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ABSTRACT
This study investigates the electrical properties of the extracellular fluid in honeybees
(Apis mellifera) and its relationship with different body segments. By characterizing
resistance, capacitance, and electrical impedance, aspects such as ionic composition,
molecular polarization, and the differential response of live bees to electrical stimuli
were evaluated. The results show that electrical characteristics vary significantly
depending on the body segment, with the head exhibiting high resistance values and
the abdomen displaying high capacitance, reflecting differences in molecular
composition and functionality. Additionally, experiments with live bees
demonstrated the feasibility of measuring electrical parameters non-invasively,
opening new possibilities for monitoring the health of these pollinators under
controlled conditions and in natural environments. This work lays the foundation for
developing innovative tools in ecological monitoring, the assessment of
environmental stressors, and the sustainable management of bee colonies.
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INTRODUCTION
The electrical properties of biological materials (Heng et al., 2023; Kuang & Nelson, 1998;
Leijsen et al., 2021;Miklavčič, Pavšelj & Hart, 2006; Sasaki et al., 2022; Smolyanskaya et al.,
2018) have been extensively studied due to their potential applications in biotechnology
(Atkinson et al., 2023; Bedi et al., 2022; Forro et al., 2021), diagnostics (Anushree et al.,
2022; Russo et al., 2022), and physiological monitoring. Biological tissues and fluids exhibit
electrical behaviors (Angenent et al., 2024; Jalilinejad et al., 2023; Joshi, Mishra & Narayan,
2021), which can be explored to understand their composition, structure, and
functionality. The characterization of these electrical properties provides insights into ion
transport, membrane dynamics, and cellular interactions. For instance, dielectric
spectroscopy has been applied in mammalian tissues to study hydration levels and cellular
density, in plant tissues to assess water content and ion fluxes, and in microbial systems to
monitor metabolic activity. In these systems, electrical resistance and capacitance
measurements have revealed information about ion mobility, membrane integrity, and the
behavior of polar molecules (Gabriel, Gabriel & Corthout, 1996; Heileman, Daoud &
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Tabrizian, 2013; Yao et al., 2020). Despite this, insect extracellular fluids remain
understudied, especially in ecologically relevant species such as honeybees. Exploring their
electrical properties may uncover useful biomarkers of physiological condition and
environmental stress.

In the case of insects, particularly honeybees (Apis mellifera), the electrical
characteristics of their biological fluids remain largely unknown. Their role as pollinators
makes their health and physiological status topics of great interest. Recent studies have
emphasized the importance of monitoring their physiological and behavioral responses to
environmental stressors (Hung & Yiin, 2023;Mayack et al., 2022;Woodard, 2017), such as
pesticide exposure (Li et al., 2022; Lourenço et al., 2021; Shaher &Manjy, 2020) and dietary
changes (Ardalani et al., 2021; Bryś, Skowronek & Strachecka, 2021). However, the
electrical characteristics of their extracellular fluids have received little attention, despite
their potential to serve as indicators of ionic composition and metabolic activity.

The extracellular fluid of honeybees plays a fundamental role in maintaining
homeostasis (Bournonville et al., 2023; Gábor et al., 2017; Richardson et al., 2018),
transporting nutrients (Kannan et al., 2024; Li et al., 2024; Tafi et al., 2024), and supporting
immune responses (Gábor et al., 2017; Mallon, Brockmann & Schmid-Hempel, 2003). The
electrical properties of this fluid, such as resistance, capacitance, and impedance, may offer
new avenues for studying the physiological state of bees under various conditions.
Additionally, the ability to evaluate current-voltage relationships in the thorax of live bees
could provide information about ion mobility and potential interactions with the
surrounding tissues.

This study aims to investigate the electrical characteristics of the extracellular fluid of
honeybees under laboratory conditions. Four experiments were conducted: three focusing
on the extracellular fluid and one involving live bees. These experiments determined the
conductivity, capacitance, and impedance of the extracellular fluid. Finally, current-voltage
measurements allowed for the characterization of the extracellular fluid in the thorax of
immobilized live bees. The experiments sought to establish a foundation for evaluating the
electrical properties of honeybee fluids, offering potential applications in physiological
monitoring and environmental assessments. This research provides a novel perspective on
bee health and their electrical interactions.

MATERIALS AND METHODS
Experimental animals
The honeybees (Apis mellifera) used in this study were collected from the apiary at
Universidad del Rosario (Bogotá, Colombia). The insects selected were foragers captured
during their morning activity (~9 a.m). The bees were housed in disposable cups modified
to allow ventilation and feeding. Immediately after collection, the insects were transported
to the laboratory, where temperature, relative humidity, and light type were controlled
(T = 32 ± 0.2 �C; RH = 52 ± 5%; λ = 750 nm). Red light (750 nm) was used to minimize
behavioral alterations during handling, as bees exhibit reduced visual sensitivity at this
wavelength, allowing more consistent physiological measurements. The bees were kept
under these conditions for 24 h, during which they were fed with a 1 M sucrose solution
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(33.1% w/w) (Fig. 1A). Bee maintenance protocols followed the Organisation for
Economic Co-operation and Development (OECD) guidelines for insecticide exposure
(OCDE 245, 2017).

Extracellular fluid extraction
The extraction of extracellular fluid was performed after euthanizing the bees using low
temperatures (Kovac et al., 2014; MacMillan & Sinclair, 2011). For this, the insects were
placed in a cooling chamber for 24 h. Subsequently, the body segments (head, thorax, and
abdomen) were placed in filtered micropipette tips, and the fluid was extracted via
centrifugation at 4 �C. Each extraction involved seven bees subjected to 2,000 relative
centrifugal force (RCF) for 3 min. To preserve the extracellular fluid, 500 µL of distilled
water was added. Finally, the samples were stored at −20 �C until analysis.

Devices for electrical characterization
The first device used for electrical characterization was constructed using 96-well cell
culture plates, cylindrical gold electrodes (1.0 mm diameter) mounted on a 3D-printed
structure. The design ensured that the electrodes were positioned 3 mm apart, and their
terminals allowed for secure attachment to the plate by pressure. Wires were soldered to
the electrodes to facilitate manipulation on a breadboard, enabling series or parallel
configurations depending on the desired characterization (Fig. 1B).
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Figure 1 Schematics of the setups for characterizing extracellular fluid and live bees. (A) Container for maintaining bees under laboratory
conditions. (B) System for characterizing the extracellular fluid of bees. (C) System for characterizing the extracellular fluid of live bees. (D–G)
Equivalent circuits for modeling the electrical characteristics of the extracellular fluid. Full-size DOI: 10.7717/peerj.19691/fig-1
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The second device used for characterization consisted of stainless-steel electrodes and
acetate sheets. The electrodes were built using 32G hypodermic needles attached to each
side of acetate sheets (2 cm × 4 cm × 0.02 cm). The acetate thickness ensured the
separation distance between the two needles. Aluminum foil was added to each side of the
acetate to increase the conductive area of the needles. This assembly was connected to steel
rods covered with silicone tubing, onto which aluminum foil was attached to ensure
electrical conduction. Mechanical stabilization was achieved using screws and nuts
(Fig. 1C).

For live characterizations, plastic holders were constructed to immobilize bees,
facilitating electrical measurements. The holders were made using 1,000 µL micropipette
tips, which were modified with longitudinal grooves to allow the bees to slide in. The
insect’s abdomen remained inside the tube to prevent stings and facilitate handling. The
bee’s thorax was secured to the tube using a small piece of paraffin paper, immobilizing
the bees for characterization.

Experiment 1: electrical resistance of the extracellular fluid from bee
body segments
This experiment was designed to address questions related to the resistive behavior of the
extracellular fluid in honeybee body segments. Additionally, electrical resistance
measurements aimed to explore the electrical properties of the samples from each body
segment.

The experiment involved measuring the electrical resistance of extracellular fluid
samples from each body segment of the bees. For this, 30 µL samples were placed in the
wells of a cell culture plate. The experiment evaluated configurations of 1, 2, and 3 wells,
which were connected in parallel. Gold electrodes were inserted into the wells, and their
cables were connected in series with a 2,200Ω electrical resistor. These configurations were
connected to a digital multimeter (DMM7500 Keithley) to measure the resulting voltage
drop across the samples. The instrument was set to acquire 200 data points per minute. To
ensure measurement accuracy, five repetitions were performed.

Electrical model used for resistance measurements
Electrical characterization was performed using a voltage divider circuit, a configuration
that distributes the voltage from a power source among two or more resistive elements
connected in series. This method is widely used in electronic applications to obtain a
lower voltage from a higher voltage source. A voltage divider consists of a voltage source
(Vin) that provides the total voltage, which is then distributed among the circuit
components. The resistive materials are connected in series with the source, and the
potential difference (Vout) is measured across the components (Fig. 1D). Specifically,
in the proposed configuration, the electrical resistances of the extracellular fluid
samples (Rsample) were connected in series with a known resistor (R), following the
relationship:
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Rsample ¼ � Vout=Vin R
ðVout=Vin � 1Þ : (1)

Experiment 2: electrical capacitance of the extracellular fluid from bee
body segments
This experiment was designed to address questions related to the capacitive behavior of the
extracellular fluid in honeybee body segments. Additionally, the samples from each body
segment were analyzed to determine their dielectric characteristics in terms of electrical
capacitance.

The experiment involved measuring the electrical discharge of a capacitor connected in
parallel with the extracellular fluid samples from different body segments. For this, 30 µL
samples were placed in the wells of a cell culture plate. The experiment evaluated
configurations of 1, 2, and 3 wells, which were connected in parallel. Gold electrodes were
inserted into the wells, and their cables were connected in parallel with a 224 nF ceramic
capacitor. This configuration was then connected in series with a 5 MΩ resistor. The
capacitor was charged using a voltage source set to a constant value of 0.9 V. The discharge
measurements were performed by recording the voltage drop using a digital multimeter
(DMM7500 Keithley), which was configured to acquire 200 data points per minute. To
ensure measurement accuracy, five repetitions were performed.

Electrical model used for capacitance measurements
To analyze the electrical discharge of a capacitor, potential differences are applied to charge
it, and then it is allowed to discharge through a resistor. This type of circuit is useful for
studying how the energy stored in the capacitor dissipates through the resistor. In this
study, the system components included the extracellular fluid samples (C sample), along
with a capacitor (C) and a resistor (R) with known values. The resistor provided a
discharge path, allowing the stored charge (Q) to leave the capacitor plates, resulting in a
decrease in electric potential over time (Fig. 1E).

The voltage (V) across such a system should decrease exponentially with time (t),
following the equation:

V ¼ Voe
�t=s (2)

where V0 is the initial voltage and s is the time constant (RC). The constant s determines
the time required for the voltage to drop to approximately 36.8% of its initial value.

Experiment 3: electrical impedance of the extracellular fluid from bee
body segments
This experiment addressed questions related to the resistive and capacitive behavior of the
extracellular fluid in honeybee body segments through impedance measurements.
Additionally, electrical impedance measurements were incorporated to determine the
resistance and reactance of extracellular fluid samples from each body segment.
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The experiment involved measuring the reactance and electrical resistance of the
extracellular fluid samples, which were connected to a capacitor and a resistor. For this,
30 µL samples were deposited in the wells of the culture plate, with only three wells
evaluated, which were connected in series. Gold electrodes were inserted into the wells, and
their cables were connected in series with a 224 nF ceramic capacitor and a 2,200 Ω

resistor. Measurements were performed using an Inductance-Capacitance-Resistance
(LCR) meter (E4980AL; Keysight, Santa Rosa, California, USA), configured to measure
resistance and reactance five times for each frequency. The electrical excitation of the
samples was selected across four frequency ranges to obtain impedance at both low and
high frequencies: I1 = 20–120 Hz; I2 = 120–1,020 Hz; I3 = 1,020–10,020 Hz;
I4 = 10,020–100,020 Hz. The LCR meter was programmed using the Command Expert
software from Excel, and to ensure measurement accuracy, each measurement was
repeated five times.

Electrical model used for impedance measurements
Electrical impedance (Z) is a generalized measure of the opposition that a circuit or sample
presents to the flow of current when an alternating potential difference is applied. This
measure of electrical resistance for circuits with voltages varying at different frequencies
(ω = 2πf) includes both resistance (R) and reactance (X). Impedance is a complex quantity
(j ¼ ffiffiffiffiffiffi�1

p
), indicating that it consists of a real and imaginary component (Z = R + Xj). The

real component represents the opposition to current flow due to energy dissipation, while
the imaginary component represents the opposition to current flow due to reactive
elements such as capacitors (Fig. 1F).

In systems exhibiting both capacitive and resistive behavior, as observed in the
extracellular fluid samples, impedance follows the form:

Z ¼ R
1þ R2x2C2

þ R2xC
1þ R2x2C2

j: (3)

The limit of Z as the frequency approaches zero represents the resistive characteristic of the
system; however, as the frequency approaches infinity, the impedance value becomes zero.

Experiment 4: electrical characteristics of live bees
The questions addressed in this section focused on the electrical response observed in the
thorax due to electrical stimuli. The electrical responses of the bee thorax demonstrated the
resistive and capacitive behavior of living tissue.

The experiment involved obtaining current vs. voltage (I–V) curves from live bees,
which were immobilized and connected in parallel to a resistor-capacitor (RC) electrical
circuit using hypodermic needles. Measurements were performed using a source meter
(Keithley 2450), configured to produce electrical excitation and record the system’s
electrical current over three cycles. The excitation potential difference range was set from
−900 to 900 mV, with a sweep rate of 18 mV/s. The capacitance exhibited by the thorax
was calculated from the data obtained from the I–V curves.
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Electrical model used for impedance measurements
Voltammetry is a set of electrical techniques used to study the characteristics of a system by
measuring the electrical current generated when a potential is applied to a solution. The
potential (voltage) applied to the electrodes serves to excite the mobile components of
the samples, with the generated currents being proportional to the electroactive species in
the solution. In linear sweep voltammetry, a potential that varies linearly with time is
applied while the current is measured. The applied potential can be specified within
intervals to perform forward and reverse sweeps, providing information on reversible and
non-reversible processes. The relationship between current and potential is represented in
a voltammogram, where the horizontal axis displays the applied potential, and the vertical
axis shows the recorded current. When the samples exhibit both capacitive and resistive
characteristics, the current (I) in the system will increase or decrease depending on the
applied potential (Fig. 1G). The system’s variations will be proportional to the applied
voltage, a behavior described by a composite equation for each of the components:

I ¼ C
dV
dt

þ V
R
: (4)

The first component of Eq. (4) corresponds to the capacitive current, while the second is
related to the electrical resistance of the system.

RESULTS
Experiment 1: electrical resistance of extracellular fluid by body
segment
In the electrical resistance experiment, 105 bees were sacrificed to obtain extracellular fluid
from each of their body segments. The highest potential differences were observed when
using a single well, with the distribution range remaining constant over the evaluation
period [median; quartile 1; quartile 3]: [740 mV; 736 mV; 743 mV] head; [698 mV;
694 mV; 701 mV] thorax; [678 mV; 674 mV; 682 mV] abdomen. The samples exhibited
intermediate potential values when two wells were used; however, the dispersion of values
increased compared to measurements with a single well [median; quartile 1; quartile 3]:
[635 mV; 628 mV; 641 mV] Head; [579 mV; 571 mV; 586 mV] thorax; [554 mV; 546 mV;
561 mV] abdomen. In contrast, the values obtained with three wells were the lowest, and a
growing dependence over time was also observed [median; quartile 1; quartile 3]: [564 mV;
554 mV; 573 mV] head; [503 mV; 491 mV; 511 mV] thorax; [477 mV; 465 mV; 485 mV]
abdomen (Fig. 2A).

Additionally, resistance estimations using Eq. (1) indicated that the electrical
characteristics changed depending on the number of wells and the body segment. In all
cases, the samples from the head segment exhibited the highest electrical resistance values,
in contrast to the fluid obtained from the abdomen. The observed resistances in the
different segments decreased as the number of wells increased. The percentage differences
observed with two and three wells, relative to the first well, remained consistent (mean ±
SD): 47.77 ± 0.21% (well1–well2); 63.33 ± 0.23% (well1–well3). These results indicated that
as the number of wells increased, the system behaved similarly to a parallel circuit
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(Fig. 2B). Consequently, the extracellular fluid samples exhibited resistive behavior to the
flow of electrical current. The resistance values measured for each condition are
summarized in Table 1. The median and interquartile ranges show a consistent pattern
across body segments and well configurations, reinforcing the segmental differences in
electrical resistance observed in this study.

Experiment 2: electrical capacitance of extracellular fluid by body
segment
In the electrical capacitance experiment, 105 bees were sacrificed to obtain extracellular
fluid from each of their body segments. The potential of the samples connected to the
capacitor varied similarly to a discharge circuit, with an initial potential of 0.86 ± 0.02 V.
The 50% discharge (0.43 ± 0.01 V) was achieved within 0.18 s, while the 36.6% discharge
(0.31 ± 0.01 V) was reached in 0.27 s. In the 36.6% discharge interval, significant

Figure 2 Electrical resistance of the extracellular fluid. (A) Potential difference observed over one minute for the fluid obtained from bee body
segments. (B) Estimation of electrical resistance for each segment based on the number of wells. Full-size DOI: 10.7717/peerj.19691/fig-2

Table 1 Electrical resistance (kΩ) of extracellular fluid by body segment and well configuration.
Values are shown as median [Q1–Q3].

Body segment Resistance 1 well Resistance 2 wells Resistance 3 wells

Head 10.2 [9.9–10.4] 5.3 [5.1–5.4] 3.7 [3.5–3.9]

Thorax 7.6 [7.4–7.8] 4.0 [3.8–4.1] 2.8 [2.6–2.9]

Abdomen 6.7 [6.6–6.9] 3.5 [3.4–3.6] 2.5 [2.4–2.6]

Hernandez et al. (2025), PeerJ, DOI 10.7717/peerj.19691 8/19

http://dx.doi.org/10.7717/peerj.19691/fig-2
http://dx.doi.org/10.7717/peerj.19691
https://peerj.com/


differences (p < 0.0001) were observed in the discharge potentials for each body segment
depending on the number of wells used: (F2,357 = 28) head; (F2,357 = 53) thorax;
(F2,357 = 108) abdomen (Fig. 3A).

In the 0.35 to 0.62 s interval, the 36.6% capacitor discharge was achieved,
showing variations in the time constant for each body segment. The time constants
exhibited significant differences (p < 0.0001) depending on the number of wells
evaluated: (F2,357 = 16.5) well 1; (F2,357 = 47.0) well 2; (F2,357 = 72.1) well 3. The time
constants were highest for the abdomen, intermediate for the thorax, and lowest for the
head, with greater distinction as the number of wells increased. This consecutive increase
in the time constant indicated that the system’s capacitance also increased with the number
of wells, with values in the nanofarad range (Fig. 3B).

The capacitance measurements showed consistent differences between body segments.
The abdominal segment presented the highest capacitance values, followed by the thorax
and the head. This trend was maintained across all well configurations. The values
obtained indicate that the extracellular fluid can store electrical charge, and its capacitance
is affected by anatomical and physiological differences between segments. The capacitance
values recorded in the abdominal segment were consistently higher than those from the
thorax and head. This may be due to the higher content of polar molecules and metabolites
in the abdomen, increasing its ability to store charge. These values are comparable, in order
of magnitude, to those observed in tissues with high dielectric properties such as skeletal

Figure 3 Electrical capacitance of the extracellular fluid. (A) Observed discharge potential difference of extracellular fluid samples from bees.
(B) Estimation of the time constant and capacitance based on the number of wells. Asterisks indicate statistically significant differences between well
configurations (1, 2, and 3 wells) within each body segment (one-way ANOVA, p < 0.0001; Tukey’s test).

Full-size DOI: 10.7717/peerj.19691/fig-3
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muscle or lipid-rich membranes (Zimmermann & Van Rienen, 2021; Gabriel, Gabriel &
Corthout, 1996).

Experiment 3: electrical impedance of extracellular fluid by body
segment
In the electrical capacitance experiment, 35 bees were sacrificed to obtain extracellular fluid
from each of their body segments. The electrical impedance measurements of the
extracellular fluid exhibited frequency-dependent electrical characteristics. This was
evidenced in the Nyquist plots, where the relationship between reactance (imaginary
component) and electrical resistance (real component) displayed curved segments,
indicating both capacitive and resistive behavior. The Nyquist plot showed that the curves
corresponding to each body segment had a circular geometry, with the largest radius
observed for the head, followed by the thorax, and lastly, the abdomen.

The Nyquist plot also revealed that reactance and resistance values varied depending on
the body segment, with the highest values found in the head, followed by the thorax, and
the lowest in the abdomen. The head segment was characterized by the highest reactance
and resistance values at frequencies of 3.0 ± 0.1 kHz (mean ± SD): 15.8 ± 0.3 kΩ (X); 15.8 ±
2.5 kΩ (R). In contrast, at 3.5 ± 0.6 kHz, thorax samples exhibited lower reactance and
resistance values compared to the head (mean ± SD): 11.9 ± 0.2 kΩ (X); 11.7 ± 1.9 kΩ (R).
Finally, the electrical characteristics of the abdomen samples showed further reductions at
3.2 ± 0.4 kHz (mean ± SD): 10.6 ± 0.2 kΩ (X); 10.6 ± 1.4 kΩ (R) (Fig. 4A). These results
indicate that the components of the extracellular fluid are susceptible to interactions with
electric fields.

Figure 4 Capacitive and resistive behavior of extracellular fluid samples. (A) Nyquist plot showing the relationship between reactance and
resistance in the electrical system. (B) Bode plot showing the relationship between electrical impedance and the excitation frequency of the sample.

Full-size DOI: 10.7717/peerj.19691/fig-4
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The Bode plot demonstrated that impedance decreased with increasing frequency, a
characteristic behavior of systems that combine resistive and capacitive elements. In all
cases, the electrical impedance of the extracellular fluid samples exhibited an inverse
relationship with frequency (20 to 100,020 Hz), with this trend becoming more
pronounced at higher frequencies. Impedance values were distinct for each body segment,
with the highest values observed in the head, followed by the thorax, and the lowest in the
abdomen. Specifically, at low frequencies (20 to 120 Hz), the resistive characteristics of the
samples were predominant (mean ± SD): 34.6 ± 0.8 kΩ (Head); 25.7 ± 0.6 kΩ (Thorax);
23.2 ± 0.5 kΩ (Abdomen).

Experiment 4: voltammetry of live bees
The current-voltage (I–V) curves showed that the thorax of the bees exhibited electrical
characteristics under the experimental conditions. The linear changes in potential
difference produced variable currents, which followed opposite trends depending on
whether the potential was increasing (Pa) or decreasing (Pb). The behavior of both current
curves reflected a dependence typical of systems that combine resistive and capacitive
properties. These characteristics were evident when the electrical potential approached
zero, generating nonzero currents in the system (mean ± SD): 0.56 ± 0.10 µA (Pa);
−0.65 ± 0.09 µA (Pb) (Fig. 5A).

The electrical current in the thorax exhibited nearly linear behavior in the potential
range from −600 mV to 600 mV (slope (µA/V); initial current (µA)): 0.56; 0.37 (Pa);

Figure 5 Current-voltage curves of the thorax of live bees connected to a resistor and capacitor under uniform potential differences.
(A) Variation of current due to linear changes in electrical potential. (B) Linear model of the absolute values of electrical currents.

Full-size DOI: 10.7717/peerj.19691/fig-5
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−0.64; 0.27 (Pb). The current across the thorax reached values close to 0.80 µA at the
extreme potential values (−600 V; 600 V). Additionally, the currents generated at zero
volts differed, indicating that the extracellular fluid in the thorax responded
differently to the applied potentials: 0.47 µA (Pb); 0.36 µA (Pa). This result
demonstrated that the composition of the fluid in the thorax induced a higher electrical
resistance under decreasing potential conditions, leading to a lower current intensity
(0.12 µA) (Fig. 5B).

DISCUSSION
The results obtained in this study provide new insights into the electrical characteristics of
extracellular fluids in honeybees (Apis mellifera) and their associated physiological
implications. This approach allowed for the exploration of previously unstudied aspects,
contributing to the development of precise tools for assessing pollinator health under
different environmental conditions.

The experiments demonstrated that the electrical characteristics of extracellular fluid
vary significantly depending on the body segment, as observed in other types of studies
(Beyenbach, 2016; Crailsheim, 1985; Strachecka et al., 2022). In terms of electrical
resistance, the samples from the head segment exhibited the highest values, while those
from the abdomen showed the lowest. The differential resistance values of each segment
may be due to the volume of fluid they contain and the electrical properties of their
components. First, the amount of hemolymph in the head is lower than in the other two
segments, as shown in previous studies. Additionally, the resistance gradient found
suggests differences in ionic composition (sodium, chloride, and potassium) and in the
dynamics of the tissues surrounding the extracellular fluid.

Regarding capacitance, the samples exhibited behavior consistent with capacitive
systems during electrical discharge phases. This suggests that extracellular fluid samples
exhibited electrical polarization effects when exposed to potential differences, indicating
the presence of dielectric material within them (Di Meo et al., 2022; Gabriel, Gabriel &
Corthout, 1996; Zimmermann & Van Rienen, 2021). This polarization-susceptible material
likely corresponds to molecules with dipolar properties, which align with the field direction
in the presence of an electric field. Notably, the fluid extracted from the abdomen exhibited
the highest electrical capacitance, suggesting a higher presence of molecules that
underwent polarization. The increased capacitance in the abdomen is consistent with the
diverse elements present in this segment, such as water, pollen, sugars, and fats.

Compared to previously reported values in other biological fluids, the electrical
resistance and capacitance measured in honeybee extracellular fluid fall within the
expected range. For instance, hemolymph in lepidopteran insects such as Spodoptera
littoralis and Lymantria dispar has demonstrated osmolarities and ionic concentrations
that correspond to electrical conductivities between 4 and 6 mS/cm (Pannabecker,
Andrews & Beyenbach, 1992; Smagghe & Van Leeuwen, 2004). These values are compatible
with resistances in the 5–12 kΩ range, depending on developmental stage and solute
content, and are consistent with the segmental values observed here for Apis mellifera.
Likewise, capacitance values in the nanofarad range have been reported in tissues rich in
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water and dipolar molecules, such as muscle fibers and hemolymph, due to their dielectric
behavior (Gabriel, Gabriel & Corthout, 1996; Zimmermann & Van Rienen, 2021). The
segmental pattern observed in honeybees—with higher resistance in the head and higher
capacitance in the abdomen—reflects known physiological differences in fluid volume,
metabolite composition, and compartmentalized function across body regions. These
results support the idea that electrical measurements can serve as reliable indicators of
physiological specialization in insect compartments.

An interesting observation in both resistance and capacitance measurements was the
signal amplification with the addition of wells for measurements, behaving as passive
electrical elements. In the case of electrical resistance, the addition of wells increased
electrical effects, resembling a parallel resistor connection, where the total resistance is
always lower than its components. For electrical discharge connections, the parallel
configuration behaved as the sum of capacitances, exhibiting a greater ability to store
electrical charge, similar to that observed in other tissues (Schwan & Kay, n.d.; Sohn et al.,
2000; Tsai et al., 2020; Yao et al., 2020). These findings indicate that the evaluated
biological samples can be accurately characterized using electrical resistance and
capacitance models.

Electrical impedance also exhibited frequency-dependent behavior, with resistive
characteristics predominating at low frequencies and capacitive behavior emerging at
higher frequencies, similar to what has been observed in other biological systems (Abasi
et al., 2022; Grossi & Riccò, 2017; Leitzke & Zangl, 2020; Mesa et al., 2021;Wu et al., 2021;
Yao et al., 2020). This phenomenon aligns with systems containing mobile components
(ions) and polarizable molecules (dipoles) (Gabriel, Peyman & Grant, 2009; Gun, Ning &
Liang, 2017; Heileman, Daoud & Tabrizian, 2013; Jaffrin & Morel, 2008), as shown in the
resistance and capacitance experiments. A novel finding from the impedance
measurements was the dependence of reactance and resistance on excitation frequencies,
indicating that frequencies between 100 and 10,000 Hz can effectively characterize
extracellular fluid. Additionally, electrical impedance measurements allowed for the
simultaneous characterization of both mobile and dielectric components of the
extracellular fluid samples, similar to other biological systems (Bedard et al., 2022; Jönsson
et al., 2022; Veil et al., 2023). Such measurements are highly relevant for assessing bee
health, as they clearly differentiate each body segment. This approach could be particularly
valuable for studies on particle segregation or retention due to xenobiotic exposure.

Finally, the experiments with live bees demonstrated that the thorax exhibited a
differential electrical response when applying increasing and decreasing potentials. This
result highlights the sensitivity of the thoracic extracellular fluid, potentially linked to the
high metabolic and muscular activity in this region. The clear electrical current signal
obtained from live bees is one of the strongest points of this discussion due to its potential
real-world applications. As demonstrated, the current-voltage methodology required only
a small number of bees to obtain data, and the bees were released after measurements. This
suggests that electrical measurements could be standardized to characterize bees, enabling
the collection of information to identify anomalies in their bodies. This could serve as a
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valuable tool for early diagnostics, helping prevent significant bee population losses due to
a lack of health status information.

Although research on the electrical characteristics of biological fluids is well
documented in other organisms, this study stands out for its focus on honeybees. The
results confirm previously observed patterns in biological systems, such as the dependence
of capacitance and impedance on fluid density and ionic composition. The application of
these methodologies to insects is novel and opens a path for non-invasive physiological
monitoring in bees.

The results of our measurements have significant implications both in biological
and technological contexts. The electrical differentiation among body segments may be
linked to specific functions, such as nutrient transport, immune activity, or
metabolism. Additionally, the development of customized experimental devices
facilitates precise electrical characterization, demonstrating their adaptability to
complex and small biological systems. From an applied perspective, the electrical
properties of extracellular fluid could be used to assess the impact of environmental
stressors, such as pesticides or dietary changes, on bee health (Fig. 6). This has considerable
potential for improving ecological monitoring practices and sustainable colony
management.

One limitation of this study is the reliance on measurements under controlled
conditions, which may limit direct applicability in natural environments. Additionally, the
relatively small sample size may leave some aspects unexplored. Future research on
electrical characteristics should examine variations in extracellular fluids due to different
factors, including diet, environmental conditions, and pathologies. It would also be
valuable to develop more non-invasive techniques to measure these properties in live bees,
enabling more frequent monitoring with minimal impact on individuals. Thus, this study
represents a significant step forward in understanding the electrical characteristics of
biological fluids in honeybees and lays the foundation for future applications in
physiological and environmental monitoring.

Figure 6 Electrical characteristics. Segment-specific electrical characteristics of extracellular fluid in
honeybees. The head shows high resistance and impedance but low capacitance, while the abdomen
shows the opposite pattern. These patterns reflect physiological specialization and may serve as bio-
markers of systemic health. Full-size DOI: 10.7717/peerj.19691/fig-6

Hernandez et al. (2025), PeerJ, DOI 10.7717/peerj.19691 14/19

http://dx.doi.org/10.7717/peerj.19691/fig-6
http://dx.doi.org/10.7717/peerj.19691
https://peerj.com/


CONCLUSIONS
This study not only expands the understanding of the electrical characteristics of biological
fluids in honeybees (Apis mellifera) but also establishes a robust experimental framework
for future research in physiological and environmental monitoring. The characterization
of resistance, capacitance, and impedance in different body segments provides a tool to
understand the biological responses of these essential pollinators to environmental
challenges such as pesticide exposure and dietary changes.

Additionally, the integration of non-invasive techniques and customized devices
highlights the potential of these methodologies for field applications, promoting a
sustainable approach to colony management and preservation. This work represents a
crucial step toward implementing strategies based on electrical parameters to ensure the
health and survival of bees, which are fundamental pillars of ecosystems and global food
security.
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