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ABSTRACT

Marine sponges are known for their rich variety of secondary metabolites, many of
which show potential for pharmaceutical applications. In this study, three deep-sea
sponge species—Stelletta fibrosa, Dactylospongia elegans, and Haliclona manglaris—
were identified using DNA barcoding, and their ethanolic extracts were tested for
antibacterial activity. The extracts were evaluated against Gram-positive (e.g., Bacillus
pumilus, Staphylococcus aureus, Staphylococcus epidermidis, and methicillin-resistant
Staphylococcus aureus, MRSA) and Gram-negative bacteria (e.g., Escherichia coli and
Klebsiella aerogenes) using the agar well diffusion method. The minimum inhibitory
concentration (MIC) and minimum bactericidal concentration (MBC) were also
determined. Among the extracts, D. elegans exhibited the most potent antibacterial
activity, with inhibition zones ranging from six to 21 mm against gram-positive bacteria
and low MIC/MBC values from 0.25 to three mg/ml. Liquid chromatography-mass
spectrometry (LC-MS/MS) analysis of D. elegans revealed the presence of bioactive
compounds such as gallic acid, caffeic acid, bolinaquinone, dactyloquinone, and
others, which are known for their antimicrobial properties. These findings suggest that
D. elegans has promising antibacterial properties that could be valuable in combating
antimicrobial resistance.

Subjects Ecology, Marine Biology, Microbiology, Molecular Biology, Pharmacology

Keywords Deep marine sponges, Gulf of Aqaba, Bioactive compounds, Antimicrobial resistance
(AMR), Marine natural products, DNA barcoding, Antibacterial activity

INTRODUCTION

One of the major concerns for human health today is antimicrobial resistance (AMR)
(Naser et al., 2024). Human activity is the main factor driving its accelerated appearance
and spread, especially the improper and excessive use of antibiotics (Lakshmanan et al.,
2023) for treating, preventing, or managing human infections. The situation has escalated
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to a critical level as minor and severe infections become progressively more difficult to cure
(Murray et al., 2022). Many of the currently available drugs have not been able to overcome
microbial resistance and combat newly emerging diseases (Al-Zereini et al., 2023). AMR
is projected to cause 10 million deaths each year by 2050. The declining discovery of new
antibiotics and limited pharmaceutical investment exacerbate this worldwide threat (Tang,
Millar & Moore, 2023). Without urgent innovation, resistant infections will surpass current
treatments (Theuretzbacher et al., 2020).

Natural products, which offer a wide range of bioactive compounds obtained from
various natural sources, have played a significant role in the field of drug discovery. These
compounds have potential pharmacological characteristics that make them attractive
candidates for further investigation (Thomiford et al., 2018). Scientists have identified more
than 30,000 natural products derived from marine organisms (Lindequist, 2016). Several
statistical analyses conducted on marine natural products indicate that sponges are highly
prolific in terms of producing isolated biologically active compounds (Hu et al., 2015).

The Red Sea is recognized for its deep waters, which mark it as a hotspot for biodiversity
and endemic species (Wooster et al., 2019). The Gulf of Agaba, which is located in the
northeastern part of the Red Sea, is considered to be a deep, narrow, and somewhat
isolated water body (Al-Taani et al., 2020). A significant portion of the Gulf falls within the
deep-sea category, which describes marine habitats deeper than 200 m (Moore ¢ Squires,
2016) which makes the Gulf different from other similar deep-sea regions. The Gulf reveals
an unusual thermal profile, which keeps the water temperatures high even at its deepest
points. The high amount of sunlight, along with little circulation of water from the deeper
regions, contributes to the warm temperatures. This region also helps in supporting a wide
variety of marine life to flourish (Sengupta, Gildor ¢~ Ashkenazy, 2024).

Sponges are aquatic invertebrates, belong to the phylum Porifera. Sponges in the
ocean are soft-bodied, mostly sedentary animals with a complex mesh of canals and
chambers. This structure enables them to pump and filter immense amounts of water,
often rich and diverse in bacterial life. These bacteria serve different purposes, including
organic matter decomposition, essential nutrient formation, and providing the sponge
with protection against harmful bacteria and diseases (Karleskint, Richard ¢» Small, 2013).
However, sponges are a source of novel secondary metabolites with intriguing chemical
structures, with different biological activities, such as anticancer and antibacterial activities
(Hong et al., 2022).

According to previous studies done in the Gulf of Aqaba, several shallow-water sponge
species have significant antibacterial properties. For instance, Grayella cyathophora’s
ethanolic crude extract showed strong antibacterial activity, especially against Pseudomonas
aeruginosa (El-Damhougy et al., 2017). Furthermore, the distinct conditions of the deep
sea, such as its high pressure, low temperature, and lack of light, drive the production of
even more unique bioactive compounds, which would support the scientific interest in
studying deep-sea sponges for possible biological uses (Back et al., 2021; Skropeta, 2008;
Steffen et al., 2022).

This study focuses on identifying three marine sponges collected from the deepest depths
of the Jordanian Gulf of Aqaba, a relatively unexplored environment. By investigating the
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ethanolic extracts of these sponges, the research aims to evaluate their antibacterial potential
and uncover the chemical composition of the most active one. The novelty of this work
lies in exploring deep-sea sponges from this distinctive habitat, which may have unique
bioactive compounds with significant antibacterial potential.

MATERIALS & METHODS

Sponge collection

Deep-sea sponge specimens were collected in July 2022 from the Jordanian Gulf of
Aqaba using manned submersibles equipped with robotic arms during the OceanXplorer
expedition under permit number (9,795), issued by Aqaba special economic zone authority.
Ecological parameters were recorded at each collection site. The samples included Sponge 1,
collected at a depth of 260 m (temperature: 21.17 °C, salinity: 40.7 PSU, dissolved oxygen:
5.96 mg/L); Sponge 2, collected at 290 m (temperature: 21.1 °C, salinity: 40.7 PSU, dissolved
oxygen: 5.92 mg/L); and Sponge 3, collected at 140 m (temperature: 22.5 °C, salinity: 40.66
PSU, dissolved oxygen: 6.21 mg/L). All samples were preserved in 70% ethanol at —4 °C and
placed in the Laboratory for Molecular and Microbial Ecology (LaMME), The University
of Jordan, Amman. Figure 1 illustrates the location of the sample collection, with an image
of the sample.

Identification of sponge samples
To determine the species of sponge, 25 mg of sponge tissue was divided into tiny fragments.
The DNeasy Blood and Tissue Kit from Qiagen (Manchester, UK) was then used to extract
the DNA from sponge tissue (Harper et al., 2023). The 28S ribosomal RNA gene served as
the molecular marker (Yang et al., 2017), with the primers listed in Table 1. This marker is
commonly employed in sponge barcoding for species identification ( Timmers et al., 2022).
Gene amplification was performed using the polymerase chain reaction (PCR), veriti™
96-Well Thermal Cycler (Applied Biosystems, Waltham, MA, USA) with the Enti-link PCR
master mix from ELK Biotechnology Co. (Wuhan, China). The PCR was conducted under
the following conditions: 3 min of initial denaturation at 94 °C, 35 cycles of denaturation
at 94 °C for 30 s, annealing at 56 °C (depending on the gene) for 30 s, 83 s of extension at
72 °C, and a final 10 min of extension at 72 °C. A 1% agarose gel from Cleaver Scientific
(Warwickshire, UK) was used to verify the PCR results, which were then examined using a
gel documentation system. After that, the PCR products were shipped to Macrogen, South
Korea, for sequencing. Finally, we aligned the acquired sequences with sponge species using
Molecular Evolutionary Genetics Analysis (MEGA) software by the Center for Evolutionary
Medicine and Informatics, Arizona State University, Tempe, AZ, USA. and the Basic Local
Alignment Search Tool (BLAST) database from the National Center for Biotechnology
Information (NCBI, Bethesda, MD, USA). A phylogenetic tree was constructed using the
neighbor-joining method and the aligned 28S rRNA sequences of closely related sponges
obtained from the GenBank database collections (Cristianawati et al., 2019).

Ethanolic extraction
After collecting the sponges, the specimens were immersed in ethanol/water solution (70%
v/v) and kept at —20 °C for storage. Ethanol was used to extract both hydrophilic and
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Figure 1 Gulf of Aqaba map and sponge image. Map of the Gulf of Aqaba showing the locations of sam-
ple collection and an image of the collected sample. The map was supplied by the OceanX vessel. Numbers
1-8 indicate the ship’s stations during the expedition.

Full-size Gl DOI: 10.7717/peerj.19735/fig-1

Table 1 Forward and reverse primer sequences for 28S ribosomal RNA amplification.

Primer Sequence Reference
28F63mod 5'-ACCCGCTGAAYTTAAGCATATHANTMA-3
(Forward) .

Timmers et al. (2022)
28R1072 5'-GCTATCCTGAGGGAAACTTCGG-3'
(Reverse)

hydrophobic components in optimum vyield (Bashari et al., 2019). The samples were then
blended and heated at 55-60 °C for 2 h while being soaked in ethanol, followed by dark
resting overnight. The samples were filtered afterward, and the concentrated rinse was
rotary evaporated; the paste extract was lyophilized to yield the powder.

Preparation of extract

To make the stock solution, 25 mg of extract powder was dissolved in one ml of dimethyl
sulfoxide (DMSO) from Scharlau (Barcelona, Spain) to reach a concentration of 25 mg/ml.
This liquid was stored in a Falcon tube after being vortexed and filtered with a 0.45 pm
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nylon syringe filter. After that, sterile distilled water was used to dilute the stock solution
to different concentrations (5, 10, 15, and 20 mg/mL).

Antimicrobial activity

To cover both Gram-positive and Gram-negative bacteria, six bacterial strains were
chosen. Among the Gram-positive bacteria were Bacillus pumilus (isolate), Staphylococcus
aureus American Type Culture Collection (ATCC 29213), and Staphylococcus epidermidis
(ATCC 51625). Among the Gram-negative bacteria were Escherichia coli (ATCC 25922)
and Klebsiella aerogenes (isolate). Methicillin-resistant Staphylococcus aureus (MRSA)
(ATCC 1026) is a multidrug-resistant bacterium (MDR) showing resistance to 3-lactams,
macrolides, fluoroquinolones, and often clindamycin (Chambers ¢» De Leo, 2009). It was
subjected to additional testing after the extract showed antibacterial efficacy against
Staphylococcus aureus.

The antibacterial activity of the three sponge extracts was assessed using the agar well
diffusion method. The Muller-Hinton broth (MHB) from Oxoid (Basingstoke, UK) was
first mixed with the bacterial strain, and it was then incubated overnight at 37 °C (Magaldi
et al., 2004). Following incubation, the density of the culture was modified to satisfy the
McFarland turbidity criteria of 0.5 (Salameh et al., 2024).

Using sterile cotton swabs, the test organisms were cultured on Muller-Hinton agar
plates, followed by a 10-minute drying period. The agar plates were then prepared
with eight mm-diameter wells made with a sterile cork borer. Following that, various
concentrations of the sponge extracts (5, 10, 15, and 20 mg/ml) were added to these wells
using micropipettes. To allow for pre-diffusion, the culture plates were set on the bench
for an hour before being incubated for 24 h at 37 °C (Ibrahim et al., 2022a; Ibrahim et al.,
2022b).

Following an 18-hour incubation period, the diameter of the inhibition zones (measured
in millimeters) around the wells was used to determine the antibacterial activity (Geetha ¢
Roy, 2013). For all microorganisms, 10 ug gentamycin (Yassine, Ammar ¢» Shabbar, 2013)
was utilized as the positive control, and MRSA-specific 30 pg vancomycin (Hannan et al.,
2008) was used. Additionally, 80% DMSO was used as the negative control, which was
the highest solvent concentration utilized in the extract dilutions. This ensured that any
antimicrobial activity observed was due to the extract itself and not the solvent. To reduce
the possibility of experimental errors, each experiment was run three times.

The minimal inhibitory concentration (MIC) and the minimal
bactericidal concentration (MBC)

The minimal inhibitory concentration (MIC) procedure, done as in a (Balouiri, Sadiki
& Ibnsouda, 2016) protocol with some adjustments, involves the preparation of various
extract concentrations using sterile MHB. These concentrations were then added to a
96-well plate in a specific order: for Sponge 2 concentrations: 5, 4, 3, 2, 1.0.5, 0.25, 0.125
mg/ml for all bacterial strains, while Sponge 3 concentrations: 20, 19, 18, 17, 16, 15, 14,
13, 12 mg/ml for S. aureus and 15, 14, 13, 12, 11, 10, 9, 8, 7 mg/ml for S. epidermidis. The
selection of these concentrations depended on the results obtained from the well diffusion

Abuassaf et al. (2025), PeerdJ, DOI 10.7717/peerj.19735 517


https://peerj.com
http://dx.doi.org/10.7717/peerj.19735

Peer

agar method. Negative controls included 80% DMSO and sterile MHB, while positive
control comprised a bacterial suspension.

The minimal bactericidal concentration (MBC) was established by transferring and
evenly spreading the treated culture broth from the wells with concentrations equal to or
greater than the MIC onto agar plates. The MBC was defined as the lowest concentration
of the fraction needed to entirely eradicate the test microorganism, indicated by no growth
observed on the agar plate following incubation at 37 °C for 24 h (Majali et al., 2019).

Sponge extract chemical composition using LC-MS-MS

Liquid chromatography with tandem mass spectrometry (LC-MS-MS) was performed by
Smart Labs Group (Amman, Jordan) using Shimadzu LC (Kyoto, Japan) for the most
active sponge extract. It consisted of CBM-20A (control bus module), CTO-30A (column
oven), LC-30AD (liquid chromatograph), SIL-30AC (autosampler), and LCMS-8030
(liquid chromatograph mass spectrometer - Triple Quad MS). 50 mg of the sponge extract
was extracted with methanol (MeOH). Then, the crude extract was cleaned using a solid
phase extraction column, in which the 100% MeOH fraction was retained. A working
concentration of 2.5 mg/mL of the crude extract was used. LC-MS spectra consisted of
retention time (minutes), accurate molecular ions (>five ppm accuracy), and MS-MS
daughter ions. The LC method used for the analysis spanned 15 min with a gradient of
100% H,O (with 0.1% formic acid) to 95% acetonitrile (ACN).

Statistical analysis

All statistical analyses were conducted using GraphPad Prism™ version 10.3.0 (GraphPad
Software Inc., San Diego, CA, USA). Two-way ANOVA was used to analyze differences
between multiple groups, followed by Tukey’s test for post-hoc comparisons. Results were
expressed as the mean =+ standard error of the mean (SEM), with statistical significance
defined as p <0.05.

RESULTS

Sponge DNA barcoding
The 28S rRNA gene was successfully amplified from three sponge samples via PCR,
on agarose gel electrophoresis, yielding bands ranging from 1,000 to 1,300 base pairs
(Supplementary 1). Our results confirm high-quality DNA amplification for sequencing.
The 28S rRNA sequences from the three specimens showed similarities with other
Spongillidae species when analyzed using BLAST. The sequences were matched to
Spongillidae GenBank sequences that already existed. The following are the findings
of the BLAST analysis for the three sponge samples’ 28S rRNA sequence alignment with
GenBank. Sponge 1 was determined to be Stelletta fibrosa, which is a member of the genus
Stelletta, class Demospongiae, order Tetractinellida, and family Ancorinidae. The sponge 2
was found to be Dactylospongia elegans, which is also a member of the class Demospongiae
but belongs to the family Thorectidae, order Dictyoceratida, and genus Dactylospongia.
Sponge 3 was found to be Haliclona manglaris, which is a member of the family Chalinidae,
genus Haliclona, and order Haplosclerida under the class Demospongiae. The phylogenetic
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Figure 2 Phylogenetic tree of 28S rRNA sequences from three sponge samples. The phylogenetic tree
was constructed using MEGAL11 software, with the three sponge samples highlighted in red circles. The
tree was generated using the UPGMA method and computed with the Neighbor-Joining algorithm, with
1,000 bootstrap replications (indicated by bold numbers).

Full-size &l DOI: 10.7717/peerj.19735/fig-2

tree constructed using the Neighbor-joining method with 1000 bootstrap support indicates
high 28s rRNA sequence similarities with previously mentioned species (Fig. 2).

Antimicrobial activity

The extracts’ antibacterial activity at various concentrations was evaluated using the
agar well diffusion technique, and the diameter of the inhibition zone was measured in
millimeters (mm). The results are depicted in Table 2 and Supplementary 2.

S. fibrosa (Sponge 1) demonstrated no positive results against the selected bacteria. In
contrast, D. elegans (Sponge 2) exhibited significant activity against Gram-positive bacteria
(S. aureus, B. pumilus, S. epidermidis, and MRSA). However, H. manglaris (Sponge 3)
showed only modest activity against two bacterial strains (S. aureus and S. epidermidis).

Positive controls, gentamycin (10 pg) and vancomycin (30 pg), showed clear inhibitory
zones against all tested microorganisms, validating the technique. In contrast, the negative
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Table 2 Inhibition zone diameters (mm) for different bacterial strains treated with sponge ethanolic extracts in different concentrations. Data
are expressed as mean = standard error of the mean (SEM) based on three independent replicates (n = 3), positive control for all bacteria: Gen-
tamycin (10 pLg), MRSA-specific positive control: vancomycin (30 pug), and negative control: 80% DMSO.

Mean of the inhibition zone diameter (mm) (Mean = SEM)

Bacterial strains E. coli S. aureus K. aerogenes B. pumilus S. epidermidis MRSA
5 mg/ml 0.0£ 0.0 8.6+ 44 0.0£ 0.0 6+ 2.5 12.6 £ 2.3 11.6+ 1.6
10 mg/ml 0.0+ 0.0 163+ 2.1 0.0+ 0.0 11.3+£ 0.6 15.6+ 2.4 13.6 £ 1.2
D. elegans 15 mg/ml 0.0+ 0.0 18+ 2.0 0.0+ 0.0 146+ 1.7 193+ 1.2 14.6+ 0.6
(sponge 2) 20 mg/ml 0.0+ 0.0 19.6 £ 1.3 0.0+ 0.0 18+ 1.1 21+ 0.5 153+ 0.8
Positive control 14+ 0.57 17.6 + 2.9 12.34 2.1 21.6% 0.6 213+ 1.6 21.6+ 0.3
Negative control 0.0£ 0.0 0.0£ 0.0 0.0£ 0.0 0.0£ 0.0 0.0£ 0.0 0.0£ 0.0
5 mg/ml 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
10 mg/ml 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
Z‘anglaris 15 mg/ml 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 12.0+£ 0.0 0.0+ 0.0
(sponge3) 20 mg/ml 0.0+ 0.0 10.6+ 0.3 0.0+ 0.0 0.0+ 0.0 13.0+ 0.0 0.0+ 0.0
Positive control 143+ 0.8 17.1+£ 1.0 17.6 £ 1.7 18.6 £ 1.8 20.6 £ 0.8 21.6+ 0.3
Negative control 0.0£ 0.0 0.0£ 0.0 0.0£ 0.0 0.0£ 0.0 0.0£ 0.0 0.0+ 0.0

control (80% DMSO) exhibited no inhibition, Table 2, showing that the observed
antibacterial activity was primarily due to sponge extracts.

Figure 3 presents the (MIC) and (MBC) values for the extracts from D. elegans (Sponge
2) and H. manglaris (Sponge 3), both of which exhibited antibacterial activity against the
tested bacteria. Statistical analysis revealed significant differences (p < 0.05) between the
two sponge extracts for each bacterial strain. At lower concentrations, D. elegans (Sponge
2) yielded promising results, especially against B. pumilus, with a MIC of 0.125 mg/mL and
an MBC of 0.5 mg/mL. In contrast, H. manglaris (Sponge 3) showed notable effectiveness
against S. aureus, with both its MIC and MBC values reaching eight mg/mL.

LC-MS-MS

Through LC-MS-MS analysis (Supplementary 3), the ethanol extract of D. elegans (sponge
2) was characterized as in Table 3. The prominent compounds identified were a high
proportion (over 7%) of gallic acid, caffeic acid, dactyloquinone, and bolinaquinone.
Other significant metabolites, including indole-3-carbaldehyde, hyatellaquinone,
linoleic acid, chromazonarol, ilimaquinone, isospongiaquinone, mamanuthaquinone,
cyclospongiaquinone, pelorol, ergosterol, manoalide, and lectin, are also present at more
than 2% in the extract.

DISCUSSION

The marine environment is incredibly rich in a diverse array of species, offering a vast
reservoir of biometabolites. Many of these biometabolites possess unique chemical
structures that are not found in terrestrial sources. This study demonstrated that D. elegans
ethanolic extract exhibited promising selective antibacterial activity against gram-positive
bacteria S. aureus, S. epidermidis, B. pumilus, and MRSA, and H. manglaris ethanolic extract
exhibited weak antibacterial activity against S. aureus and S. epidermidis.
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Table 3 Compounds detected in the ethanol extract of D. elegans (Sponge 2).

Compounds Molecular Molecular % RT
formula weight

1 Limonene CioHis 136.23 g/mol 1.1 1
2 Ocimene CioHis 136.23 g/mol 0.2 1.1
3 Indole-3- carbaldehyde CoH,NO 145.16 g/mol 2.2 1.2
4 Gallic acid C;H¢Os5 170.12 g/mol 10.1 1.3
5 Caffeic acid CoH3O,4 180.16 g/mol 8 1.4
6 Hyatellaquinone C,H 4,04 222.24 g/mol 3.2 1.5
7 Linoleic acid CisH3,0, 280.4 g/mol 6.6 1.6
8 Catechin Ci5H1404 290.27 g/mol 1 1.68
9 Clathric acid Cy0H300, 302.5 g/mol 0.5 1.7
10 Chromazonarol C,1H300, 314.5 g/mol 5.1 1.8
11 Smenospongine C,1HypoNO;3 343.5 g/mol 1.5 1.9
12 Dysideamine C,1HyNO; 343.5 g/mol 2 2
13 Chlorogenic acid Ci6H 1509 354.31 g/mol 0.9 2.1
14 Dactyloquinone CyHy04 356.5 g/mol 7.1 2.25
15 Smenospongimine C,,H;3NO;3 357.5 g/mol 1.2 2.3
16 Ilimaquinone CyH3004 358.5 g/mol 4.3 2.4
17 Isospongiaquinone Cy,H300,4 358.5 g/mol 2.1 2.6
18 Bolinaquinone Cy,H3004 358.5 g/mol 7.4 2.8
19 Mamanuthaquinone Cy,H300;4 358.5 g/mol 6.1 2.9
20 Cyclospongiaquinone Cy,H3004 358.5 g/mol 3.1 3.1
21 Dactyltronic acid C,1H3005 362.5 g/mol 0.6 3.15
22 Dictyoceratin A Cy3H3,04 372.5 g/mol 0.3 3.3
23 Pelorol Cy3H3,04 372.5 g/mol 5.1 3.5
24 Luffariellolide Cy5H3305 386.6 g/mol 0.8 3.65
25 Ergosterol CysHyO 396.6 g/mol 4.1 3.8
26 Manoalide CysH3605 416.5 g/mol 6 4
27 Motualevic acid Ci6H3Br,NO, 421.2 g/mol 1.3 4.2
28 Lectin CysHy306 436.5 g/mol 3 4.4
29 Nakijiquinone D Cy;H35NOq 445.5 g/mol 1.6 4.6
30 Stelletin CsoH3304 462.6 g/mol 1.7 4.9
31 Manzamine A CsHuN,O 548.8 g/mol 0.3 52
32 Rutin C,7H30046 610.5 g/mol 0.5 5.4
33 Popolohuanone C4Hs7NO3 623.9 g/mol 1 5.6

The marine sponge Haliclona manglaris has antibacterial properties, especially against

produced by its symbiotic microbes (Gupta, 2019).

Gram-positive bacteria (Nazemi et al., 2014). This action stems from bioactive substances
produced by the sponge itself, such as lectins (Carneiro et al., 2015), which shows promising
activity against biofilm formation (Andrade et al., 2023), as well as from compounds

Haliclona sp. from the Persian Gulf was tested against gram-positive and gram-negative

bacteria in aqueous, diethyl ether, and methanol extracts. With MIC = 5 mg/ml, the diethyl
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Figure 3 MIC and MBC of D. elegans (sponge 2) and H. manglaris (sponge 3) ethanolic extracts: (A)
MIC and (B) MBC for the ethanolic extracts of D. elegans (Sponge 2) against S. aureus, B. pumilus,
S. epidermidis, and MRSA, as well as H. manglaris (Sponge 3) against S. aureus and S. epidermidis.
Statistical analysis revealed significant differences between the two sponge extracts, with p values indi-
cated as follows: p = 0.033 (*), p = 0.002 (**),and p < 0.001 (***). SEM values were zero in all cases;
therefore, error bars are not displayed.

Full-size Gl DOI: 10.7717/peerj.19735/fig-3

ether extract exhibited the highest activity level, especially against B. subtilis and S. aureus
(Nazemi et al., 2014).

Dactylospongia sponges, notably D. elegans, are well-known for producing a vast
spectrum of metabolites with potent bioactivities. The majority of these metabolites
are made up of sesquiterpenes, which include hydroquinones, quinones, and tetronic
acids, as well as a few sesterterpenes, sterols, and pregnanes. These compounds have
shown substantial bioactivities, including anticancer, cytotoxic, antibacterial, and anti-
inflammatory properties (Ibrahim et al., 2022a; Ibrahim et al., 2022b).

The LC-MS-MS analysis of the D. elegans ethanolic extract shows it contains high
concentration of novel bioactive metabolites, particularly since it was collected from a
unique marine environment with stable warm temperatures (above 20 °C) and high
oxygen levels (~six mg/L), so the conditions that may have impacted the production of
metabolites. The antibacterial activity of these metabolites is deeply linked to their unique
ecological conditions, acting as a defense against biofouling and microbial hazards, with
their particular chemical arsenal shaped by environmental stressors like nutrient levels and
temperature (Faulkner, 1984; Tihtinen et al., 2018).

Since phenolic chemicals like gallic acid, caffeic acid, chromazonarol, and pelorol are
often found in terrestrial plants, their discovery in a marine-derived extract is especially
remarkable. This compound shows strong antibacterial activity, especially against Gram-
positive bacteria like Staphylococcus aureus (Pinho et al., 2014). This result is in line with
earlier research that has documented the potency of these molecules against related bacterial
strains.
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Gallic acid, in particular, is highly effective even at low dosages, primarily by rupturing
the structural integrity of the bacterial cell membrane, which eventually results in bacterial
cell death (Luis et al., 2014). Furthermore, other research has shown its ability to inhibit
bacterial growth by changing bacterial metabolism and lowering the formation of biofilms
(Keyvani-Ghamsari, Rahimi & Khorsandi, 2023). Caffeic acid exhibits strong antibacterial
properties individually and with other drugs (Ajjaz et al., 2022). As a comprehensive review
conducted by Khan et al. (2021), caffeic acid has antibacterial activity through several
mechanisms, such as bacterial cell membrane disruption, inhibiting essential enzymes,
and interfering with microbial pathogenicity. Strong activity of caffeic acid against S.
aureus with MIC and MBC (0.625 and 1.25 mg/mL) was recorded, most likely as a result
of hyper-acidification that caused bacterial cell disruption. Additionally, it was effective
against S. epidermidis (MIC and MBC: 0.625 mg/mL), presumably by donating protons
that increase the internal acidity of the cell (Pinho et al., 2014). Gallic acid and caffeic acid
have not been previously isolated from this species, as reported by Ibrahim et al. (2022a);
Ibrahim et al. (2022b) but have been isolated previously from sponge-associated bacteria
from the sponge Hyrtios erectus (Ma et al., 2019b). Pelorol also showed moderate to strong
antimicrobial activity, specifically against S. aureus and E. faecalis, with MICs of 3.125 and
12.5 uM, respectively (Ebada et al., 2017).

Bolinaquinone, dactyloquinone, hyatellaquinone, ilimaquinone, isospongiaquinone,
mamanuthaquinone, and cyclospongiaquinone are marine sesquiterpene quinones. Among
them, hyatellaquinone showed comparatively high action against MRSA and S. aureus (Ma
et al., 2019a). Likewise, ilimaquinone shows antibacterial properties against Streptococcus
pyogenes and S. aureus (Chen et al., 2022), but isospongiaquinone demonstrated specific
activity against S. aureus only (Ebada et al., 2017). Additionally, quinone derivatives have
been proven to target essential bacterial proteins, such as LptA and Top IV, suggesting a
dual-target mechanism of antibacterial action (Yang et al., 2019). The variety in structure
among these compounds, especially in their quinone moieties and terpenoid skeletons, may
contribute to their effectiveness and lower the threat of resistance development (Emanii,
Shafiei ¢ Foroumadi, 2005).

Linoleic acid has activity against S. aureus by rupturing bacterial membranes with MIC
values as low as 0.01 mg/mL (Dilika, Bremner ¢ Meyer, 2000). Indole-3-carbaldehyde has
been recorded to inhibit bacterial growth and biofilm formation, with MIC values of
100 and 150 pg/mL against S. aureus and B. subtilis, respectively, suggesting it interferes
with cell signaling and virulence factors (Rattanaphan et al., 2020). Lectins are sugar-
binding proteins that effectively inhibit bacterial adhesion and biofilm formation (Hasan
et al., 2023). Ergosterol has shown antibacterial effects, likely through disrupting the
membrane integrity and interfering with bacterial metabolism (Andrade et al., 2019).
However, to the best of our knowledge, no studies have reported the antibacterial
activity of bolinaquinone, dactyloquinone, mamanuthaquinone, cyclospongiaquinone,
chromazonarol, and manoalide, so further research is needed to assess their potential as
antimicrobial agents.

Moreover, apart from individual compounds’ reported activity in literature, the
antibacterial activity of the extract may have risen due to synergistic activity between
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two or more compounds present in the extract. These could be of high or low abundance
within the extract. Further studies in terms of purifying the extract and isolating each
compound to analyze it alone, MS analysis, and antibacterial activity, would be worth
investigating. Also, combining isolated compounds to study any possible synergistic
antibacterial activity would be worth studying

In conclusion, this study opens the door for further research into novel antimicrobial
drugs by demonstrating the antibacterial activity of the deep D. elegans ethanolic extract and
highlighting its bioactive components discovered through LC-MS/MS analysis. Although
bolinaquinone, dactyloquinones, and other molecules have mostly been examined for
their anti-inflammatory activities and cytotoxicity, their potential antibacterial action
remains unexplored. More research is necessary to determine their antibacterial properties
and to investigate if they have synergistic interactions with gallic acid, caffeic acid, and
others. Such investigations could provide important information about their combined
therapeutic potential as novel antibacterial agents.
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