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ABSTRACT

Jacalin-related lectins (JRLs), a newly discovered subfamily of plant lectins, play an
important role in plant growth and development and abiotic stress response. However,
in the most important model and economic plant, the tomato, little is known about this
gene family. Here, we conducted a genome-wide identification and characterization of
the JRL gene family in tomato. A total of eight JRL gene family members (SIJRL1-
SIJRL8) were identified based on the tomato genome through bioinformatics analyses,
which were unevenly distributed on four chromosomes. Chromosomal localization
revealed four pairs of tandemly duplicated genes. Genome collinearity analyses showed
that tomato JRL genes were more closely related to Arabidopsis than to rice and maize.
Phylogenetic analysis showed that tomato JRL could be divided into seven subgroups,
and members within each subgroup shared similar gene structures and conserved
motifs. Promoter analysis revealed abundant cis-acting elements associated with stress-
responsive and phytohormone-responsive. Finally, real-time quantitative polymerase
chain reaction (qQRT-PCR) was used to analyze the expression profile of SIJRL gene
under various plant hormone and abiotic stress treatments. The results show that the
SIJRL gene family exhibits tissue-specific expression patterns and responds to a variety
of hormonal and stress conditions. This study systematically analyzed the genomic
characteristics of tomato JRL family. Our results lay the foundation for further studies
on the biological functions of tomato JRL genes.

Subjects Agricultural Science, Bioinformatics, Genetics, Plant Science

Keywords Tomato, JRL gene family, Genome-wide analysis, Hormone response, Abiotic stress,
Gene expression

INTRODUCTION

Plant lectins are a class of proteins or glycoproteins of non-enzymatic and non-immune
origin that are widely present in plants (Claes et al., 2008). These proteins contain one or
more non-catalytic domains that reversibly bind specific carbohydrates and carbohydrate
complexes. This specific binding ability determines the ability of lectins to participate
in plant growth and development and to mediate responses to biotic and abiotic
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stresses (Sharon, 2007; Ray, Kapoor & Tyagi, 2012; Jung et al., 2007; Esch & Schaffrath,
2017; De Coninck ¢ Van Damme, 2021; Marothia et al., 2023).

Jacalin-related lectins (JRLs) are a recently recognized subfamily of plant lectins, which
are widely distributed in plants (Bourne et al., 2004). Based on the structural features of their
subunits, JRLs have been classified into three categories. The first class contains only one
jacalin structural domain, named partial lectins. The second class not only has the jacalin
domain at the N-terminal or C-terminal, but also contains other domains, and is designated
as chimeric lectins. The third class contains multiple jacalin structural domains named total
lectins (Claes et al., 2008). Although the structure of JRL proteins is very different, they all
have a more stable typical jacalin structure domain. The typical jacalin domain contains
125 amino acid residues, and the conservation of the first half of the domain is usually
lower than that of the second half. The N-terminal of the domain also typically contains a
glycosyl recognition-associated domain that does not determine glycosyl specificity (Raval
et al., 2004). Some conserved amino acid residues are also distributed in the typical jacalin
domain, such as non-polar amino acids such as glycine and phenylalanine, which play an
important role in peptide chain folding or polymerization (Bourne et al., 2004).

As a non-classical lectin, JRL has different characteristics from classical lectin, and the
most obvious difference is that JRL can respond to abiotic stress. Studies have shown that
JRL can be induced to up-regulate expression when plants are subjected to stress. The first
inducible JRL protein Orysata was isolated and identified from rice seeds after salt stress,
which had mannose-specific binding ability (Zhang et al., 2000). Orysata is not expressed
in untreated plant tissues, but is rapidly expressed in roots and leaf sheaths under abiotic
stress. The expression of Lem2 (a lectin-like gene) in barley was significantly upregulated
under the induction of salicylic acid (SA) and its functional analogues, and decreased
under drought or abscisic acid (ABA), but did not respond to the stimulation of methyl
jasmonate (MeJA) treatments (Abebe, Skadsen ¢» Kaeppler, 2005). The expression level of
jacalin lectin At5¢28520 was significantly increased under ABA stimulation, in response
to the induction of ABA signaling pathway effect factors at seedling stage in Arabidopsis
(Jia & Rock, 2013). The JRL-like protein TaJRLL1, which contains two jacalin-like lectin
domains, is involved in the salicylic acid (SA)/JA signaling pathway (Xiang et al., 2011).
PeDJ01 from moso bamboo is up-regulated in response to salt or cold stress, highlighting
its significant role in stress regulation (Ma et al., 2021).

In addition to the hormones treatments, JRL gene can also respond to stress treatments.
For instance, the expression of PeJRL gene significantly upregulated under low temperature,
drought, and salt stress in moso bamboo (Zhang et al., 2022). In wheat and Arabidopsis
thaliana, JRL genes were found to have biotic and abiotic stress resistance (Yamaji et
al., 20125 Song et al., 2013). Overexpression of the water hyacinth (Eichhornia crassipes)
JRL gene EcJRL-1 in Arabidopsis Thaliana significantly enhanced its tolerance to sulfate
deficiency (Liu et al., 2009). Jacalin-related lectins HvHorcH participate in barley root
physiological response to salt stress (Witzel et al., 2021). OsJRL expression was up-regulated
under various abiotic stresses (salt, drought, high temperature and low temperature stress)
in rice (He et al., 2017). Also, overexpression of OsJRL40 gene enhanced rice salt tolerance
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(Gao et al., 2023). These findings suggest that JRL motifs are important in plant response
and adaptation to stress environments.

Tomato (Solanum lycopersicum) is a model vegetable crop cultivated worldwide, and it
has significance in global agricultural production (Liu et al., 2022). However, it frequently
suffers from undesirable environmental stresses during the growth cycle, which severely
restricts the growth, development and yield of tomato. A genome-wide characterization
of the JRL gene family has been performed in various plant species, and the potential
significance of JRL family genes in plant stress resistance has been demonstrated (Sorng
et al., 2013; Zhang et al., 2022; Quan et al., 2023; Gong et al., 2024). Genome-wide and
expression-level analyses provide comprehensive insights into the complex interactions
between genes and their regulatory mechanisms. Nevertheless, limited information is
available regarding the evolutionary relationships or characteristics of the JRL gene family
in tomato. Therefore, in the present study, we studied the physicochemical properties,
chromosomal distribution, gene duplication, phylogenetic tree, gene structure, protein
motifs, conserved domains, cis-acting elements and expression profiles of JRL genes in
tomato. These results will provide a basis for further analysis of the role of SIJRL genes in
plant growth and response to abiotic stresses.

MATERIALS AND METHODS

Plant materials and treatments

Tomato plants (Solanum lycopersicum Mill. cv. Ailsa Craig) were kept in a growth chamber
in soil under a 25 °C/16 h in light condition, 20 °C/8 h in dark condition and 60% relative
humidity. For drought and salt stress, 4-week-old plants grown in soil were watered with
20% PEG6000 (w/v) fraction and 200 mM NaCl solution and grown at normal room
temperature, respectively. For cold treatment, plants were placed in a light incubator set
at 4 °C for 24 h. For phytohormone treatments, tomato plants were irrigated and foliar
sprayed with solution of 100 pM ABA, 50 pM MeJA and 50 uM SA, respectively (Li et al.,
2024). The leaf samples were randomly collected after 0, 1.5, 3, 9, 12 and 24 h for different
treatments, respectively. Evenly growing tomato seedlings were selected and divided into
roots, stems, young leaves, flowers and mature fruits. All samples were collected for three
biological replicates and each replicate consisted of ten seedlings, placed immediately in
liquid nitrogen and stored in a —80 °C refrigerator for gene expression analysis.

Identification of the JRL genes in tomato genomes

In this study, the complete genome was downloaded from the tomato genome database
(https:/solgenomics.net/) (Fernandez-Pozo et al., 2015). JRL protein (Pfam01419) from
Pfam database of hidden markov model (HMM) spectrum, search by the HMM
(https:/www.ebi.ac.uk/Toolshmmer/) to obtain the JRL potential members of the family
of genes, E-value <le™> (Wheeler ¢ Eddy, 2013). The hypothesized JRL protein was
further confirmed by SMART (http:/smart.embl-heidelberg.de) and Pfam database
(http:/pfam.xfam.org/). EXPASy software (https:/www.expasy.org/) was used to predict
the large average of the length, molecular weight (kDa), theoretical isoelectric point (pI)
and hydrophilicity (GRAVY) of each tomato SIJRL protein (Mariethoz et al., 2018). The
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WOoLF PSORT program was used to generate subcellular localization of tomato SIJRLs
(https:/wolfpsort.hgc.jp/) (Horton et al., 2007). The SignalP-5.0 online server 8 was used to
predict whether the proteins contained signal peptides.

Phylogenetic and collinearity analysis of the SIJRL gene family

The full-length amino acid sequences of 46 JRL proteins from Arabidopsis and eight
JRL proteins from tomato were analyzed by ClustalW with default settings (Larkin et al.,
2007). MEGA (http:/www.megasoftware.net), Version 11.0) was employed to construct the
phylogenetic analysis using the neighbor-joining (NJ) methods with with the maximum
likelihood method (bootstrap number set to 1,000) (Tamura, Stecher ¢» Kumar, 2021).
The tree was edited and beautified with iTol (Letunic ¢ Bork, 2024). BlastP was performed
between different species and collinear relationships were searched using MCScanX,
and finally visualized using the advanced circos feature in TBtools (Krzywinski et al.,
2009; Lavigne et al., 2008; Wang et al., 2024). Non-synonymous substitution rate (Ka) and
synonymous substitution rate (Ks), and Ka/Ks ratio the duplicated gene pair were calculate
using KaKs_Calculator2.0 (Wang et al., 2009).

Chromosome localization, gene structure and conserved motif
analysis of SIJRL genes

The chromosomal locations of SIJRL gene family members were obtained from the

Sol genome database (http:/iwww.solgenomics.net) and mapped on their respective
chromosomes using Mapchart software (Voorrips, 2002). TBtools were used to analyze
and visualize the exon-intron structure of SIJRL gene (Chen et al., 2020). MEME software
v5.0.5 (https:/meme-suite.org/meme/tools/meme) was used to identify conserved motifs of
SIJRLs (Bailey et al., 2009) and TBtools was used for visualization (Chen et al., 2020). The
resulting JRL genes are renamed according to their location on the chromosome.

Promoter cis-acting element analysis
The 2,000 bp promoter sequence upstream of JRL gene was downloaded from tomato
genome and submitted to PlantCARE database (http:/bioinformatics.psb.ugent.be/
webtools/plantcare/html)) for screening of promoter cis-regulatory elements.

After statistical screening, TBtools was used to visualize possible cis-acting elements
(Lescot et al., 2002).

RNA extraction and quantitative real-time PCR (qRT-PCR) analysis
Total RNA was isolated from each sample using a plant RNA extraction kit (Tiangen,
Beijing, China) and the concentration of the isolated RNA was measured by a NanoDrop
1,000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was
synthesized using the SMART kit (TaKaRa, Dalian, China), two g RNA was extracted
from each sample according to the manufacturer’s instructions. qRT-PCR analysis of each
sample was performed in three technical replicates using a CFX96TM real-time gPCR
system (Bio-Rad, USA) according to the instructions of the SYBR Green kit (Tiangen,
Beijing, China). The reaction conditions were as follows: 95 °C for 2 min, 95 °C for 15
s, 60 °C for 30 s, 72 °C for 15 s, 35 cycles. The EFla gene (AY905538) was used as the
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internal reference (Aoki et al., 2010). Specific primers were designed using Primer Premier
6.0 software as described in Table S1. Three biological and three technical replicates were
set for all QRT-PCR analyses. Relative gene expression was calculated using the 27#4Ct
method (Livak & Schmittgen, 2001) and expressed as mean =+ standard deviation (SD).
SPSS 20.0 software was used for relative expression analysis, and Origin 9.0 software was
used to complete the relative expression histogram.

RESULTS

Identification of the SIJRL genes in tomato genome

A total of eight SIJRL genes were identified in tomato and were renamed from SIJJRLI
to SJJRL8 (Table 1). The CDS lengths of the SIJRL genes ranged from 474 (SIJRL4) to
1,323 bp (SIJRLS8), and they encoded proteins ranging from 157 to 340 aa. The protein
molecular weights of these proteins ranged from 17.25 kDa (SIJRL4) to 37.58 kDa (SIJRLS),
with theoretical isoelectric points (pls) between 5.17 (SIJRL7) and 9.16 (SJRL6). All JRL
proteins had a negative gravy score and were therefore hydrophilic.

SignalP-5.0 analysis showed that two SIJRL proteins contain a signal peptide, the rest
of the JRL protein contains no signal peptide. Subcellular predictions showed that most
tomato JRL proteins were predicted to be localized in the cytoplasm and cell wall, while
some were localized in other locations, such as chloroplasts, peroxisomes, vacuoles, and
mitochondria.

Chromosomal localization, duplication and synteny analysis of the
SIJRL genes

Chromosome localization analysis showed that eight members of the SIJRL gene family
were randomly distributed on four chromosomes (Fig. 1). Each SIJRL gene was numbered
(SJRLI to SIJRL8) according to its physical position from the top to the bottom of
the respective tomato chromosome. The largest number of SIJRL genes was found on
chromosome 9 (four), with two genes on chromosome 4 and one gene on each of the
remaining chromosomes. We found two tandem duplicated regions on chromosome 4 and
9, and no pairs of segmental duplicates were detected among SIJRL genes in tomato genome
(Fig. 2, Table S2), suggesting that tandem duplication events dominated the expansion of
SIJRL family. To further investigate the evolution of SIJRLs, we constructed collinearity
maps of tomato with one dicotyledonous plants (A. thaliana) and two monocotyledonous
plants (O. sativa and Z. mays). The results showed that two SIJRL genes were collinear with
AtJRL genes, and none of the genes were homologous to rice and maize, indicating that the
SIJRL gene family was more closely related to Arabidopsis than to rice and maize (Fig. S1).
In this study, the Ka/Ks ratio of SIJRL gene and collinear SIJRL gene replication in tomato
was calculated to investigate the SIJRL gene family and the evolution of SIJJRL gene between
species. The results showed that all four SIJRL genes had a Ka/Ks ratio of less than one
(Table S2); thus, it is clear that the members of the SIJRL gene family underwent strong
purifying selection during evolution.
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Table 1 The SIJRL family genes in tomato.

GeneID Gene Chromosome location CDS Size MW pl GRAVY Signal Predicted

name length (aa) (KDa) peptide location

(bp)

Solyc09g083040.1.1 SURLI $9:69,134,522-69,135,028 507 168 18.71 5.37 —0.311 No Cytoplasm
Solyc09g090445.1.1 SJRL2 §9:70,435,162-70,437,129 1,130 284 30.95 6.61 —0.134 No Chloroplast
Solyc04g080410.2.1 SIJRL3 S4: 64,677,268-64,678,673 1,081 345 37.97 7.82 —0.317 No Cytoplasm
Solyc09g083020.1.1 SIJRL4 $9: 69,130,168-69,130,641 474 157 17.25 5.67 —0.250 Yes Cell wall, Cytoplasm, Mitochondria
Solyc09g083030.1.1 SJRL5 §9:69,132,760-69,133,263 504 167 18.52 7.79 —0.311 Yes Cell wall
Solyc03g121295.1.1 SURL6 $3:70,929,551-70,930,980 838 202 22.20 9.16 —0.392 No Cell wall, Chloroplast
Solyc01g006240.3.1 SURL7 S1: 859,861-860,918 702 176 19.90 5.17 —0.245 No Cell wall, Chloroplast, Cytoplasm, Peroxisome, Vacuole
Solyc04g080420.3.1 SURL8 S4: 64,679,251-64,681,586 1,323 340 37.58 6.09 —0.301 No Cell wall, Chloroplast, Cytoplasm

Notes.

bp, base pair; aa, amino acid; MW, molecular weight; pl, isoelectric point; GRAVY, grand average of hydropathicity score.
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Figure 1 Localization of SIJRL genes on chromosomes in tobacco. Different colors indicate different
gene densities; the redder the color, the greater the gene density; the bluer the color, the lower the gene
density. The scale bar of the left displays the length of tobacco chromosomes. Different colors indicate dif-
ferent gene densities; the redder the color, the greater the gene density; the bluer the color, the lower the
gene density. The scale bar of the left displays the length of tobacco chromosomes.

Full-size Gl DOI: 10.7717/peer;j.19724/fig-1

Phylogenetic analysis of the JRL gene family

To clarify the phylogenetic relationship of JRL genes, we constructed a phylogenetic tree
from 54 JRL protein between tomato and Arabidopsis thaliana (Fig. 3, Table S3). According
to the protein sequences of the members of the JRL family, JRL proteins are classified into
seven subgroups (I-VII). Among them, subgroup IV was the largest with 16 members,
followed by subgroup V (nine), while subgroup I had the fewest members (five). The SIJRLs
were distributed in subgroups V (one member), VI (three) and VII (four). Members of the
JRL gene family in the same subgroup are more closely related to each other.

Gene structure, motif, and conserved domain analysis of the tomato
SIJRL gene family

To investigate the structural diversity of SJJRL genes in tomato, we compared the exon and
intron structure of SIJRL gene and corresponding genomic DNA sequence by constructing
an unrooted phylogenetic tree of SIJRL gene (Fig. 4A). Gene structure analysis of SIJRL s
revealed that the number of introns ranged from zero to four among the SIJRL genes. SIJRL8
has the most introns (four), while three SIJRLs completely lacked introns. The exon-intron
structure patterns were commonly well-conserved in SIJJRL s from same subgroup (Fig. 4B).
We identified 10 motifs in the conserved domains of JRL proteins using the online MEME
software (Fig. 4C, Table S4). Each protein contained a different number of conserved
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Figure 2 Gene duplication of SIJRL genes on tomato chromosomes. The tandem duplicated gene
pairs are marked with red dashed lines. The corresponding relationships of duplicated gene are listed in

Table S2.
Full-size Gl DOI: 10.7717/peer;j.19724/fig-2

motifs, ranging from four to 10, and the SIJRL members in the same subfamily also share
some conserved motifs, which was consistent with the results of the phylogenetic analysis.

Using a previous classification scheme based on the number of jacalin domains and the
presence or absence of other domains (Song et al., 2013), we identified seven type I JRL
proteins and one type II JRL protein. The genes that contained only one jacalin domain
had the highest percentage of type I proteins (77%). Notably, in addition to the jacalin
domain, SIJRL2 also contains RXCC_like structural domains (Fig. S2).
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Figure 3 Phylogenetic tree of SJRL proteins from tomato and Arabidopsis. The phylogenetic tree re-
veals distinct clades separating the SJRL subtypes. The shading color indicates different JRL subtypes, re-
sulting in seven subgroups of the SIJRL gene family (labeled I-VII).
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cis-element analysis of SIJRLs

In this study, we analyzed the 2,000 bp promoter sequence upstream of the start codon
of eight SJJRL genes using PlantCARE (Fig. 5). The sequence analysis of eight SITRL genes
showed that the cis-acting elements of the promoter region could be divided into four
categories: phytohormone responsive elements, development-related elements, abiotic
and biotic stress responsive elements and light responsive elements. SIJRL1, SIJRL5,
SJRL6, and SIJRL8 promoters contained cis-elements from all four categories. Within
the hormone-responsive category, nine cis-regulatory elements (ABRE, TGACG-motif,
TGA-element, TCA-element, AuxRR-core, TATC-box, AuxRE, P-box and O2-site) were
analyzed, revealing that the ABRE motif was the most abundant. There were five cis-acting
elements associated with development-related, such as CAT-box, AT-rich element, A-box,
MRE, and circadian. There were four cis-regulatory elements related to stress response in
SIJRL gene, including LTR, ARE, MBS and TC-rich repeats were identified in SIJRL genes,
among which the ARE motif was the most common. In addition, fourteen light-responsive
elements (ACE, AE-box, AT1-motif, 3-AF1 binding site, Box 4, G-box, GA-motif, GATA-
motif, GT1-motif, I-box, Gap-box, TCT motif, TCCC motif and chs-CMA2a) were also
analyzed, of which Box 4 was the most abundant.
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Figure 4 Gene structure and conserved motif analysis based on SIJRL phylogenetic relationships. (A)
Phylogenetic tree constructed using the NJ method with SI JRL protein sequences. (B) Gene structure
analysis of SIJRL genes, where blue and orange boxes represent exons and untranslated regions (UTRs),
respectively, and black lines denote introns. (C) Conserved motifs in SIJRL genes were identified using
MEME, with different colored boxes indicating distinct motifs. The scale bar of each SIJRL gene is shown
below each gene.
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Expression pattern analysis of SIJRL genes

To investigate the functions of SIJRL genes, we used qRT-PCR method to detect the relative
expression levels of eight SIJRL genes in different tissues such as root, stem, leaf, flower and
fruit (Fig. 6). The results showed that the four tomato SIJRL genes had different expression
patterns in different tissues, and SIJRLI and SIJRL3 genes were not detected in all tissues.
Four genes (SIJRL2, SIJRL5, SIJRL6 and SIJRL7) were expressed the highest in stems, and
SIJRL8 was expressed the highest in leaves. SIJRL8 expression was significantly higher

in all tissues than the other SIJRLs, whereas SIJRL2, SIJRL6 and SIJRL7 had the lowest
transcript accumulation in most tissues except the stem. SIJRL4 had the lowest transcript
accumulation in most tissues except flowers. Furthermore, SIJRL5 were highly expressed in
stems, leaves, flowers and fruits, respectively. Interestingly, except for the high expression
of SIJRLS8 gene in leaf tissues, the transcription level of SIJRL gene in leaf tissues was lower
than that in other tissues. These expression patterns may be associated with the role of the
SIJRL genes in different tissues.
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Expression analysis of the SIJRL genes under different phytohormone
treatments

Promoter analysis showed that a substantial number of cis-acting elements associated
with phytohormone responses and abiotic stress enriched in the promoter region of

the SIJRLs, suggesting its possible involvement in these biological processes. To gain
insights into the potential functions of the SIJRL genes in response to phytohormones,
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the expression patterns of SIJRL genes were analyzed by qRT-PCR under the treatment
of three plant hormones, which were ABA, SA and MeJA (Fig. 7). After ABA treatment,
the expression levels of SIJRL2, SIJRL4 and SIJRL5, showed an up-regulated induced
pattern, while SIJRL6 and SIJRL7 exhibited a down-regulated induced pattern, and the
expression levels of SIJRLS, initially decreased but thereafter increased. MeJA treatment
remarkably induced a up-regulated expression of SIJRL2, SIJRL4 and SIJRL6, as well
as a down-regulated expression of SJJRL7 and SIJRL8. The expression levels of SIJRL5,
initially decreased but thereafter decreased increased. Under SA treatment, SIJRL4 and
SIJRL5 showed significantly up-regulated expression patterns, whereas SIJRL6 and SIJRL7
exhibited down-regulation expression levels. The expression levels of SIJRLS, initially
decreased but thereafter increased, whereas the expression levels of SIJRL2, initially
increased but thereafter decreased (Fig. 6B). Similarly, the expression of SIJRLI and
SIJRL3 were undetectable in response to the three phytohormone treatments.

Expression analysis of the SIJRL genes in response to different
abiotic stresses

In order to further investigate whether the expression of SIJRL genes was affected by
abiotic stresses, we used qQRT-PCR to detect the expression of eight SIJRL genes under
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salt stress (NaCl), polyethylene glycol (PEG) and low temperature conditions with 0 h
untreated tomato seedlings as controls (Fig. 8). A similar situation also appeared after
stress treatment, except that SIJRLI and SIJRL3 were not detected, the expression of other
genes was up-regulated/down-regulated induction. Among them, SIJRL2 and SIJRL6 were
significantly upregulated, whereas SIJRL7 showed a continuous down-regulation trend.
The expression levels of SIJRLS, initially decreased but thereafter increased, whereas the
expression levels of SIJRL4 and SIJRL5, initially increased but thereafter decreased. Drought
treatment significantly induced up-regulated expression of SIJRL2, SIJRL4 and SIJRLS,
and down-regulated expression of SIJRL7 and SIJRL8. In addition, the expression levels of
SIJRL5, initially increased but thereafter decreased. Low temperature treatment significantly
induced up-regulated expression of SIJRL2 and SIJRL4, and down-regulated expression of
SIJRL5, SJRL6, SJRL7 and SJJRLS.

DISCUSSION

Jacalin-related lectins play an important role in plant growth, development, and abiotic
stress response. Currently, the whole-genome analysis of the JRL gene family has been
studied in a variety of plants, including Arabidopsis, O. sativa, wheat, Z. mays, sorghum,
and B. distachyon (Nagano et al., 2008; Jiang, Ma ¢ Ramachandran, 2010; Song et al., 2013;
Zhang et al., 2022; Quan et al., 2023); however, little has been reported on the tomato JRL
gene family. In this study, eight SIJRL genes were identified from the tomato genome
(Fig. 1, Table 1), and the number of JRL members in tomato was much less than that in
Arabidopsis, rice, wheat, maize and bamboo, indicating that the amplification of the SIJRL
gene family is species-specific. This extension may be associated with gene duplication
events (Steven et al., 2004). Gene amplification in plant gene families plays a crucial role
in generation and amplification, which are amplified mainly by segmental and tandem
replication (Cannon et al., 2004; Zhu et al., 2014; Cao & Shi, 2012). A total of four pairs
of tandem duplication genes were identified in the SIJRL gene family of tobacco, and no
obvious segmental duplication was observed (Fig. 2), indicating that tandem duplication
events were the main driver of SIJRL gene family amplification. Through collinearity with
other plant genome analysis, we found two homologous JRL gene pairs between tomato
and Arabidopsis, 0 between tomato and rice, and 0 between tomato and maize (Fig. S1).
These results indicate that the JRL genes of tomato are more closely related to those of
Arabidopsis than to those of rice and maize. Phylogenetic analysis indicated that SIJRL
proteins can be divided into seven groups (Fig. 3), and the SIJJRL genes in the same group
shared significant similarities in gene structure and motif composition (Fig. 4), indicating
that the classification of SIJRL genes was relatively robust.

The study of promoter regions contributes to the understanding of gene interaction
and function (A#n, 1986). Cis-elements play a crucial role in plant regulatory networks,
contributing to a deeper understanding of transcriptional regulation and revealing the
functions of the genes involved (Hernandez-Garcia & Finer, 2014). In this study, predictive
analysis of SIJRL promoters revealed the presence of several elements related to growth,
plant hormone response, and stress response (Fig. 5). Among them, cis-elements associated
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with hormones, such as ABA, SA, and MeJA, account for nearly 50% of SIJRL promoter
cis-elements. The SIJRL genes contained a small number of growth response elements and
a large number of stress response elements, indicating that SIJRL may participate in the
stress responses of tomato, and may be involved in various hormonal signaling pathways.
These findings suggest that the SIJRL genes may play a pivotal role in enhancing plant
tolerance to different environmental stresses, which is also confirmed by this study.

Gene expression is associated with gene function (Zhu et al., 2021). The expression
levels of the SIJRL genes were observed in different tissues. The results showed that the
SIJRL genes were generally expressed in various organs (Fig. 6), indicating that SIJRL gene
may play different functions in different tissues during the growth and development of
tomato. SIJRL2, SIJRL5, SIJRL6 and SIJRL7 were highly expressed in some specific tissues,
suggesting that these SIJRL genes in tomato have tissue specificity. Moreover, we analyzed
the expression of SIJRL genes under abiotic stresses and hormone treatments was performed
in tomato. The results showed that the expression of some SIJRL genes was significantly
upregulated by ABA, SA, and MeJA treatments (Fig. 7), suggesting that these genes may
play an important role in hormone signaling pathways. Also, we investigated and found
that SIJRL genes respond diversely to cold, salt, and drought stresses (Fig. 8), which aligns
with the reported essential roles of JRL genes (Abebe, Skadsen ¢ Kaeppler, 2005; Marothia
et al., 2023; Gao et al., 2023; Gong et al., 2024). Although the response mechanism of the
JRL gene to abiotic stress remains to be further studied, these results indicate that the JRL
gene is functionally conformed among different species. In summary, these comprehensive
results laid a foundation for further research on the role of SI/RLs in tomato growth and
development and response to environmental stress.

CONCLUSIONS

In this study, we performed a genome-wide identification and characterization of eight
SIJRL family members in the tomato genome, which were divided into seven groups, and
distributed across four chromosomes. Chromosomal localization analysis revealed four
pairs of tandem duplicated genes. Cis-regulatory elements responsive to environmental
stress, photoresponsive, phytohormones and growth were identified in the promoters of
SIJRL genes. The gRT-PCR results suggested that the SIJRL gene family has regulatory
roles in tissue specificity and abiotic stress. These findings provide valuable information
for studying the functions of SIJJRL genes in plant growth development and responses of
abiotic stress.
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