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ABSTRACT

Background. Ischemic stroke (IS) is a major health concern in the Chinese population.
Previous studies have highlighted the role of NRF2 in IS. This study investigates
the association between NRF2 polymorphisms and IS susceptibility in a Chinese
population.

Methods. This retrospective study included Chinese patients diagnosed with IS
based on clinical symptoms, neurological examinations, and brain imaging findings
from computed tomography or magnetic resonance imaging. Age- and sex-matched
unrelated individuals with no family history of stroke, tumors, or genetic diseases
served as controls. Peripheral blood samples were collected to genotype seven single-
nucleotide polymorphisms (SNPs) in NRF2 (rs13005431, rs4893819, rs6721961,
1$35652124, rs6726395, rs2364723, rs2706110) using the SNaPshot method. Binary
logistic regression analysis was used to assess associations between these SNPs and
IS risk. NRF2 and reactive oxygen species (ROS) levels in peripheral blood were
measured. The relationship between rs35652124 and NRF2 expression was evaluated
using expression quantitative trait locus (eQTL) analysis.

Results. All seven NRF2 SNPs conformed to Hardy—Weinberg equilibrium. Six SNPs
(rs13005431, rs4893819, rs6721961, rs6726395, rs2364723, and rs2706110) showed no
significant differences in distribution between the case and control groups (p > 0.05).
However, the TC genotype of rs35652124 in the co-dominant model was significantly
associated with increased IS risk. The distribution of this genotype aligned with
trends observed in East Asia and the Chinese Han population but varied across other
global populations. The CCTTGGC haplotype was the most common in both groups.
Stratified analysis of rs35652124 showed no association with confounding factors such
as age, sex, hypertension, diabetes, or lipid levels. NRF2 and ROS levels were higher in
IS patients than in controls, but did not differ by rs35652124 genotype. Concurrently,
eQTL analysis indicated that rs35652124 did not affect NRF2 expression in peripheral
blood.

Conclusion. The NRF2 rs35652124 polymorphism is associated with IS susceptibility,
suggesting it may be a potential genetic risk factor for IS.
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INTRODUCTION

Cerebral stroke is a cerebrovascular disease influenced by multiple factors. The blockage
or rupture of blood vessels in the brain can cause a localized interruption of blood flow,
triggering a series of pathological damage processes. In China, cerebral stroke is the leading
cause of death and disability among adults, with the highest incidence rate worldwide
(Wang et al., 2022b). Among the different types of strokes, ischemic stroke (IS), which
results from intracranial vascular occlusion, is the most prevalent. The incidence of IS
in China has increased from 117 cases per 100,000 individuals in 2005 to 145 cases per
100,000 individuals in 2019, with a prevalence rate of 1,700 cases per 100,000 individuals in
the same year (Wang et al., 2022a). In Yunnan Province, the incidence of IS rose from 220
cases per 100,000 people in 1990 to 674 cases per 100,000 people in 2017. During the same
period, the disability-adjusted life-years attributed to IS increased from 770.7 to 815.4 per
100,000 individuals (Liu et al., 2023). These trends indicate a growing disease burden in
both Yunnan and China as a whole.

Several modifiable risk factors, including hypertension, smoking, diabetes, and
hyperlipidemia, contribute to IS. However, genetic factors are also recognized as significant
contributors to disease susceptibility. Single-nucleotide polymorphisms (SNPs) in the
genome influence an individual’s inherent risk of developing IS (Boehme, Esenwa ¢~ Elkind,
2017). With advancements in genomic technologies, the role of genetic factors in IS onset
and progression has gained increasing attention. Multiple studies have reported associations
between genetic polymorphisms and IS susceptibility (Almeida, 2013).

Nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulatory molecule that
protects cells against oxidative stress. It plays a vital role in maintaining redox homeostasis
and overall brain function. In response to oxidative stress, NRF2 becomes activated and
regulates over 250 downstream target genes involved in oxidative homeostasis. These
include heme oxygenase 1, NADPH quinone oxidoreductase 1, and catalase (Xu et al.,
2020). A previous report suggests that excessive reactive oxygen species (ROS) in IS leads
to NRF2 upregulation, and the activation of its downstream target genes helps counteract
oxidative damage, underscoring the neuroprotective role of NRF2 in IS (Farina et al.,
2021). Certain SNPs in NRF2 have been associated with disease susceptibility. For example,
the 617 C > A SNP has been linked to an increased risk of oxidant-induced acute lung
injury (Marzec et al., 2007). Additionally, patients with cholangiocarcinoma who carry the
NRF2 156726395 GG genotype have a longer median survival time (344 & 138 days, 95%
confidence interval (CI) [73-615] days) compared to those with the AA/AG genotype
(172 £ 37 days, 95% CI [100-244] days) (Khunluck et al., 2014). Recent studies have
also demonstrated associations between NRF2 SNPs and susceptibility to alcoholic liver
disease (ALD), chronic kidney disease (CKD), and cardiovascular disease (Adam et al.,
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2017; Jerotic et al., 2019; Nunes dos Santos et al., 2019). However, the relationship between
NRF2 polymorphism and IS risk in the Chinese population remains unexplored.

In this study, we investigated the correlation between NRF2 SNPs and IS susceptibility
in a Chinese population from Yunnan. We further analyzed the impact of these SNPs
on NRF2 expression and examined their effects on ROS levels in the peripheral blood of
patients with IS.

MATERIALS & METHODS

Study design

This study employed a retrospective design and was approved by the Medical
Ethics Committee of The First Affiliated Hospital of Dali University (Approval no.
DFY20220415001). All participants were informed of the study’s purpose and provided
verbal consent.

Study participants

Using the Power/Sample Size calculation tool (http:/iwww.stat.ubc.ca/~rollin/ktats/ssize/
caco.html), the statistical power was set at 80% with a two-sided alpha of 0.05. Based
on the minor allele frequencies (MAF) and relative risk values of the loci in the Asian
population, the minimum required sample size for both the case and control group
was determined to be 135 participants each. Between March 2022 and October 2022,
we recruited 151 patients diagnosed with IS who met the study criteria, as well as 141
healthy individuals who underwent physical examination at the First Affiliated Hospital
of Dali University during the same period. All participants were unrelated. The inclusion
criteria for the IS group consisted of patients diagnosed by a neurologist based on clinical
symptoms, neurological function examination, and brain imaging (computed tomography
or magnetic resonance imaging) in accordance with the 2018 Chinese Guidelines for the
Diagnosis and Treatment of Acute Ischemic Stroke (Chinese Society of Neurology Chinese
Stroke Society, 2018). The control group consisted of age- and gender-matched individuals
(age and sex distributions were analyzed based on preliminary experimental data) with no
history of cardiovascular or cerebrovascular diseases, autoimmune disorders, malignant
tumors, immunologic diseases, neurological deficits, or severe hepatic or renal dysfunction.

SNP selection and genotyping

Reference information for NRF2 SNPs was obtained from dbSNP (https:/iwww.ncbi.
nlm.nih.govinp/). The selection criteria for SNPs included the following: presence

in Homo sapiens, MAF > 5%, prior publication in scientific literature, inclusion in

the 1,000 Genomes Project. Based on these criteria, seven SNPs were selected for
analysis: rs13005431, rs4893819, rs6721961, rs35652124, rs6726395, 152364723, and
rs2706110. Peripheral blood samples (five mL) were collected from each participant in
ethylenediaminetetraacetic acid-containing test tubes and stored at —80 °C. Genomic DNA
was extracted using a blood genomic DNA extraction kit (Tiangen Biochemical Technology
Co. Ltd., Beijing, China). DNA sample quality and concentration were determined
using a NanoPhotometer N60 Touch microspectrophotometer (IMPLEN, Munich,
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Germany). Genotyping of the seven SNPs was performed using the SNaPshot method
on an ABI 3730XL sequencer (Applied Biosystems, Waltham, MA, USA). Experimental
data management and analysis were performed using Peak Scanner software (v 1.0;
https:/www.thermofisher.com/order/catalog/product/4381867).

Primer design and synthesis

Primers for the seven SNPs in NRF2, including polymerase chain reaction primers
and unique base extension primers, were designed using Oligo (version 7.37; https:
[www.oligo.net/). The primers were synthesized by General Biology Co., Ltd. (Anhui,
China). The sequence of the primers used are listed in Tables 1 and 2.

Enzyme-linked immunosorbent assay (ELISA)

The levels of NRF2 and ROS in human peripheral blood were measured using ELISA with
the double-antibody sandwich method. The assay kits were obtained from Shanghai Keshun
Biotechnology Co., Ltd. (Shanghai, China) and used according to the manufacturer’s
protocol. Absorbance was measured at 450 nm using an Infinite 200 microplate
reader (Tecan, Minnedorf, Switzerland). The absorbance values were converted into
corresponding concentrations based on the standard curve. The intensity of the developed
color was directly proportional to the concentration of the target analyte.

Bioinformatic analysis

The tissue-specific expression of NRF2 and expression quantitative trait locus (eQTL)
analysis were performed using GTEx (http:/iwww.gtexportal.org/). The global distribution
characteristics of the selected SNPs were analyzed using Ensembl (http:/asia.ensembl.org/
index.html). Haplotype analysis of the seven SNPs was conducted using online haplotyping
analysis software (http:/analysis.bio-x.cn/myAnalysis.php) (Shi & He, 2005).

Statistical analyses

All statistical analyses were performed using SPSS software (version 22.0; IBM SPSS Inc.,
Armonk, NY, USA). Normality testing was conducted for all quantitative data. If the data
followed a normal distribution with equal variance, Student’s t-test was applied; otherwise,
the Mann—Whitney U rank-sum test was used. Ordinal data were analyzed using the
Pearson x? test. The Hardy—Weinberg equilibrium (HWE) test was performed to assess
the genetic balance of the study population. The association between SNPs and IS risk
was evaluated using binary logistic regression, with odds ratios (ORs) and 95% Cls. The
analysis was adjusted for potential confounders, including age, sex, and diabetes mellitus.

RESULTS

Baseline data of the participants

The clinical characteristics of the case-control study participants are presented in Table 3.
No significant differences were observed between the IS and control groups in terms of
age, sex, height, weight, triglycerides, low-density lipoprotein, or apolipoprotein B levels.
However, systolic blood pressure, diastolic blood pressure, and fasting blood glucose levels
were significantly higher in the IS group than in the control group. In contrast, the control
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Table 1 Primer information for PCR amplification.

SNPs Forward primer Reverse primer

rs13005431 5'-GGAACCAGCAGG 5'-GTAGATTAGTACC
AGAAGAACA-3' TTCAATGTC-3

rs4893819 5'-TTTGACACTCCCA 5'-TATTGCTCCCCTCC
GGATTTATG-3' CTTTGA-3'

1s6721961 5'-CCTTGCCCTGCTT 5-CGCTTTGGTGGGAA
TTATCTCA-3 GAGGT-3'

rs35652124 5'-CCTTGCCCTGCTT 5-CGCTTTGGTGGGAA
TTATCTCA-3 GAGGT-3'

1s6726395 5'-GTCAGTGTCAATC 5'-GAGAGATACTTTTC
ATGCCAAG-3 ACGTGCC-3

rs2364723 5'-CTCTCCTAACCTTT 5-TTTCCTCTGTCCTGA
CCTAACC-3' CTGAAG-3'

rs2706110 5'-CCCCTCAAAAACAG 5'-GACCAATTCATACGA
GAACTTG-3' GGGAAC-3'

Notes.

PCR, polymerase chain reaction; SNP, single-nucleotide polymorphism.

Table 2 Primer information for SNaPshot extension.

SNPs

Primer for extension

Extension direction

rs13005431
rs4893819
156721961

rs35652124
1s6726395

rs2364723

rs2706110

5-TTTTTTTAGGGGGCCCACTGTTAAGGC-3'
5-ATTGTCTACCTTCTCTGATGTC-3’

5 -TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TTTTTTGCCTAGGGGAGATGTGGACAGC-3'

5'-TTCGCAGTCACCCTGAACGCCC-3'
5-TTTTTTTTTTAATTATTCCATCCTACC
CAAGC-3'
5-TTTTTTTTTTTTTTTTTTTITITTITTITITC
CCAGGCTTGAGGAACAGTTAA-3
5-TTTTTTTTTTTTTTTTTTATTAGTCATGG
CATAGTTGAGA-3'

R
R
F

Notes.

F, forward; SNP, single-nucleotide polymorphism; R, reverse.

group exhibited higher total cholesterol, apolipoprotein A1, and high-density lipoprotein

cholesterol levels.

NRF2 SNPs and IS risk
Seven SNPs (rs13005431 (C/T), rs4893819 (C/T), rs6721961 (G/T), rs35652124 (T/C),
1s6726395 (A/G), rs2364723 (C/G), and rs2706110 (C/T)) were in HWE and demonstrated
good population representativeness. The genotype distribution and allele frequencies

of these SNPs in the two groups are shown in Table S1. No significant differences were
observed in the genotype and allele frequencies of NRF2 rs13005431, rs4893819, rs6721961,
1$6726395, 152364723, and rs2706110 between the case and control groups (all p > 0.05).
However, 1535652124 in NRF2 was associated with IS susceptibility. In the co-dominant

Wang et al. (2025), PeerdJ, DOI 10.7717/peerj.19742

5/18


https://peerj.com
https://www.ncbi.nlm.nih.gov/snp/rs13005431
https://www.ncbi.nlm.nih.gov/snp/rs4893819
https://www.ncbi.nlm.nih.gov/snp/rs6721961
https://www.ncbi.nlm.nih.gov/snp/rs35652124
https://www.ncbi.nlm.nih.gov/snp/rs6726395
https://www.ncbi.nlm.nih.gov/snp/rs2364723
https://www.ncbi.nlm.nih.gov/snp/rs2706110
https://www.ncbi.nlm.nih.gov/snp/rs13005431
https://www.ncbi.nlm.nih.gov/snp/rs4893819
https://www.ncbi.nlm.nih.gov/snp/rs6721961
https://www.ncbi.nlm.nih.gov/snp/rs35652124
https://www.ncbi.nlm.nih.gov/snp/rs6726395
https://www.ncbi.nlm.nih.gov/snp/rs2364723
https://www.ncbi.nlm.nih.gov/snp/rs2706110
http://www.ncbi.nlm.nih.gov/snp/?term=rs13005431
http://www.ncbi.nlm.nih.gov/snp/?term=rs4893819
http://www.ncbi.nlm.nih.gov/snp/?term=rs6721961
http://www.ncbi.nlm.nih.gov/snp/?term=rs35652124
http://www.ncbi.nlm.nih.gov/snp/?term=rs6726395
http://www.ncbi.nlm.nih.gov/snp/?term=rs2364723
http://www.ncbi.nlm.nih.gov/snp/?term=rs2706110
http://dx.doi.org/10.7717/peerj.19742#supp-3
http://www.ncbi.nlm.nih.gov/snp/?term=rs13005431
http://www.ncbi.nlm.nih.gov/snp/?term=rs4893819
http://www.ncbi.nlm.nih.gov/snp/?term=rs6721961
http://www.ncbi.nlm.nih.gov/snp/?term=rs6726395
http://www.ncbi.nlm.nih.gov/snp/?term=rs2364723
http://www.ncbi.nlm.nih.gov/snp/?term=rs2706110
http://www.ncbi.nlm.nih.gov/snp/?term=rs35652124
http://dx.doi.org/10.7717/peerj.19742

Peer

Table 3 Baseline data of study participants.

Characteristic Control group IS group p-value
(n=141) (n=159)
Age (years) 60.000 63.000 0.922
[56.000, 68.000] [53.000, 71.000]
Sex (male/female) 77164 101/58 0.117
Height (m) 1.626 £ 0.086 1.644 £ 0.085 0.103
Weight (kg) 64.442 £ 9.867 64.182 £ 12.546 0.852
SBP (mmHg) 133.167 + 19.556 140.365 £ 23.208 0.007
DBP (mmHg) 79.833 £ 11.042 84.522 £ 14.382 0.002
FBG (mmol/L) 5.863 + 1.929 6.562 + 3.601 0.035
TCH (mmol/L) 5.634 £ 3.543 4.571 +1.383 <0.001
TG (mmol/L) 2.089 £ 2.262 1.934 £1.725 0.507
HDL-C (mmol/L) 1.445 £+ 0.418 1.150 £ 0.835 <0.001
LDL-C (mmol/L) 2.574 £0.765 2.411 £ 0.927 0.105
Apo-Al (g/L) 1.274 £+ 0.238 1.046 £ 0.775 0.001
Apo-B (g/L) 0.806 £ 0.197 0.797 £ 0.278 0.749
Notes.

Apo-Al, apolipoprotein Al; ApoB, apolipoprotein B; DBP, diastolic blood pressure; FBG, fasting blood glucose; HDL-C,
high density lipoprotein cholesterol; IS, ischemic stroke; LDL-C, low-density lipoprotein cholesterol; TCH, total choles-
terol; TG, triglyceride; SBP, systolic blood pressure.

Bold: p < 0.05.

Table 4 Haplotype analysis of NRF2 polymorphism.

Haplotypes Control group IS group Chi? OR (95% CI) p-value
(N, %) (N, %)
CCTTGGC 117 (41.6%) 156 (49.1%) 4.372 1.433 (1.022-2.008) 0.037
TCTTAGT 44 (15.6%) 43 (13.4%) 0.473 0.851 (0.538-1.348) 0.492
CCTTGGC 28 (10.0%) 25 (7.7%) 0.882 0.762 (0.431-1.346) 0.348
CTGTGGC 22 (7.7%) 18 (5.6%) 2.422 0.722 (0.377-1.384) 0.325
TCTTAGC 12 (4.4%) 23 (7.3%) 0.967 1.749 (0.858-3.563) 0.120
CTGCGGC 14 (5.0%) 15 (4.6%) 0.037 0.930 (0.439-1.966) 0.848
CCTTGGC 11 (4.0%) 8 (2.5%) 0.957 0.634 (0.253-1.591) 0.328
TTGCACC 9 (3.3%) 1 (0.3%) 9.647 0.002 (0.000-0.030) 0.002
Notes.
CI, confidence interval; IS, ischemic stroke; OR, odds ratio.
Bold: p < 0.05.

model, the TC genotype (TC vs. TT: OR = 1.869, 95% CI [.007-3.469], p = 0.048) increased
the risk of IS.

Haplotype analysis

Haplotype analysis identified eight haplotypes with distribution frequencies > 3% (Table 4).
CCTTGGC was the most frequent haplotype, with a prevalence of 41.6% in the control
group and 49.1% in the case group. This haplotype was found to be a risk factor for
IS, increasing disease susceptibility by 43.3% (p = 0.037). Conversely, the TTGCACC
haplotype may serve as a protective factor against IS.
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Table 5 Stratified analysis of rs35652124 in clinical features of patients with ischemic stroke.

rs35652124 Classification OR (95% CI) p-value
N, % N, %
Age (years) <65 >65
TT 15 (18.3%) 13 (16.9%) Ref
TC 35 (42.7%) 43 (42.7%) 1.418 (0.596-3.376) 0.430
cC 32 (39.0%) 21 (27.3%) 0.757 (0.300-1.908) 0.555
Sex Female Male
TT 9 (15.5%) 19 (18.8%) Ref
TC 29 (50.0%) 49 (48.5%) 0.800 (0.320-2.001) 0.634
cC 20 (34.5%) 33 (32.7%) 0.782 (0.297-2.058) 0.618
Hypertension No Yes
TT 13 (17.6%) 15 (17.6%) Ref
TC 39 (52.7%) 39 (45.9%) 0.867 (0.365-2.059) 0.746
cC 22 (29.7%) 31 (36.5%) 1.221 (0.486-3.071) 0.671
Diabetes No Yes
TT 20 (16.9%) 8 (19.5%) Ref
TC 60 (50.8%) 18 (43.9%) 0.750 (0.283-1.987) 0.563
CC 38 (32.2%) 15 (36.6%) 0.987 (0.358-2.722) 0.980
Notes.

CI, confidence interval; OR, odds ratio; Ref, reference.

Stratified analysis of rs35652124 sites and clinical characteristics of
patients with IS

Based on the latest edition of the China Stroke Prevention and Treatment Report
2020 (Wang et al., 2022a), we conducted a stratified analysis of potential confounding
factors, including sex, age, history of hypertension, and diabetes mellitus, to assess their
influence on the association between SNP sites and IS using a co-dominant model. No
significant difference in the distribution frequency of the rs35652124 polymorphism were
observed across stratified groups (p > 0.05). Thus, no interaction between the rs35652124
polymorphism and age, sex, hypertension, or diabetes mellitus in the co-dominant model
(Table 5).

Dyslipidemia is a major risk factor for stroke. Thus, we investigated the association
between rs35652124 and lipid levels in the peripheral blood of patients with IS. The
patients with IS were divided into two groups: wild-type (TT genotype) and mutant-type
(TC/CC genotype). Next, we compared the levels of various lipid indices between these two
groups. As shown in Table 6, lipid levels did not significantly differ between the wild-type
and mutant-type rs35652124 groups, indicating no correlation between rs35652124 and
lipid levels (p > 0.05).

Distribution analysis of rs35652124 across different regions and
populations

Analyzing the distribution of rs35652124 across different regions and populations is
valuable for understanding its influence on the incidence of IS in the Yunnan population.
Globally, the frequencies of the rs35652124 T and C alleles are 62.44% and 37.56%,
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Table 6 Analysis of serum lipid levels in patients with rs65652124 and patients with ischemic stroke.

Indicator

rs35652124 t p-value
TT TC/CC
TCH 5.04 £ 1.91 447 £1.23 1.527 0.136
TG 2.78 £3.02 1.74 £ 1.24 1.778 0.086
HDL-C 1.08 £0.22 1.17 £ 0.92 —0.517 0.606
LDL-C 2.64+1.14 2.36 £0.87 1.473 0.143
Apo-Al 0.99 +£0.14 1.06 £ 0.86 —0.413 0.680
ApoB 0.87 £0.28 0.78 £0.28 1.491 0.138
Notes.

Apo-Al, apolipoprotein Al; ApoB, apolipoprotein B; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; TCH, total cholesterol; TG, triglyceride.
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Figure 1 Global distribution map of NRF2 rs35652124 alleles. AMR, American; EUR, European; AFR,
African; SAS, South Asian; EAS, East Asian.

Full-size Gl DOI: 10.7717/peer;j.19742/fig-1

respectively. In the East Asian population, the T and C allele frequencies are 44.84% and
55.16%, respectively. The allele distribution in our study population aligns with the trends
in East Asia. The distribution of this variant in other regions is shown in Fig. 1.

We also examined the distribution of the three rs35652124 genotypes across different
populations. As shown in Fig. 2, genotype distribution varies significantly among
populations. Table 7 indicates that the genotype distribution pattern in our study
population is consistent with that of the Chinese Han population. However, significant
differences were observed when compared with the Chinese Dai population in East Asia,
the Finnish and British populations in Europe, the Colombian population in the Americas,
and the Gambian and Yoruba populations in the Africa (p < 0.05).

Analysis of NRF2 genetic variation and NRF2 levels in peripheral blood
As illustrated in Fig. 3A, NRF2 levels in the peripheral blood plasma of patients with IS
(248.56 [191.63, 324.86] pg/mL) were significantly higher than those in the control group
(173.34 [145.99, 214.82] pg/mL) (p < 0.05). To further investigate whether rs35652124
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Figure 2 Distribution histogram of three genotypes of NRF2 rs35652124 in different populations.
BEB, Bengali in Bangladesh; CDX, Chinese Dai; CHB, Chinese Han in Beijing, China; CLM, Columbian;
FIN, Finnish; GBR, British; GWD, Gambian; ITU, Indian Telugu in the UK; JPT, Japanese in Tokyo; PEL,

Peruvian in Lima; Ref, reference;YRI, Yoruba.
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Table 7 Analysis of three genotypes of rs35652124 in different populations worldwide.

Region Population Frequency of genotyping (N, %) X2 p-value
TT TC CC
Yunnan 36 (25.5%) 54 (38.3%) 51 (36.2%) Ref
East CDX 12 (12.9%) 49 (52.7%) 32 (34.4%) 7.042 0.030
Asian CHB 30 (29.1%) 47 (45.6%) 26 (25.2%) 3.310 0.191
JPT 18 (17.3%) 44 (42.3%) 42 (40.4%) 2.357 0.308
South ITU 23 (22.5%) 52 (51.0%) 27 (26.5%) 4.134 0.127
Asian BEB 19 (22.1%) 37 (43.0%) 30 (34.9%) 0.583 0.747
European FIN 42 (42.4%) 45 (45.5%) 12 (12.1%) 18.644 <0.001
GBR 46 (50.5%) 37 (40.7%) 8 (8.8%) 26.174 <0.001
American CLM 25 (26.6%) 56 (59.6%) 13 (13.8%) 15.815 <0.001
PEL 24 (28.2%) 37 (43.5%) 24 (28.2%) 1.513 0.469
Aftican GWD 83 (73.5%) 27 (23.9%) 3(2.7%) 67.969 <0.001
YRI 68 (63.0%) 38 (35.2%) 2 (1.9%) 54.515 <0.001
Notes.

BEB, Bengali in Bangladesh; CDX, Chinese Dai; CHB, Chinese Han in Beijing, China; CLM, Columbian; FIN, Finnish;
GBR, British; GWD, Gambian; ITU, Indian Telugu in the UK; JPT, Japanese in Tokyo; PEL, Peruvian in Lima; Ref, ref-
erence; YRI, Yoruba.
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Figure 3 NRF2 content in the peripheral blood. (A) Comparison of NRF2 content in the peripheral
blood between the control and IS groups. (B) The content of NRF2 in peripheral blood of patients with
ischemic stroke was compared according to the wild-type (TT genotype) and mutant-type (TC and CC
genotype) of rs35652124. (C) The content of NRF2 in peripheral blood of patients with IS was compared
according to the three genotypes (TT , TC and CC) of rs35652124.
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polymorphisms influence NRF2 expression in patients with IS, we compared NRF2 levels
among different genotypes at this locus. As shown in Figs. 3B—-3C, neither homozygous
nor heterozygous genotypes of rs35652124 significantly affected the NRF2 levels in the
peripheral blood of patients with IS. These findings suggest that while genetic variation
at rs35652124 is associated with IS susceptibility, it does not significantly modulate NRF2
expression levels in patients with IS.

eQTL

An eQTL is a genetic variant that influences gene expression and plays a role in biological
functions. We analyzed the tissue-specific expression of rs35652124 using the GTEx
database. As shown in Fig. 4, rs35652124 affects NRF2 expression in the bladder, tibial
nerve, thyroid, and several other tissues. However, no significant correlation was observed
between rs35652124 and NRF2 expression in blood or brain tissues.

Analysis of NRF2 genetic variation and ROS levels in peripheral blood
ROS levels in peripheral blood plasma was measured using ELISA. As shown in Fig. 5A,
patients with IS had significantly higher ROS levels (160.3 [141.23, 194.61] pg/mL) than
the control group (141.68 [100.43, 185.19] pg/mL) (p < 0.05). However, subgroup analysis
based on rs35652124 genotype revealed no significant association between rs35652124
polymorphic variations and ROS expression levels (Figs. 5B—5C).

DISCUSSION

Several studies have demonstrated that NRE2 plays a crucial neuroprotective role in the
development and progression of various diseases (Liu, Locascio ¢ Doré, 2019). Endogenous
activation of NRF2 occurs following cerebral ischemia and helps prevent brain injury. Loss
of NRF2 in mice (NRF27/~) exacerbates the progression of IS-related brain injury, with
NRF2-deficient mice exhibiting more severe cerebral infarctions on day 3 and poorer
sensorimotor function on day 28 in a permanent ischemic model (Jerotic et al., 2019). The
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of 1535652124, (C) The content of ROS in peripheral blood of patients with IS was compared according to
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absence of NRF2 reduces the body’s and cells’ antioxidant capacity and downregulates

the downstream protective proteins, impairing the response to ischemia. In addition,

aggravation of IS triggers inflammatory activation, further worsening ischemic injury and

creating a vicious cycle. Previous research has indicated that polymorphisms in NRF2 can

influence its affinity, expression, and activity (Song et al., 2016). However, its relationship
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with IS development among East Asian population has not been previously reported. This
study revealed that NRF2 polymorphism is associated with IS risk, with the TC genotype of
1$35652124 in the co-dominant model potentially increasing IS susceptibility in a Chinese
population from Yunnan.

Among conventional risk factors, hypertension is the most prevalent modifiable risk
factor for IS, with up to 84% of patients with acute IS having hypertension (McManus ¢
Liebeskind, 2016). Hypertension has also been identified as a key contributor to stroke-
related mortality (Pistoia et al., 2016). Chronic hypertension remains a persistent long-
term risk factor for acute IS. Elevated fasting blood glucose level indicate abnormal glucose
metabolism and diabetes severity, increasing IS risk. Oxidative stress and mitochondrial
dysfunction are critical mechanisms in hyperglycemia-induced ischemic brain injury.
Under hyperglycemic conditions, excessive mitochondrial ROS production, impaired
mitochondrial energy generation, and the release of apoptotic factors contribute to
endothelial cell apoptosis and dysfunction, thereby exacerbating disease risk (Zhang, Yan
¢ Shi, 2013). Furthermore, hyperlipidemia accelerates pathophysiological processes such
as oxidative stress in endothelial cells, inflammation, and lipid peroxidation, all of which
facilitate atherosclerosis development (Alkahtani, 2022). Hyperlipidemia also elevates
IS risk by promoting conditions such as hypertension, insulin resistance, obesity, and
cardiovascular and cerebrovascular diseases (Kloska et al., 2020). However, in this study,
the observed variations in allele and genotype distribution of rs35652124 across different
regions and populations may be attributed to genetic heterogeneity influenced by regional,
environmental, ethnic, and lifestyle differences. Stratified analysis of rs35652124 revealed
no significant association between its genotype and confounding factors such as age, sex,
hypertension, diabetes, and lipid levels. These findings suggest that the association between
1s35652124 and IS risk may not be significantly influenced by interactions with these
factors.

Their pilot findings suggest that in children with ASD (autism spectrum disorder) the
NEF2L2 rs35652124 polymorphism impacts adaptive responses that may potentially link
to ASD severity, and genotype 1535652124 CC can be protective with respect to oxidative
stress characteristic of the pathogenesis of autism (Porokhovnik et al., 2023). Sorour et al.
(2021) reported that carriers of the T allele of rs35652124 were 3.329 times more likely
to develop vitiligo than carriers of the C allele. In the PRIME study, rs35652124 was
associated with aging-related phenotypes, including adverse drug reactions, clinical frailty
scores, and multiple diseases (Scutt ef al., 2020). Moreover, genetic variation at rs35652124
has been linked to the inflammatory characteristics of the liver and the development of
cirrhosis in ALD (Nunes dos Santos et al., 2019). Tt is worth noting that our study found
that the TC genotype in the co-dominant model may be a risk factor for IS, correlating with
susceptibility to the disease. This heterozygous mutation has an impact on the occurrence
of the disease, which may be caused by dose-dependent reversal. And the Epistasis caused
by the possible interaction of homozygous mutations with variations of other genes makes
the CC genotype not associated with the occurrence of IS.

Notably, a previous study using in vitro dual-luciferase reporter assay revealed that
the rs35652124-C allele reduced NRF2 promoter activity and expression in human
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microvascular endothelial cells (Marczak et al., 2012). However, the rs35652124 T > C
variant is located in the core sequence of the putative binding site of transcription factor-
specific protein 1 (SP1). The T > C change may enhance SP1 binding to the NRF2 promoter
region, thereby increasing its activity and upregulating NRF2 expression. To investigate
the mechanism by which NRF2 rs35652124 influences susceptibility to IS, we examined
whether this variant was associated with altered plasma NRF?2 levels in patients with IS. Our
results showed that NRF2 expression in peripheral blood was significantly higher in the
IS group than in the control group. However, no significant differences in NRF2 content
were observed among the three co-dominant genotypes of rs35652124. Further analysis
using eQTL data confirmed that rs35652124 was not associated with plasma NREF2 levels.
Notably, the potential effect of rs35652124 genotypes on intracellular NRF2 expression
remains unverified due to the absence of cell-based experimental evidence in this study.

Previous studies have demonstrated that increased ROS levels in experimental IS
models lead to endogenous NRF2 activation, with significantly elevated NRF2 expression
in ischemic infarction areas (Farina et al., 2021). We, therefore, analyzed the relationship
between rs35652124 and ROS levels in peripheral blood. The results indicated no significant
differences in ROS content among the three co-dominant genotypes of rs35652124. In
IS, elevated ROS levels triggers NRF2 activation. Since blood samples in this study were
collected during the early stage of IS, any enhancement in antioxidant capacity due to NRF2
activation may not have been evident. This finding suggests that a single genetic variation at
1s35652124 does not directly alter ROS levels in the peripheral blood of patients with early
IS. However, ROS content in the peripheral blood of the IS group was significantly higher
than in the control group, likely due to cerebral ischemia-induced ROS accumulation,
which activates endogenous oxidative stress and contributes to pathological damage.

Recent studies have also reported that specific NRF2 haplotypes are associated with
differences in promoter activity and the severity of chronic obstructive pulmonary
disease (Hua et al., 2010). In our study, the CCTTGGC haplotype of NRF2 (sequence:
rs13005431-rs4893819-r56721961-rs35652124-156726395-152364723-1r52706110) was
found to increase IS risk.

Unfortunately, the other six genetic loci analyzed in this study did not show significant
associations with IS occurrence. According to a study by Nunes dos Santos et al. (2019), the
154893819 locus in the NRF2 promoter region is not associated with ALD susceptibility and
has no effect on NRF2 expression or liver inflammatory activity. In addition, a genome-
wide association study by Maraganore et al. (2005) found no link between rs13005431
and susceptibility to Parkinson’s disease. In a study on ALD, rs6721961 had no specific
correlation with ALD occurrence, and had no effect on liver inflammation in patients
with ALD (Nunes dos Santos et al., 2019). The rs6726395 locus of NRF2 has been linked
to susceptibility to lung function impairment caused by smoking (Masuko et al., 2011).
Genetic variants of rs2364723 are significantly associated with a reduced risk of CKD
and may interact with rs35652124 to influence CKD risk (Gdmez-Garcia et al., 2022).
The TAMRISK study found that the TT genotype of rs2706110 increased the risk of
cerebrovascular diseases and suggested that insufficient NRF2 expression may contribute
to their development (Kunnas, Mdditti ¢ Nikkari, 2016).
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Thus, while NRF2 polymorphisms have different effects on various diseases, further
research is needed to determine their role in individual susceptibility to IS. A limitation of
our study is that no functional analysis was conducted to elucidate the mechanism by which
1s35652124 influences IS. Future studies should include dual-luciferase reporter assays to
address this gap. Furthermore, the existence of dose—effect deficiency is explored through
functional mechanism studies such as epigenetic regulation and protein interactions.
Moreover, our study was limited to a single population. We plan to expand our research
to multiregional and multiethnic populations to validate our findings and further explore
genetic risk factors for IS.

CONCLUSIONS

The polymorphic locus rs35652124 in NRF2 was associated with susceptibility to IS in

a Chinese population, with the TC genotype in the co-dominant model identified as a
risk factor. However, the rs35652124 variant did not influence peripheral blood NRF2
levels or affect IS risk by altering ROS levels, suggesting that its role in IS susceptibility
may not be mediated through oxidative stress. In addition, the CCTTGGC haplotype was
identified as a potential risk factor for IS. While our findings highlight a genetic association
between NRF2 polymorphisms and IS, further functional studies are needed to elucidate

the underlying mechanisms.
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