirect positive influence of pH on small tree height (0.26)
(Fig. 6) further emphasizes the pivotal role of microbially mediated nutrient cycling in
later growth stages (Shen ¢ Zhao, 2015).
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Conservation recommendations for Fagus hayatae

This study elucidates the complex interactions between altitudinal environmental
factors/drivers and natural regeneration dynamics of F. hayatae, revealing stage-specific
and elevation-specific regulatory mechanisms. Our structural equation modeling (SEM)
results highlight how key factors exert differential effects on regeneration outcomes across
developmental stages and altitudinal gradients, providing critical insights for conservation
strategies. To address key limiting factors for F. hayatae regeneration across altitudinal
ranges, differentiated management strategies are required: low elevation (1,670-1,700 m):
manually thin excessively thick litter layers to alleviate light interception and physical
barriers, coupled with soil pH adjustment to enhance microbial decomposition. This
accelerates litter degradation and mitigates inhibitory effects of available potassium
accumulation on saplings. Additionally, reduce canopy closure to minimize light
competition pressure on saplings. Mid-elevation (1,770-1,800 m): regulate canopy light
transmittance to balance soil moisture and prevent root hypoxia. Adjust soil pH to weakly
acidic ranges to improve seedling survival rates, while suppressing cascading negative
effects of available potassium on saplings and small trees mediated through mature tree
competition and soil moisture imbalance. High elevation (1,890-1,940 m): retain natural
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litter layers to strengthen water and nutrient retention capacities. Implement microclimate
interventions to mitigate low-temperature limitations, thereby enhancing thermal resource
utilization for small tree growth.

CONCLUSIONS

Understanding the environmental factors affecting the density and height of seedlings,
saplings, and small trees is essential for achieving the regeneration of F. hayatae. Based on
SEM analysis, our results indicate that the natural regeneration of F. hayatae (manifested
as the quantity and distribution of seedlings, saplings, and small trees) is significantly
influenced by distinctly different key factors across various elevation ranges, with overall
regeneration capacity being weak and distribution uneven. Specifically: in low-elevation
zones, litter (inhibiting seedling density), diameter at breast height (DBH) (inhibiting
small tree density), and available potassium (inhibiting sapling density) are the primary
factors constraining regeneration. In mid-elevation zones, DBH and available potassium
play dominant roles; DBH promotes sapling density, small tree density, and small tree
height to varying degrees, while available potassium inhibits these three metrics to varying
degrees. In high-elevation zones, available potassium, litter, and air temperature emerge as
the most critical factors influencing regeneration. Our findings may contribute to better
management for the regeneration and sustainability of F. hayatae populations within
Micangshan Nature Reserve.
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