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Abstract 18 
Migration and non-breeding dispersal is a common in many animal groups and often driven 19 
by seasonal changes in a species’ habitat. It is a prevalent behaviour in crested penguins 20 
(Eudyptes sp.) that have evolved in and still principally inhabit the subantarctic regions of the 21 
southern hemisphere. Tawaki/Fiordland penguins are an exception as they live and breed in 22 
the temperate zone breed of southern New Zealand. Nevertheless, they do leave their colonies 23 
outside the breeding period and undertake significant pre-moult and winter migrations. Using 24 
satellite telemetry, we examined the winter dispersal of tawaki across the species’ entire 25 
breeding range, to see if dispersal patterns varied depending on where birds originated from, 26 
and to gain an understanding of the environmental drivers behind these dispersal patterns via 27 
maximum entropy modelling of habitat suitability. All penguins showed the same dispersal 28 
patterns irrespective of their origin. The birds travelled southwest with destinations located in 29 
the subantarctic region approximately 1,000 km due south of Tasmania. Penguins achieved 30 
maximum distances of a median 1,585 km away from their point of origin, covering total 31 
distances of a median 6,086 km over the course of a median 135 days. Most birds reached the 32 
subantarctic ocean front during the first half of their journeys with several penguins returning 33 
to the mainland via a northern route along the subtropical front. Mixed layer depth of around 34 
80 m was a strong predictor of penguin presence matching the usual foraging dive depth 35 
recorded for this species. Maxent modelling showed that the species utilises a variety of 36 
ocean habitats ranging from polar to subtropical waters, which stands in contrast to general 37 
lateral dispersal patterns apparent in other crested penguins. This suggests a high degree of 38 
behavioural flexibility in tawaki, which is likely a significant advantage in a changing 39 
oceanic environment. 40 
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Introduction 41 
Migration and non-breeding dispersal is common in many animal groups, but is particularly 42 
prevalent in birds (Newton, 2007). With the ability to fly, birds can cover vast distances 43 
resulting in collective travel routes spanning the globe (Shaffer et al., 2006; Quillfeldt, Voigt 44 
& Masello, 2010; Weimerskirch et al., 2015). Migratory movements are often apparent in 45 
species that live and breed in regions affected by seasonal resource variability, effectively 46 
forcing the animals to travel to more productive environments at certain times of the year 47 
(Bowler & Benton, 2005; Newton, 2007; Ainley & Wilson, 2023). Because long distances 48 
might need to be travelled, the dispersal phase of a species’ annual life-cycle is often energy 49 
demanding (Arizmendi-Mejía et al., 2013), requiring animals to optimise their dispersal 50 
movements accordingly (Hennin et al., 2016). This should be especially relevant for non-51 
flying bird species such as penguins. 52 

Of the 18 species of penguins listed on the IUCN Redlist (iucnredlist.org), six species are 53 
considered sedentary, remaining at their breeding sites all year without migratory movements 54 
being inherent part of their annual cycle, whereas the remainder disperse when not breeding 55 
(Garcia Borboroglu & Boersma, 2013). Although latitudinal effects have been reported in 56 
species breeding closer to or on the Antarctic Continent, either because breeding sites are ice-57 
bound in winter (Trathan & Ballard, 2013; Wienecke, Kooyman & LeMaho, 2013) or due to 58 
seasonality of available prey resources (Pütz et al., 2006; Raya Rey, Trathan & Schiavini, 59 
2007), there are at the very least exceptions to this rule. Gentoo penguins (Pygoscelis papua), 60 
for example, that co-exist with crested penguins (Eudyptes spp.) in various locations in the 61 
subantarctic region or with other Pygoscelis species in Antarctica, do not disperse over long 62 
distances away from their colonies outside of the breeding season,  whereas all Eudyptes 63 
undertake obligate migration (Croxall & Davis, 1999). Conversely, on the New Zealand 64 
mainland, adult hoiho/Yellow-eyed penguins (Megadyptes antipodes) and kororā/Little 65 
penguins, remain at or near their breeding colonies throughout the non-breeding period 66 
(Wilson & Mattern, 2019; Hickcox et al., 2022), whereas tawaki/Fiordland penguins 67 
(Eudyptes pachyrhynchus) outside the breeding season disperse far into the subantarctic 68 
region (Mattern et al., 2018; Thiebot et al., 2020; Green et al., 2022). As such, latitudinal and 69 
seasonal changes in the species’ environments alone do not fully explain why some species 70 
are migratory and others are not.  71 

Tawaki are a particularly interesting species in this regard. After completion of the breeding 72 
season in December, at the height of the austral summer, the birds leave their breeding 73 
colonies for ca. 10 weeks in preparation for their annual moult, which the birds generally 74 
complete when back in their colonies (Mattern, 2013; Mattern & Wilson, 2019a). 75 
Considering the energetic demands of the breeding season and the moulting period (Brown, 76 
1989), it is surprising that tawaki migrate considerable distances during the pre-moult period 77 
(Mattern et al., 2018) even though the productivity around the NZ mainland reaches its peak 78 
at this time (Murphy et al., 2001; Goebel, Wing & Boyd, 2005). But instead of accessing 79 
local marine resources, tawaki disperse southwest into the subantarctic region and forage in 80 
water masses that originate in the Antarctic Circumpolar Current. As such, seasonal patterns 81 
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in local productivity do not seem to be a defining factor for the tawaki migration, at least not 82 
during the pre-moult period. 83 

The key to understanding the drivers behind penguin migration ultimately requires 84 
knowledge about the resources that the birds consume at the destination of their journey 85 
(Croxall & Davis, 1999). Obtaining this information, however, is extremely difficult given 86 
the logistical constraints of making observations and obtaining samples at the non-breeding 87 
destination. An alternative approach, therefore, is to examine the seasonally occupied regions 88 
in the context of a species’ known foraging behaviour. The marine ecology of tawaki has 89 
been studied extensively in the past decade, allowing some inferences to be made about their 90 
diving behaviour. When breeding, tawaki exhibit a high degree of behavioural plasticity that 91 
allows them to utilize variable marine habitats, ranging from coastal shelf and shallow 92 
inshore habitats (Mattern & Wilson, 2019a), to fjord systems and pelagic environments (Otis, 93 
2021; Hornblow, 2022). As such it is plausible that penguins utilising different regional 94 
habitats when breeding may also show different approaches to their non-breeding migration. 95 
Previous studies of tawaki dispersal focussed on birds from single locations (Mattern et al., 96 
2018; Thiebot et al., 2020) which may provide a site-biased representation their migration.  97 

We examined the distribution of tawaki over the winter of 2019 using satellite transmitters. 98 
Our aims were to (a) track individual tawaki from across the species’ distributional range to 99 
account for potential breeding location effects on migration behaviour, (b) evaluate 100 
environmental conditions at the birds’ non-breeding destinations to model the physical 101 
factors associated with these locations and, (c) consider potential advantages of tawaki 102 
movement patterns outside of the breeding season in the context of other crested penguin 103 
species. 104 

Materials & Methods 105 

Study species 106 
Tawaki/Fiordland penguins are one of seven crested penguin species (Eudyptes sp.) currently 107 
recognized by the IUCN Redlist (https://www.iucnredlist.org/) and is the only crested 108 
penguin that breeds in a temperate and continental setting along the southwestern coastlines 109 
of Aotearoa/New Zealand (Mattern & Wilson, 2019a). Long thought to be one of the rarest 110 
penguin species, recent population surveys revealed their numbers to much considerably 111 
larger than previously assumed with estimates ranging up to 50,000 mature individuals 112 
(IUCN, 2020). Exact population estimates are difficult due to the species’ cryptic breeding 113 
behaviour in remote and difficult to access regions of New Zealand’s South Island (Mattern 114 
& Wilson, 2019a).  115 

Tawaki have been described as “winter breeders” (Poupart et al., 2019) although this overly 116 
generalises the species’ annual cycle with eggs hatching in the early austral spring 117 
(September) and chicks fledging in early summer (December). At the conclusion of the 118 
breeding season, the penguins undertake an extensive pre-moult migration that lasts until late 119 
January and early February before undergoing their annual moult (Mattern et al., 2018). By 120 
the end of February and beginning of March, tawaki leave their colonies on their winter 121 
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migration. Although this migration starts in the austral Autumn (March-May), the majority of 122 
tawaki remain at sea for the first 6-8 weeks of winter (Green et al., 2022).  123 

Satellite transmitter deployments 124 
Between 22 February and 7 March 2019, a total of 16 adult tawaki post-moult were fitted 125 
with Argos satellite transmitters (SPOT-275 Platform Transmitter Terminals, dimensions: W 126 
x L x H – 15mm x 85mm x 17 mm; weight: 40 g; Wildlife Computers, Redmond, WA, 127 
USA). All birds were captured at the moulting sites, weighed with 5 Kg Pesola spring 128 
balance (division: 50 g), individual marked with passive integrated transponders, and had 129 
morphometric measurements taken to determine sex (White et al., 2021). Deployments 130 
occurred at three sites in New Zealand’s Southwest (Figure 1).  131 

It was intended to deploy five devices at three sites spanning the species’ breeding range, 132 
namely Jackson Head, West coast (S43.9633,E 168.6107); Harrison Cove in Milford 133 
Sound/Piopiotahi, Fiordland (S 44.6202,E 167.9097); and Whenua Hou, Foveaux Strait 134 
(S46.7582,E 167.6407). However, Jackson Head was practically devoid of moulting birds 135 
when visited so that only a single female could be fitted with a transmitter. Instead, two of the 136 
remaining devices were deployed on additional birds on Whenua Hou, while another two 137 
transmitters were fitted to two tawaki that moulted outside of the tawaki breeding range in the 138 
care of the Oamaru Blue Penguin Colony on the east coast of the South Island (S45.1103,E 139 
170.9801). The two Oamaru deployments yielded very little data as both devices ceased 3-19 140 
days after the birds were released from care and were, therefore, omitted from further 141 
analysis. Overall, three female and two male penguins in Harrison Cove (22.02.2019), three 142 
females and five males from Whenua Hou (25.02.2019), and a single female from Jackson 143 
Head (27.02.2019) were fitted with SPOT-tags (Table 1).  144 

The devices were attached using the Tesa-tape method (Wilson et al., 1997) with a thin layer 145 
of Pattex rubber glue (Henkel AG & Co. KGaA, Düsseldorf, Germany) applied to the 146 
feathers below the transmitter base, with an additional layer of Araldite 5-minute epoxy glue 147 
(Selleys, Auckland, New Zealand) covering the tape wrapped around the devices. The entire 148 
deployment procedure from catching to release took between 10-15 minutes, during which 149 
the birds were kept in a cloth bag that covered their heads. Birds were eventually released 150 
back into the burrow in which they had moulted. 151 

Basic satellite data analysis 152 
The satellite transmitters were programmed to start operating once the device’s saltwater 153 
switch detected immersion, i.e., when a penguin had finished moult and entered the sea to 154 
launch the winter journey. The devices were programmed to broadcast a signal to Argos 155 
satellites 15 times per hour, which ensured that the battery of the units would last around six 156 
months and therefore the entire winter dispersal period could be covered. With these settings 157 
an average 10 locations per day could be obtained for each bird. Not all these locations were 158 
classified as reliable by the Argos system (e.g. Thomson et al., 2017). Therefore, for spatial 159 
analysis any locations for which the locational error could either not be determined (Argos 160 
classes A,B,Z) or was >1500 m (Argos class 0) were omitted from analysis. Accepted 161 
satellite data was furthermore filtered using the function ‘sdafilter’ from the package 162 
‘argosfilter’ library (Freitas, 2012) in R 4.2.2 (R Core Team & R Development Core Team, 163 
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2022). This function removes locations identified as being outliers based on swimming speed, 164 
distance between successive locations, and turning angles (Freitas et al., 2008).  165 

Accepted data were then used to determine individual foraging tracks and to calculate basic 166 
trip statistics, providing basic metrics to compare movement of penguins from the different 167 
study sites. These were trip duration, maximum distance from start point, distance travelled 168 
per day, and mean daily swimming speed. Swimming speed was calculated as the distance 169 
between two consecutive locations on the same day divided by the time difference when 170 
these two locations were recorded. These speeds must be considered minimum as they do not 171 
integrate the diving phase of the birds with additional vertical and lateral movements. We 172 
used general linear mixed models, employed in R 4.2.2. (R Core Team & R Development 173 
Core Team, 2022) to examine differences in trip statistics between birds from the different 174 
sites.  175 

Maxent modelling of suitable dispersal destinations 176 
We used the maximum entropy approach (“Maxent”; Phillips, Anderson & Schapire, 2006; 177 
Phillips & Dudík, 2008; Phillips et al., 2017) to model the distribution of tawaki at their 178 
dispersal destination in the subantarctic region. Maxent employs a machine-learning method 179 
that uses presence-only data to estimate a target probability distribution by finding the 180 
probability distribution of maximum entropy. Maxent examines an a priori set of 181 
environmental variables at locations where animal presence is recorded and compares these 182 
with the same variables at generated pseudo-absence locations, to identify which variable 183 
best explain animal selection of used sites and to project these conditions to wider areas that 184 
should also be suitable for the animals even though no actual presence data was recorded. 185 
Maxent’s similarity to inhomogeneous Poisson point processes means that outputs can be 186 
scaled to probability of presence using a complementary log-log link (cloglog) function so 187 
that habitat suitability can be visualised in a 0-1 raster set, where cell values closer to 0 are 188 
indicative of unsuitable, and values closer to 1 of suitable habitat conditions. 189 

Six environmental data features previously identified to best describe habitat preferences of 190 
tawaki in the high seas (Mattern et al., 2018) were selected to develop a Maxent distribution 191 
model in the subantarctic region. Two features were derived from NASA’s satellite-based 192 
AUQA-Modis ocean colour program (https://oceancolor.gsfc.nasa.gov), namely night-time 193 
sea surface temperature (nsst) and chlorophyll-a concentration (chlo_a). We also used sea 194 
level anomaly (sla; Copernicus Climate Data,  https://doi.org/10.24381/cds.4c328c78), 195 
surface current velocity (velo; OSCAR 3rd degree surface currents, 196 
https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg), Mixed Layer Depth (mld; 197 
SEANOE, https://doi.org/10.17882/91774), and bathymetry (bathy; GEBCO 2022; 198 
https://www.gebco.net/data_and_products/gridded_bathymetry_data/).  199 

Tawaki disperse south over the austral fall and winter period, which greatly limits 200 
completeness of satellite-based environmental data. Short day lengths and frequent cloud 201 
cover means that raster layers that are derived from optical measurements from space often 202 
contain cells without valid data and, thus, are not suitable for Maxent modelling. To 203 
overcome this limitation, we had to use seasonal averages that combine measurements taken 204 
from March to June 2019. SST and Chlo_a data were directly available for download as 205 
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seasonal averages for focal period. However, current velocity and sea level anomaly data 206 
were only downloadable as 5-day grids. For these variables, all data sets for March to June 207 
were downloaded and combined into a single mean raster by using the ‘Raster Calculator’ in 208 
ArcGIS Pro 3.1.0 (ESRI Inc., Redlands, CA, USA). Sea surface current data consisted of 209 
vertical (v) and horizontal component (u) rasters. Using the ‘Raster Calculator’ the vectorial 210 
current velocity raster was calculated as velocity=sqrt(u2+v2). The Mixed Layer Depth raster 211 
was only available as a composite of direct measurements taken between 1970 and 2021 so 212 
that seasonal discrimination of the data was not possible. Obviously, bathymetry also is a 213 
temporally static variable. 214 

All environmental rasters clipped to the same extent of 30°S to 65°S and 80°E to 45°W (i.e. 215 
across the date line) in ArcGIS Pro 3.1.0 (function ‘Clip raster’). As the data sets were 216 
available in different spatial resolutions, the respective rasters were first projected to UTM 217 
datum using the ArcGIS function ‘Project raster’, then resampled (‘Resample’) to have the 218 
same resolution with cell sizes of 25x25 km. The resulting clipped and resampled rasters 219 
were then exported as ASCII raster files that could be processed by the Java software Maxent 220 
3.4.4 (Phillips, Dudík & Schapire, 2023). 221 

Tawaki dispersal movements can be differentiated into three phases, the outgoing travel 222 
phase, the foraging phase at the destination, and the incoming return phase (Mattern et al., 223 
2018). For each bird, locations that were >75% of the maximum distance from the point of 224 
origin were classified as “at destination”. To model the environmental suitability of the 225 
subantarctic region for tawaki during their winter migration, only locations classified as “at 226 
destination” were used. The Maxent analysis was set up to use a randomly chosen 25% of the 227 
location data as test samples with the remaining data used for model training over 500 228 
iterations. The model produces response curves for each environmental variable that are then 229 
used for jack-knife analysis of variable importance expressed as percent contribution (PC) to 230 
the model (Phillips, 2017). 231 

Permits and Animal Ethics 232 
This study complies with the relevant national, international, and institutional guidelines 233 
regarding animal care. It was conducted under a research permit (38882-RES) issued by the 234 
Department of Conservation under the New Zealand Wildlife Act 1953. All manipulations 235 
were approved by the Ethics Committee of the University of Otago (D69/17).  236 
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Results 237 

Satellite tracking 238 
Between 23 February and 11 September 2019, a total of 15,010 locations was received for the 239 
14 tawaki fitted with satellite tags. After filtering, 5,024 locations were accepted for the 240 
reconstruction of the birds’ travel paths (Figure 1) and subsequent analysis.  241 

Birds from the three main groups departed on their winter migration at around the same time 242 
with average departure dates of 27 February (Milford Sound/Fiordland, n=5), 28 February 243 
(Jackson Head/West Coast, n=1), and 1 March (Whenua Hou/Foveaux Strait, n=8) (Table 1). 244 

A median of 280 locations (range: 5-870) were received per bird and penguins transmitted for 245 
a median of 127 days (range: 52-192 days) which allowed the reconstruction of complete 246 
winter trips for five birds, with an additional six birds transmitting well into the third, return 247 
stage of their journey. Three birds stopped transmitting before they had embarked on their 248 
return to the mainland. 249 

All tawaki travelled southwest with destinations located in the subantarctic region 250 
approximately 1,000 km due south of Tasmania in international waters outside of the New 251 
Zealand Exclusive Economic Zone (Figure 1). Penguins for which complete winter trips 252 
could be recorded achieved maximum distances of between 1,002 and 2,193 (median: 1,585 253 
km, n=5) kilometres away from their point of origin, covering total distances of a median 254 
6,086 km (range: 3,917-7,200 km) over the course of 131-156 days (median: 135 days) 255 
(Table 1). Penguins that entered the return phase before transmissions stopped reached a 256 
median maximum distance of 1,689 km (range: 1,002-2,688 km, n=11) from their place of 257 
moult.  258 

Comparing the birds’ mean distances from their place of moult on a weekly basis shows little 259 
difference in the distances reached each week when comparing birds from Milford Sound and 260 
Whenua Hou (Figure 2). Penguins from Milford Sound and Whenua Hou had reached their 261 
non-breeding destinations by the first week of April. The return journeys in both groups 262 
started as early as the first week of May, with all birds moving back towards the mainland by 263 
the first week of June. The female from Jackson Head did not distance herself as much or as 264 
fast from the mainland, but her home distances still fall well within the range of the other 265 
groups. 266 

Linear mixed effect models of the birds’ spatial distribution using the means of recorded 267 
longitude and latitude show no major differences in the distribution of penguins from the 268 
three main groups during any of the trip stages (Table 2). The only significant difference is 269 
that males tend to forage around 3 degrees further south while at the winter destination. Thus, 270 
data from all groups were pooled to model habitat suitability of the subantarctic ocean region 271 
as a non-breeding destination for tawaki. 272 

Maxent modelling of habitat suitability 273 
Calculating daily average locations for each bird and limiting the resulting data set to 274 
locations ≥75% of the maximum distance from each bird’s point of origin, reduced the data 275 
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set to 605 locations that were the used to estimate penguin distribution at their winter 276 
destination using six environmental variable rasters (Figure 3).  277 

The resulting Maxent model (Figure 4) indicates that suitable habitat for tawaki is located 278 
south of the subantarctic front (SAF), principally south of latitude 50°S and west of longitude 279 
160°E. Overall bands of suitable conditions can be found at variable rates along the southern 280 
fringes of subantarctic front throughout the western Pacific and into the eastern Indian Ocean. 281 
The exception being the area of the Campbell Plateau directly south of New Zealand. Except 282 
for a small band of suitable conditions along the south-eastern limits of the Plateau, the 283 
subantarctic waters within the NZ EEZ seem largely unsuitable for tawaki. 284 

The model indicated that mixed layer depth (MLD) was the most important predictor 285 
suitability of the subantarctic ocean (percent contribution to the model – MLD: 57%) 286 
followed by ocean temperature (NSST: 28.3%) and bathymetry (BATHY: 12.5%). 287 
Chlorophyll-a (CHL_A: 0.9%), sea level anomaly (SLA: 0.7%), and surface current velocity 288 
(SLA: 0.6%) played next to no role in determining environmental conditions preferred by 289 
tawaki at their winter dispersal destination. The response curves resulting from the model 290 
provide deeper insights into the range over which the environmental variables are of 291 
importance. The response curve for mixed layer depth peaks around at depths of 81-83 292 
metres; most suitable conditions for tawaki presence (probability >0.75) range at MLDs 293 
between 71 and 91 m (Figure 5). Sea surface temperature (NSST) peaks around 6°C with 294 
probability of presence being higher than 0.75 in water temperatures between 4°C and 8°C. 295 
For the last relevant variable, bathymetry (BATHY), has no distinct peak but water depths 296 
between 1,800 m and 4,500 m best predict tawaki presence. 297 

Discussion 298 
Tawaki migrating over winter showed similar movement patterns and ranges as has 299 
previously been determined for their pre-moult journeys (Mattern et al., 2018). However, 300 
whereas before the moult the penguins have only 8-10 weeks to complete their journeys, they 301 
can take twice as much time over winter. This underlines the remarkability of the tawaki 302 
long-distance pre-moult movements (Mattern et al., 2018) as well as the importance of the 303 
subantarctic region south of Australia for the species’ non-breeding distribution and survival 304 
(Thiebot et al., 2020; Green et al., 2022). 305 

Effects of devices on penguin performance and survival 306 
While externally attached devices inevitably influence the performance of diving animals 307 
(e.g., Chiaradia et al., 2005; Wilson & McMahon, 2006; Ludynia et al., 2012), previous 308 
studies on crested penguins found little evidence that the effects are significant enough to 309 
alter their migratory behaviour or affect their survival (e.g., Pütz et al., 2006; Mattern et al., 310 
2018; Houstin et al., 2022). Although cessation of transmission can indicate the death of a 311 
study animal, malfunctions and especially loss of the device are also possible causes (Sergio 312 
et al., 2019). Devices on five of the eight tawaki from Whenua Hou stopped transmitting 313 
before the birds had completed their journeys (Table 1), yet all birds fitted with transmitters 314 
in February 2019 were re-sighted in their home colony in August 2019. The single female 315 
from Jackson Head was encountered incubating a fresh clutch of eggs in mid-August 2019, 316 
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with the device still attached and recoverable. Four of the five birds fitted with transmitters in 317 
Milford Sound have subsequently been observed by an automatic wildlife monitoring system, 318 
so that only one of the birds fitted with transmitters remains unaccounted for. Hence, device 319 
loss was the main explanation for the cessation of signal transmission in this study. 320 

Movements of penguins from different breeding sites 321 
Tawaki from the species’ entire breeding range exhibited similar movement patterns. With all 322 
birds heading towards the same subantarctic area south of Tasmania (Figure 1), it could be 323 
expected that on average penguins from Milford Sound would distance themselves slightly 324 
more from their home colony than their Whenua Hou counterparts – Milford Sound is located 325 
approximately 200 km further north. But this is not the case (Figure 2). Instead, the distance 326 
between Whenua Hou and Milford Sound may reflect in the fact that some of the Whenua 327 
Hou penguins reached further west than their Milford Sound conspecifics. However, on the 328 
scale that the tawaki winter migration occurs, the origin of the birds had no significant effect 329 
on how penguins from the three main groups distributed themselves during the various stages 330 
of their winter journeys (Table 2). Individual variation likely masks any potential effect of the 331 
spatial distance between the birds’ origins.  332 

The tawaki winter migration has previously been studied via geolocators (Thiebot et al., 333 
2020; Green et al., 2022). Although not as spatially accurate as satellite transmitters, the 334 
penguins’ reconstructed movement patterns match our observations. While both studies were 335 
conducted with birds from colonies in close proximity to or at the same sites of this study, it 336 
confirms consistency in the penguins’ winter movements across the years. This relative 337 
uniformity in the movement patterns of tawaki that moulted along the western shores of 338 
southern New Zealand underlines the importance of the birds’ non-breeding destination, the 339 
ocean south of the subantarctic front (SAF). 340 

Characterisation of environment in the destination region 341 
Physical ocean boundaries, such as fronts, are of significant biological relevance as physical 342 
processes can result in an accumulation of nutrients and, therefore, increased prey abundance 343 
for oceanic predators (Bost et al., 2009a). Tracking data showed that the penguins’ dispersal 344 
destination was located south of the Subantarctic Front (Figure 1), which matches 345 
observations previously reported using geolocation data (Thiebot et al., 2020; Green et al., 346 
2022). This ocean region is characterised by colder surface temperatures (3-8°C) and low 347 
chlorophyll-a concentrations (Figure 3).  348 

During their winter migration, tawaki leave the areas of subtropical waters north of the 349 
subtropical front (STF) characterized by temperatures >12°C, with which the species is 350 
exclusively associated during the breeding season (Mattern & Wilson, 2019a; Poupart et al., 351 
2019; Otis, 2021; Hornblow, 2022). Within 3-4 weeks most of the penguins passed through 352 
the subantarctic region (8-11°C) and crossed the Subantarctic Front into the waters of the 353 
Polar Frontal Zone (PFZ), that is, the oceanic region located between the Subantarctic Front 354 
(SAF) and the Antarctic Polar Front (APF). This is consistent with temperature profiles 355 
reported in Thiebot et al. (2020).The PFZ is characterized by an entrainment of nutrients that 356 
originate from upwelling forces in the Southern Ocean which can sustain intense diatom 357 

Commented [KS71]: But in that figure, you use per group an 
average per week, so you cannot say whether they go further, because 
differences may be cancelled out by averaging (birds may reach their 
maximum distance at different moments). 

Commented [KS72]: And/or precise 

Commented [KS73]: How many years in total? 

Commented [KS74]: results 

Commented [KS75]: Colder than what? 
And low compared to what? 

Commented [KS76]: Within 3-4 weeks time window, or 3-4 
weeks after departure? 



blooms (Sarmiento et al., 2004). As such, this nutrient richness probably explains why the 358 
PFZ is targeted by tawaki.  359 

The closely-related Snares penguins (E. robustus), similarly to tawaki, move westwards to 360 
the oceans south of Australia in winter, but stay predominantly along the subtropical front 361 
(Green et al., 2022). However, Snares penguins leave on their winter journeys 4-6 weeks later 362 
than do tawaki and reach their non-breeding destinations only when tawaki are well into the 363 
return phase of their winter movements. Thus, seasonal differences in the ocean productivity 364 
during both species’ winter migration appear to play a vital role in the spatial segregation of 365 
both species’ marine habitat in the eastern Indian Ocean south of Australia. Seasonality likely 366 
also explains why chlorophyll-a concentration plays only a minor role in determining the 367 
habitat suitability of tawaki during the winter migration. 368 

Although chlorophyll-a concentrations are considered a good proxy for ocean productivity 369 
and increased prey availability for seabirds (Suryan, Santora & Sydeman, 2012), this may not 370 
always be the case (Grémillet et al., 2008). Moreover, chlorophyll-a concentration data are 371 
generally derived from optical satellite measurements and therefore limited to the surface 372 
layer of the oceans (Morales & Acker, 2011). As such, chlorophyll-a concentration represents 373 
the environmental conditions at the surface and might not reflect what is happening at greater 374 
depth. This is likely to be particularly relevant in deep diving species, such as tawaki 375 
(Grémillet et al., 2008). Although the satellite transmitters did not record any information 376 
about diving behaviour, the Maxent model nevertheless allows to make inferences  about 377 
tawaki diving behaviour while in the subantarctic region. 378 

The models of habitat suitability indicate a substantial effect of the mixed layer depth (MLD) 379 
on the likelihood of tawaki presence. With a contribution of 57% to the model, MLD must be 380 
described as a stand-out parameter during this second stage of the winter migration. MLD 381 
provides an indication of at which depth the thermocline, an abrupt change in water 382 
temperature and/or salinity, is located (Kara, Rochford & Hurlburt, 2000). Just like oceanic 383 
fronts, the thermocline represents a physical boundary at which nutrients and biomass can 384 
accumulate (Bost et al., 2009a). The model suggests that the highest likelihood of tawaki 385 
being present was in regions with the shallowest MLD over most of the Pacific and Indian 386 
Ocean’s subantarctic regions (Sarmiento et al., 2004). In this region, MLD ranges around 80 387 
m (Figure 5), which corresponds to dive depths recorded in  tawaki during the breeding 388 
season when foraging outside of fjord environments (Otis, 2021; Hornblow, 2022). Thus, the 389 
thermocline is certainly accessible by tawaki at their non-breeding destination. Foraging at 390 
the thermocline has already been described as a strategy used by penguins to pursue 391 
predictably-distributed prey (Bost et al., 2009a; Labrousse et al., 2019).  During winter, 392 
juvenile emperor penguins are believed to be foraging at the thermocline for myctophid fish 393 
and squid (Labrousse et al., 2019). Given that the abundance of krill – known to be an 394 
important food source for Snares penguin (Mattern et al., 2009) –  is decreased over the 395 
winter period of the year (Young et al., 1993) it seems likely that tawaki are also primarily 396 
targeting fish and squid when venturing south. This dietary preference also matches what is 397 
known about the species’ prey composition during the breeding season (van Heezik, 1989, 398 
1990; Poupart et al., 2019; Hornblow, 2022). 399 
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Variable ocean habitats, variable diet 400 
Crested penguins all move far from their breeding areas over winter (e.g., Pütz et al., 2002; 401 
Rey et al., 2007; Bost et al., 2009b; Thiebot et al., 2011; Green et al., 2022). Populations that 402 
live and breed in pelagic environments principally show a lateral movement where the birds 403 
travel eastwards or westwards, focussing their activities on water masses located at or near 404 
frontal zones, be it the Subtropical Front (e.g. Snares penguins, Northern Rockhopper 405 
penguins E. moseleyi), the Subantarctic Front (Eastern Rockhopper E. filholi), and/or the 406 
Polar Frontal Zone (Macaroni/Royal penguins E. chrysolophus/schlegeli) (Green et al., 407 
2023). What sets tawaki apart from the other crested penguin species, is that their migration 408 
spans three major fronts and the associated water masses ranging from subtropical to polar. 409 
Foraging in oceanic regions characterised by significantly different environmental conditions 410 
should also reflect in the prey consumed by tawaki during their winter migration.  411 

This raises the question, whether prey abundance or quality can explain tawaki travelling 412 
thousands of kilometres to the regions south of the Subantarctic Front. Clearly, a substantial 413 
amount of prey must be consumed on the penguins’ return journey, which, compared to the 414 
outgoing phase of the winter migration, is prolonged (Figure 2). Even though they breed 415 
south of tawaki, Snares penguins move further north and remain in the vicinity of the 416 
Subtropical Front over winter (Thompson, 2016; Green et al., 2022). The tawaki satellite 417 
tracks show that several of the birds return to the mainland via routes along the STF also 418 
(Figure 1), indicating this area is as suitable for tawaki as it is for Snares penguins. Tawaki  419 
start on their winter journeys two months earlier than Snares penguins (Green et al., 2022) 420 
which might make visiting the southern regions in autumn (March-May) more viable for 421 
tawaki, as the reduction in ocean productivity during winter has yet to take effect (Moore & 422 
Abbott, 2000; Murphy et al., 2001). However, considering that many other crested penguins 423 
forage exclusively at these latitudes through the winter (Green et al., 2023), seasonality seems 424 
unlikely to be an inhibiting factor and, conversely, not a compelling explanation as to why 425 
tawaki favour subantarctic over subtropical waters. 426 

Without knowledge about prey consumed over the non-breeding period, it is difficult to 427 
unravel why tawaki cross two major fronts during the winter migration. However, the fact 428 
they do may provide some insight into why the tawaki population is doing better than other 429 
NZ crested penguins. 430 

Accessing different water masses a key for population stability? 431 
Although tawaki have long been considered one of the rarest penguin species (McLean et al., 432 
1997) and one that may be undergoing a steady decline in population numbers (Otley et al., 433 
2018), recent population surveys indicate the species is considerably more numerous than 434 
previously thought (Long, 2017; Mattern & Long, 2017; Long & Litchwark, 2021), and 435 
might even be expanding its range (Young, Pullar & McKinlay, 2015; Mattern & Wilson, 436 
2019a). As a result, the IUCN Red list downlisted tawaki from “Vulnerable” to “Near 437 
Threatened” in 2020 (IUCN, 2020). This stands in stark contrast to two other crested 438 
penguins breeding in the New Zealand subantarctic region, the Erect-crested penguin (E. 439 
sclateri) and the Eastern Rockhopper penguin. Both species have experienced significant 440 
declines in the past 50 years (Taylor, 2000; Hiscock & Chilvers, 2014; Davis et al., 2022), a 441 
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trend that largely continues, albeit at a reduced rate in recent years (Morrison et al., 2015). 442 
They breed on remote subantarctic Bounty, Antipodes, and Campbell Islands southeast of 443 
New Zealand, about halfway between the Subtropical and Subantarctic Fronts. The winter 444 
migration of Eastern Rockhopper has been recently examined and birds tended to move 445 
eastwards along the Subantarctic Front into the southern Pacific ocean, which conforms with 446 
the lateral movement patterns common in crested penguins (Thompson, 2016; Green et al., 447 
2023). Data from GLS tracking of Erect-crested penguins seem to suggest similar trajectories 448 
in Erect-crested penguins (Green, 2023). Hence, the penguins primarily remain within the 449 
same water mass throughout the non-breeding period, which also means that changes to the 450 
productivity within these water masses may affect their foraging success and survival, 451 
ultimately driving population changes (Hilton et al., 2006).  Environmental phenomena, such 452 
as El Niño or La Niña which significantly influence intensity and distribution of ocean 453 
productivity, have a more uniform effect within certain water masses (Racault et al., 2012), 454 
which then in turn could negatively affect penguin species that are concentrating their winter 455 
migration within a limited band of latitudes. Compared to other crested penguins found in 456 
New Zealand, tawaki inhabit a diverse array of water masses. It is likely that plastic 457 
behaviour observed during the breeding season (Otis, 2021; Hornblow, 2022) also enables 458 
them to adapt their behaviour during the winter migration to the varying foraging conditions 459 
in different water masses. 460 

Conclusion 461 
During the non-breeding period, tawaki exhibit the same behavioural plasticity that allows 462 
them to utilize different marine habitats that is also apparent during the breeding period 463 
(Mattern & Wilson, 2019a). This could be a significant advantage in the face of ongoing and 464 
rapid change in our oceans, especially when compared to the strategies of other crested 465 
penguin species in the New Zealand region. According to recent population estimates, tawaki 466 
and Snares penguins, two species that breed in the warm waters north of the Subtropical 467 
Front, both show stable if not increasing population trends (Mattern & Wilson, 2019a,b). 468 
Snares penguins even move along the Subtropical Front when not breeding (Green et al., 469 
2022). In contrast, Erect-crested and Eastern Rockhopper penguins that both breed 470 
exclusively in subantarctic waters are declining (Hiscock & Chilvers, 2014). As such, the 471 
secret of success seems to lie in access to warmer waters. In this light, tawaki’s affinity to 472 
move into the subantarctic region appears to be counter intuitive. However, travelling to the 473 
Polar Front at least does not seem to negatively affect the penguins’ survival. This is likely 474 
due to a combination of physical characteristics at the penguins’ non-breeding destination 475 
that make this region adequate foraging habitat, and the fact that tawaki can utilize resources 476 
in warmer waters on their slow return to their breeding sites. In the end, their non-breeding 477 
movements to the south are what roots tawaki in in the Subantarctic region, from where 478 
crested penguins originated (Cole et al., 2019). 479 
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