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ABSTRACT

Color pattern plays a crucial role in various aspects of an organism’s biology, including

camouflage, mating, and communication. Despite its significance, methods to quantify

and study color pattern variation are often lacking, especially for complex patterns that

defy simple categorization. In this study, we developed algorithms to capture and obtain

data on 19 different pattern measurements from digital images of 55 individuals of the

Eastern box turtleTerrapene carolina sampled in the field and in amuseum. The Eastern

box turtle is an ideal species to study variation of complex color patterns as this species

is easily encountered in the field and in museum collections in Northeastern US, has

a relatively easy to identify bright color pattern against a dark background, and has a

rigid shell structure, which removes problems related to body distortion. The selected

measurements capture the different aspects of the complexity of the color pattern,

including the symmetry of the pattern on the turtles’ scutes, a critical component in

developmental and evolutionary studies. We estimated the variation of each of these

19 measurements across our samples. We determined how much of this variation was

influenced by the sensitivity of the pattern capture algorithm due to non-standardized

elements of the image acquisition, lighting conditions, and animal shape on pattern

variation. To our knowledge, this is the first study to use a comprehensive set of pattern

measurements to capture variation in a complex color pattern while also assessing the

susceptibility of each of thesemeasurements to noise introduced during data collection.

Additionally, we carried out a citizen science approach to characterize the complexity

of the color pattern based on human perception and determine which of the 19

pattern measurements best describe this complexity. The most variable measurements

across individuals were blue and yellow contrast between the pattern and non-pattern

coloration and the average size of objects. From our estimates of themeasurement noise

due to image acquisition and analysis, we found that the contrast differences reflected

true pattern variations between individual turtles, whereas differences in the average

size of objects were influenced by both individual turtle variation and measurement

inconsistencies. We found that due to the complexity of the patterns, measurements
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had lower variability if they did not depend on the algorithm defining a set of discrete

objects. For example, total area had much less measurement variability than average

object area. Our study provides a comprehensive workflow and tools to study variation

in complex color patterns in organisms sampled under non-standardized conditions

while also estimating the influence of noise due to biological and non-biological factors.

Subjects Computational Biology, Developmental Biology, Ecology, Mathematical Biology,

Zoology

Keywords Box turtle, Citizen science, Complex color patterns, Color pattern evolution, Pattern

elements, Color pattern symmetry, Measurement noise, Threshold, Turtle Shell

INTRODUCTION

Animal color and color pattern are fundamental traits in ecology and evolution, frequently

implicated in communication among individuals of the same species, sexual selection,

anti-predator strategies, and thermoregulation. Consequently, they often undergo strong

selective pressures (Caro, 2005; De Solan et al., 2020; Gomez & Théry, 2007; Tibbetts &

Dale, 2004). Variation in color and pattern exists not only between species, life stages, and

individuals, but also within different parts of the same animal, potentially in response to

diverse selective forces (Allen et al., 2020; Forsman et al., 2008; Glimm et al., 2021). While

extensive research has examined animal color patterns, particularly focusing on broad

categories such as spots, bands, or stripes (Endler, 1990; Hemingson, Cowman & Bellwood,

2024;Mason & Bowie, 2020; Kiskowski et al., 2019; Pérez-Rodríguez, Jovani & Stevens, 2017;

Shamir et al., 2010), the variation in size, shape, distribution, spatial organization, and

other components of coloration of these patterns is still mostly overlooked (but see for

example Chan, Stevens & Todd, 2019; Glimm et al., 2021; Hastings et al., 2023; Miyazawa,

Okamoto & Kondo, 2010; Stoddard, Kilner & Town, 2014). However, neglecting these

nuances could miss crucial aspects of pattern variation and its implication for ecological,

developmental, and evolutionary processes. As such, more refined methodologies to

capture these intricate differences are needed. Additionally, because the few approaches

currently available to capture detailed measurements of the color pattern have not been

applied to diverse organisms sampled under variable conditions, it is essential to assess

how noise from systematic variation, such as differences in lighting and camera angles,

could influence estimates of color pattern variation.

Describing and quantifying color pattern variation in detail poses a challenge, particularly

in capturing and breaking down complex patterns into their constituent pattern objects—

defined as distinct, separately identified parts of the pattern such as spots, stripes, or

other discrete shapes—and pattern measurements, which are quantitative descriptors

used to represent pattern complexity and variation. Identifying the most representative

measurements to characterize the variation (e.g., Glimm et al., 2021) is challenging as well.

This is due to the fact that complex patterns contain objects and structures with elaborated

edges and diverse or irregular shapes (Stoddard & Osorio, 2019) or are made up of objects

that may be lightly connected (e.g., Figs. 1 and 2). Numerous studies have examined
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Figure 1 Examples of simple and complex color patterns (top row and bottom row, respectively).

These particular specimens of (A) Clemmys guttata (spotted turtle), (B) Kinosternon baurii (striped mud

turtle) and (C) Emys orbicularis (European pond turtle) are characterized by patterns with uniform shapes

(spots, stripes) and a relatively homogenous monocolor within each pattern object. In contrast, particu-

lar specimens of (D) Chelonia mydas (Green sea turtle) and (E) Terrapene carolina (Eastern box turtle) are

characterized by a pattern with irregular shapes within each scute of the carapace and a broader range of

blended, interconnected colors with no clear pattern organization on each scute. (Photo sources: (A) J.

Vandermeulen CC BY-NC-ND (Vandermeulen, 2009), (B) sodancer CC BY-NC (sodancer, 2025), (C) B.

Dupont CC BY-SA (Dupont, 2018), (D) C. Sharp CC BY-SA 4.0 (Sharp, 2024) (E) E. Maki, Smithsonian

turtle with ID 22614).

Full-size DOI: 10.7717/peerj.19690/fig-1

variations in coloration metrics such as luminosity, contrast, reflectance, hue, saturation,

brightness, and irradiance (e.g., Butler, Toomey & McGraw, 2011; Francini & Samia, 2015;

Lorioux-Chevalier et al., 2023; Macedonia, Echternacht & Walguarnery, 2003; Stelbrink et

al., 2019). In contrast, aspects like pattern symmetry, regularity, organization, object

number, connectivity, size, and shape remain largely unexplored due to the challenges of

obtaining such data (Chan, Stevens & Todd, 2019; Glimm et al., 2021; Lee, Cavener & Bond,

2018).

Traditional approaches to obtaining and quantifying pattern variation often rely on

human perception of color and patterns (e.g., Allen et al., 2020). However, although

extremely valuable, a limitation of this method lies in its reliance on typically user-defined

categories such as spots, stripes, bands, or other broad classifications (e.g., Allen et al., 2020;

Brown & Clegg, 1984;Medina, Losos & Mahler, 2016; Semler, 1971; Tan & Li, 1934;Van den

Berg et al., 2020), which are difficult to apply to complex patterns. Additionally, methods

quantifying characteristics of the color pattern are still lagging behind (but see Chan,

Stevens & Todd, 2019; Glimm et al., 2021), mostly due to the existence of different software

Maki et al. (2025), PeerJ, DOI 10.7717/peerj.19690 3/37

https://peerj.com
https://doi.org/10.7717/peerj.19690/fig-1
http://dx.doi.org/10.7717/peerj.19690


Figure 2 Defining discrete objects.When the boundaries between two pattern objects are ambiguous,

irregular protrusions may overlap unpredictably when the pattern is extracted, turning two objects into

one object or vice versa. The red circle in (A) provides an illustrated example of potential pattern ambigu-

ity, the white arrows in (B) and (C) demonstrate how this occurs in a turtle pattern. (B) The image shows

a very thin line that might variably connect two pattern objects (turtle ID mn15, from left view) and (C)

shows color variation within a pattern region that might variably separate two pattern objects (turtle ID

mn07, from top view).

Full-size DOI: 10.7717/peerj.19690/fig-2

or packages that allow only certain components of the pattern (e.g., spatial distribution or

contrast, general pattern matching, aspect ratio of the objects) to be retrieved or that are

optimized for simple, discrete patterns (e.g., Chan, Stevens & Todd, 2019; Hemingson,

Cowman & Bellwood, 2024; Stoddard, Kilner & Town, 2014; Taylor, Gilbert & Reader,

2013). For simple color patterns, a more detailed analysis can be carried out on the

size and shape of the pattern, the orientation and aspect ratio of the objects that compose

the pattern, and on the averaged centroid size of the objects (Chan, Stevens & Todd, 2019;

Van den Berg et al., 2020). However, these approaches are less effective when pattern objects

are lightly connected, overlapping, or otherwise complex (Figs. 1 and 2).

Together with the challenges of analyzing complex animal color patterns, various factors,

including lighting conditions, image capture methods (e.g., camera angle), and the animal’s

shape or movement (e.g., rounded vs. flat bodies) can influence variation in the pattern

measurements. Data collection techniques significantly affect measurements of coloration

and contrast (e.g., Akkaynak et al., 2013; Johnsen, 2016; Schirmer et al., 2023). Non-uniform

lighting in field settings can cause discrepancies between the study subject and the color

standard used for calibration, complicating data accuracy (this work; Lorioux-Chevalier et

al., 2023). Although color standards help standardize images taken under different lighting

(Troscianko & Stevens, 2015; Van Belleghem et al., 2018), variations in lighting across the

organism in the same picture can result in overly dark or light areas, reducing pattern

accuracy (this work; Akkaynak et al., 2013). Furthermore, the impact of image capture

methods and organism shape on pattern measurements remains largely unexplored.

Identifying which measurements are robust to these variables is crucial for ensuring the

reliability of color pattern analyses.

In this work, we use a multi-color threshold approach (segmenting the pixels based

on red, green and blue component (RGB) values (Glimm et al., 2021; Van Belleghem et al.,

2018)) to identify and quantify overall color pattern variation in the Eastern box turtle
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(Terrapene carolina) and assess the influence of several factors related to data capture

and analysis on variation in color pattern measurements. Specifically, we investigate how

the angle and light at which pictures are taken (angle at which the camera is positioned,

controlled versus natural light, and where the color standard is placed in respect to the

studied organisms/area of interest), how using slightly different threshold values (+/−5%,

+/−10%) during the color data extraction step, and the influence of a curved shell resulted

in variation at each of the 19 pattern measurements analyzed in this study. We selected

the 19 measurements to capture as many components of the color pattern as possible,

including developing a new approach to infer how symmetric the color pattern is. The

symmetry of the color pattern is of particular interest in ecology and evolution because it is

often highly impacted by both camouflage and sexual selection and relevant to understand

developmental processes (Cuthill, Hiby & Lloyd, 2006; Enquist & Arak, 1994). However,

symmetry has mostly been studied from a theoretical point of view (Cuthill, Hiby &

Lloyd, 2006; Endler & Mappes, 2017; Enquist & Arak, 1994; Savriama & Klingenberg, 2011),

instead of measuring and quantifying the amount of symmetry in the color pattern as done

in this work (see also Otaki, 2021).

For the purpose of this study, we captured images from different views of the carapace

and obtained distinct measurements of color pattern in the Eastern box turtle (Fig. 1). We

selected this species as individuals could easily be encountered in the field and are available

in museums, they have a rigid shell—which removes the issue of working with deformable

bodies, as this would add another level of complexity in obtaining the data—and show

variation in a complex color pattern (Fig. 3). The curvature of the shell is especially

challenging as the angle and distance from the animal at which the pictures are taken may

affect some aspects of the pattern; for example, the pattern may be rendered more or less

elongated depending on the angle at which the image is taken.

Ultimately, this study relies on a simple image capture method that can be applied

to other organisms sampled in the field and provides a clear pipeline and MATLAB

codes on how to extract color pattern measurements—including some completely new

ones, such as color pattern symmetry. We provide guidelines on how to discern which

measurements best capture the complexity and variation of the pattern while also being

most biologically informative and less sensitive to noise due to sampling variation. Our

method for quantifying complex color patterns in box turtles provides tools to further

study how selective pressures and different functions of coloration and color patterns

like camouflage, thermoregulation, and mate recognition may shape morphological traits,

while also offering clues about shell development and adaptive responses to environmental

change. Beyond its relevance for understanding turtle biology, this approach can inform

broader studies of animal coloration, conservation, biomimetics, and public engagement

with biodiversity and evolution.

MATERIALS AND METHODS

All capture, handling, and experimental protocols were approved by George Mason

University IACUC committee (Permit number 1908275). Experiments were carried out to
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Figure 3 Variety of turtle patterns found at one of the field sampling localities used in this study

(Mason NeckWildlife Refuge, Virginia, USA). Included with each turtle pattern are the three most

common labels assigned by volunteers, the percentage of volunteers that assigned that label, and

the consensus score based on the volunteer responses for all nine label assignments described in

‘Categorization and Complexity of Pattern’.

Full-size DOI: 10.7717/peerj.19690/fig-3
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minimize stress and disturbance to the animals and in accordance with relevant guidelines

and regulations. Permission was granted to work at the Clifton Institute without the

requirement of a permit. United States Fish and Wildlife provided a permit to work at

Mason Neck Wildlife Refuge (permit number 51600-22RES05).

Sample collection

Turtle samples of 55 turtles of the species Terrapene carolina were obtained from the

Smithsonian Natural History Museum (n= 43) and from two nearby field sites known

to have populations, Mason Neck Wildlife Refuge and The Clifton Institute (Virginia,

USA; n= 12 in total). The samples selected from the Smithsonian were from locations in

Virginia, Maryland and Washington D.C. All the individuals sampled at the Smithsonian

Natural History Museum were preserved in ethanol. Field sampling was carried out to

test for the influence of varying light conditions on the effectiveness of the color pattern

capture method used in this work for animals sampled in the wild. In the field, searches

were conducted early in the morning or later in the afternoon when temperatures were

around 26◦ Celsius and 66% humidity (optimal average temperature and humidity to

encounter box turtles in this area; E Maki, pers. obs., 2023). For this study we selected

only individuals with a relative length >80 mm and a carapace width/length ratio <90%,

since smaller individuals do not show the complexity of the pattern (E Maki, pers. obs.,

2023). Younger turtles tend to be rounder in shape with a width measurement very close

to the length measurement, adult length increases significantly more than their width as

they grow (Adamovicz et al., 2018; Langtimm, Dodd & Franz, 1996; Way Rose & Allender,

2011). Males and females were identified based on the sexual dimorphism of the plastron,

in which males have a slightly more concave plastron than females (Elghammer et al., 1979;

Yahner, 1974; Biewer et al., 2024). Measurements were all taken in the field with a digital

caliper.

Data collection
Turtle photographs

Photography took place in both controlled (museum) and field environments, but the

methods used for taking the images were the same in order to compare the results obtained

for the two different sampling conditions. All Smithsonian specimens were removed from

the ethanol, dried slightly, and placed in a white bin next to an 18% gray color standard

calibration card (brand: Digital Grey Kard) cut to 50 mm X 30 mm dimensions (Fig. 4).

The gray color standard card was also placed next to the turtles sampled in the field (Fig. 4).

As box turtles retract their head and stay still during encounters with humans, animals

sampled in the field were always still. For each sampled animal (in the field or in the

museum), photos were taken from five different viewpoints in order to capture variation

in pattern across the entire carapace: top, front, back, left and right views (Fig. 4). Our

approach is based on the idea that different body regions may experience distinct selective

pressures (e.g., Allen et al., 2020; Glimm et al., 2021). Based on our previous work (Glimm

et al., 2021), we hypothesize that different views of the shell of box turtles may show varying

levels of morphological variation. Images of each turtle encountered in the field were taken

at the time of encounter and in the location where the animal was found. The turtle shells
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Figure 4 Photographing conditions and viewpoints used for turtle images. (A) A museum specimen

from the Smithsonian collection (ID 27761) photographed in a white bin with an 18% gray standard for

calibration. (B) A Mason Neck field turtle (ID mn08) photographed at the site of capture, with the 18%

gray standard placed next to the animal. Some distortion of the pattern due to shell curvature is visible in

this top view, particularly for the side scutes. The effect of distortion caused by the viewing angle is eval-

uated in ‘Influence of the angle at which pictures are taken’. (C) Diagram of the five standardized view-

points used for all turtles: top, front, back, left, and right. The turtle shown here is a Mason Neck turtle

(ID mn20). With digital segmentation, a scute (scale of the shell) is outlined in a unique color and isolated

from the image for analysis. Each view has one scute digitally segmented.

Full-size DOI: 10.7717/peerj.19690/fig-4

were not cleaned of dirt or dust, though they did not have so much dirt as to occlude the

pattern. All photos were taken in RAW format (.dng for the camera used) using a Google

pixel 6 cellphone camera set to the default settings as follows: 1.2 µm pixel width, f/1.85

aperture, 82-degree field of view and 1/1.31 image sensor size. Each photo was taken from a

distance of about 30 cm from the turtle using the natural light in the field or the fluorescent

lighting at the Smithsonian for each specimen. The cellphone was held by hand without

any tripod or holding device, except for images used for studying the influence of the angle

at which images are taken (see below). One single person obtained the photos for all the

individuals included in this study. For each view, two photos (for a total of 10 photos per

turtle) were taken placing the camera as parallel to the view as possible. Since photos were

obtained without holding devices and the distance from the animal was therefore a rough

estimate, photos of each view were taken in duplicates to estimate the influence of the

photo capture on variation in the studied measurements. Each duplicate photo was taken

immediately after the initial photo without moving or adjusting the turtles. We tried to

also maintain the camera position between the two pictures invariant.

For field-sampled animals, images often need to be taken without tripods or holding

devices, and animal movement during photography can cause variations in the camera’s
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distance and angle relative to the subject. To estimate the influence of non-standardized

image angle between the turtle and the camera on variation in the pattern measurements,

the first three turtles encountered in the field on one random sampling day had images

taken at different angles with three images for each view of each individual (instead of two

as described above). To ensure that the different angles at which the images were taken

were exactly the same across the tested individuals, the cellphone used to take the pictures

was placed on a tripod (Amazon Basics) and a phone holder (SharingMoment) at 60 cm

straight above each view of the turtle. To obtain different angles at which the photos were

taken, each turtle was tilted using a protractor (Westcott). Photos were taken at 0-, 5-, and

10-degrees angles to simulate realistic variation that could happen when taking images of

an animal without standardized camera placement. Angles were measured on the turtle

by lining up the lowest edge of the carapace (around the middle point of the turtle) with

the desired angle of the protractor. Turtles were then tilted to the left (-5, -10), right (+5,

+10) and straight overhead (0) for the top view (five images in total for the top view, in

triplicate). Turtles were tilted towards the camera (+5, +10) and (0) (camera on the ground

parallel to the viewpoint) for the front, back, left, and right views (three images in total for

the front, back, left and right views, in triplicate) (Fig. 5). When the camera is positioned

as close to the ground as possible for the front, back, left, and right views, it limits the tilt

to one direction. However, due to the nature of shooting from above, the camera is more

likely to tilt to the left or right in the top view. Zero degrees were obtained when the photo

was taken with the camera parallel to the top view of the turtle.

Finally, as organisms sampled in the field may have parts exposed to different light

conditions, the gray standard card used for color calibration may not accurately reflect this

variation. As such, we wanted to infer the influence of different lighting conditions between

the gray standard calibration card and the study object. To do this a basketball hat was

placed under three different lighting conditions (full shade, partial shade and full sun) and

three photos each from the top and from the front were taken with an 18% color standard

card being placed at different distances and lighting conditions from the hat (Fig. S1).

Image processing

Photos were calibrated using the 18% gray color standard card included in each picture

(Figs. 4A and 4B). Turtles were not segmented from the background and the entire picture

was color calibrated. Color calibration was done in order to correct color differences

among images due to different lighting conditions. The Multispectral Image Calibration

and Analysis (MICA) toolbox through ImageJ (Troscianko & Stevens, 2015) was used to

color calibrate each photo following the program guidelines. The gray color standard was

identified by dragging a box around the visible calibration card in the image. Field images

of the turtle and the color standard card often had variable lighting conditions. Ideally,

lighting conditions are uniform across the image and the card, and any sub-section of

the card can be used for calibration (it is not necessary to use the entire card since it is of

uniform value). In the case where lighting conditions were not uniform across the card

due to shadows, a sub-section of the card illuminated similarly to that of the turtle was

selected. After calibration, photos were then converted lossless from .dng to .png for use
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Figure 5 Viewpoints and camera angle variations used to test measurement noise. All viewpoints

(right, left, top, front and back) were used to assess the measurement noise introduced by the imaging

process. For the right, left, front and back, three angles were tested (0◦, 5◦ and 10◦). For the top viewpoint,

five angles were tested (−10◦, −5◦, 0◦, 5◦, 10◦).

Full-size DOI: 10.7717/peerj.19690/fig-5

in the GNU Image Manipulation Program (GIMP) (The GIMP Development Team, 2019)

for the next steps. The images of the red bill of the cap were processed using the same

method and algorithm as the turtle images, applying hue, saturation and brightness (HSB)

measures to estimate the associated measurement noise.

Since there was not a clear standardized distance used for taking the photographs, each

image was on a different scale. The image length scale was then based on the number of

pixels per millimeter, by measuring the number of pixels along the 50 mm edge of the gray

standard card in GIMP.

The turtle color pattern in this study was defined as any coloration that was more yellow

than average in each scute. The criterion for selecting coloration more yellow than average

was based on an initial visual inspection of the species’ color pattern (typically shades

of yellow or orange) conducted by the authors. Color pattern information was therefore

extracted on a scute-by-scute basis. For this study, for each individual, we selected only the

five scutes that were least affected by the curvature of the carapace for each view in order

to avoid pattern distortion effects: top middle, left middle, right middle, front bottom
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middle and back bottommiddle (Fig. 4C). Although the 3D shape of the shell is of primary

importance when studying how predators or conspecific would see the color pattern,

accurately reconstructing the pattern across the 3D surface would require reconstructing

the shell in 3D (see for example Chiari et al., 2008; Chiari & Claude, 2011) which may be

the goal of future work.

Each of the selected five scutes of each individual was manually outlined following the

scute boundaries (Fig. 4C) using GIMP. For outlining, the color RGB (0,255,0), a very

bright green, was used. The outline color matters in that it is uncommon to be found

naturally in the image. Any colors can be chosen as long as they are not present within the

rest of the image. Outlines were as precise as possible along the borders of the scutes, as

imprecise outlines may cause variation (e.g., by including parts of the objects of the pattern

of another scute for example). Scute boundaries can be identified by the well-defined

‘‘lines’’ that separate neighbor scutes (Figs. 4 and 5).

Color pattern identification algorithm

A pattern recognition algorithm was developed in MATLAB (The MathWorks Inc, 2020)

to extract pattern objects that were ‘‘more yellow’’ than average within each scute, defined

by a threshold red-minus-blue difference. This criterion was chosen as yellow primarily

consists of red and green light, excluding blue.

The pattern recognition algorithm was designed to identify the color pattern of

each image in a fully automated way. It begins with a set of color- and light-calibrated

images, each containing a digitally segmented scute. The algorithm processes each image

independently and automatically, producing a corresponding set of binary images in which

each pixel within the scute is classified as either pattern or background. The steps for the

pattern extraction are described below (steps 1–4) and illustrated for two scutes in Fig. S2.

Step 1: Dynamic threshold for yellow detection

In the first pattern extraction step, we identified a ‘‘pre-pattern’’ as the set of pixels in each

scute that were a threshold level more yellow than average for that scute. The threshold level

is dynamic and adjusts to the overall yellow of each image because the average amount of

yellow in an image varied due to lighting conditions, and also the yellow contrast between

the pattern background and within the pattern foreground varied substantially from turtle

to turtle.

The threshold yellow level was estimated using the red-minus-blue channel difference:

• the red-minus-blue value was calculated at each pixel as the difference of the red and

green RGB channel values at that pixel: R−B

• The average red-minus-blue value was calculated for all pixels within the scute:

mean(R−B)

• the threshold yellow level was 110% of the average red-minus-blue value (a scute pixel

is marked as a pattern pixel if R−B >(1.1× mean(R−B)) at that pixel)

The average red-minus-blue value is unique to each image scute. By trial and error,

the threshold parameter of 110% of each scute’s average red-minus-blue difference was

determined to most closely capture the yellow pattern identified by eye. We test the effect
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of varying this threshold parameter on the captured pattern by measuring the sensitivity

of pattern measures to the threshold in ‘Influence of the choice of threshold value’.

Step 2: Removal of spurious small objects

Once the set of pixels that were more yellow was identified by the formula described

above, isolated pixels and groupings of pixels less than the threshold size of one mm2

were removed. Depending on the spatial resolution of the image (i.e., pixels per mm), this

threshold varied from 25 to 400 pixels. These pixels were identified as more yellow than

average by the previous step, but were likely to be noise (or spurious non-pattern objects)

since they were small and disconnected from larger yellow regions.

Step 3: Refinement of detected patterns

The third step of the pattern cleaning process was to fill small ‘‘holes’’ found within the

identified yellow regions. Within connected yellow regions, isolated pixels often failed to

meet the yellow threshold, possibly due to noise such as light scattering or glare. Gaps in

the pattern objects were filled if they were smaller than one mm2.

Step 4: Smoothing pattern edges

In a final fourth step, the edges of the yellow pattern were then smoothed, again with

respect to the length scale of the image so that thin protrusions were removed, and contour

fluctuations were smoothed and averaged at a fixed spatial scale for all scutes. This was

achieved by having the boundary of the pattern eroded and then dilated with a 0.5 mm x

0.5 mm square structuring object. Erosion removes small amounts of the edge pixels of the

pattern then dilation refills the pixels which results in a net zero effect except to remove

thin and small size noise of the pattern along the edges. As an example, there may be a

one-pixel wide (or otherwise thin) line that connects two pattern objects making it one

object instead of two (Fig. 2B). The erosion and dilation steps will remove a very thin line

connecting objects without changing the size of the objects.

The full pipeline for the analyzing digital images included MICA and GIMP to initially

color calibrate the photos (see ‘Image processing’), the pattern was extracted in MATLAB

as described here, the measures were computed in MATLAB (see ‘Pattern measurements’),

and the analysis of the measurement data (e.g., CV calculations) was completed in Excel

and R.

Pattern measurements

After the color pattern extraction steps, 19 pattern measurements were obtained (Table 1).

These measurements were selected to quantify as many aspects of the color pattern as

possible, including measures quantifying the general size, shape and number of objects

in the pattern (E, PA, Ob, OA), color (H, S, B), contrast between the pattern and its

background (ED, IC, RC, GC, BC, YC), and overall pattern distribution and organization

(FA, PL, Sy, CR, OF, NO). Table 1 includes the descriptions of each measurement with

their abbreviations and how they are calculated.

Maki et al. (2025), PeerJ, DOI 10.7717/peerj.19690 12/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.19690


Table 1 Description of the 19 pattern measurements used in this work. For each measure, two examples are shown of relatively low and high

measure values with the corresponding turtle pattern. *The convex hull is the smallest convex set that encloses all the pixels of the pattern, forming a

convex polygon. In MATLAB, this is computed using bwconvhull.

Name Definition and Formula Purpose Examples with low and high

values among study turtles

Fractional area (FA) The fractional area is calculated as

the total number of yellow image

pixels divided by the total num-

ber of pixels in the scute region:

FA= 6(pattern pixels)

6(scute pixels)

Provides a measure of the

fraction of space the pat-

tern occupies in the scute.

Based on the binary pattern

image.

Mean eccentricity (E) The eccentricity of the pattern ob-

jects is a value between 0 (a perfect

circle) and 1 (a perfect line). It is

calculated using stats.Eccentricity of

the regionpropsMATLAB subrou-

tine as the ellipticity of the ellipse

with the same second moments as

the object. For an ellipse with major

axis a and minor axis b, the elliptic-

ity is
√

1−b2/a2.

Quantifies the mean shape

of the region enclosing

each of the pattern objects

in a scute. Based on the bi-

nary pattern image.

Peak length (PL) The peak length is the average

distance between pattern objects

(Miura, Komori & Shiota,

2000) computed by finding the

skeletonization of the positive

and negative of each image

(valleys and peaks, respectively):

PL = 2·6(scute pixels)

(6valley pixels)+(6peak pixels)
·

mm/pixel

Provides a measure of the

characteristic length scale

of the image, roughly cor-

responding to the spacing

of typical pattern objects.

Based on the binary pattern

image.

Perimeter/Area (PA) The ratio of the perimeter and the

area is the mean perimeter divided

by the mean area of the pattern

objects where the perimeter and

area of objects is calculated using

stats.Perimeter and stats.area of the

regionpropsMATLAB subroutine.

PA= mean object perimeter

mean object area
·mm/pixel

Quantifies aspects of the

shape and area of the pat-

tern objects. Larger wider

patterns should have a

lower value and longer

and skinnier patterns have

higher values. Based on the

binary pattern image.

Hue (H) The hue measures the color compo-

nent of the pattern and has values

that range from 0 to 1. For exam-

ple, 0.00 = red, 0.33 = green, and

0.66 = blue. The image is converted

from RGB to HSB in MATLAB and

the hue is calculated as the mean of

the hue values of all the pixels iden-

tified as pattern pixels.

Provides a single value

that can easily quantify the

color of the pattern. Based

on the HSB of the image.

Based on the HSB pixel

color channels.

(continued on next page)
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Table 1 (continued)

Name Definition and Formula Purpose Examples with low and high

values among study turtles

Saturation (S) The saturation measures the color

intensity of the pattern with values

ranging from 0 (indicates no sat-

uration or grayscale ) and 1 (indi-

cates full saturation). The image

is converted from RGB to HSB in

MATLAB and then saturation is

calculated as the mean of the satu-

ration values of all the pixels identi-

fied as pattern pixels.

Provides a measure for

which the overall satura-

tion or intensity of the pat-

tern color can be quanti-

fied in a single measure-

ment. Based on the HSB

pixel color channels.

Brightness (B) The brightness of the pattern ranges

from 0.0 (indicates very dark or

black) to 1. 0 (indicates very bright

or white color). The image is con-

verted from RGB to HSB in MAT-

LAB and then brightness is calcu-

lated as the mean of the brightness

values of all the pixels identified as

pattern pixels.

Provides a measure of the

brightness of the color pat-

tern. This is highly influ-

enced by the amount of en-

vironmental light (Tros-

cianko & Stevens, 2015).

Based on the HSB pixel

color channels.

Symmetry (Sy) Symmetry is measured as the ra-

tio of pixel overlap when a mirror-

image copy of the pattern is over-

laid onto the original image and

rotated if needed. The symmetry

index Sy is computed as the max-

imum pixel overlap over all rigid

transformations (translations + ro-

tations) of the mirror image copy.

This algorithm was implemented in

MATLAB via a brute-force method

that searches over a discretization

of all rigid transformations.

Provides a value between

0 and 1 that quantifies

the axial symmetry of the

pattern with respect to the

center axis of the scute.

Provides information

about the mirror symmetry

of the left and right half of

the pattern. Based on the

binary pattern image.

Euclidean distance

of pixel color (ED)

The Euclidean distance measures

the average distance between RGB

pixel values from the identified

pattern (pixels more yellow

than average) and non-pattern

(dark background of the scute).

ED=
√

(RC)2 + (GC)2 + (BC)2

Provides a single value that

can quantify the contrast

between the average val-

ues of the RGB between the

pattern and non-pattern.

Based on the RGB pixel

color channels.

Intensity contrast (IC) The intensity contrast was

measured for the RGB image

converted to gray scale as

the difference of the mean

intensity of the pattern (pixels

more yellow than average)

and non-pattern (dark

background of the scute) pixels.

IC = Mean Pattern Intensity −
Mean Non-Pattern Intensity

Provides a measure that

quantifies the difference

in intensity between the

pattern and non-pattern.

Based on the grayscale im-

age.

(continued on next page)
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Table 1 (continued)

Name Definition and Formula Purpose Examples with low and high

values among study turtles

Number of Objects (Ob) The number of objects is the to-

tal number of objects compos-

ing the pattern identified by the

pattern recognition algorithm. In

the MATLAB subroutine, bwlabel

was used to number the objects.

Ob= number of objects

Quantifies the number of

objects in each pattern.

Provides a number that can

determine how intercon-

nected the patterns are. It

can also be used as a build-

ing block for other mea-

surements. Based on the bi-

nary pattern image.

Average object area (OA) The average object area was

calculated as the mean of the area

for each of the identified pattern

objects. The area of each object was

calculated using stats.Area of the

regionpropsMATLAB subroutine.

OA = mean
(

object area
)

·
(mm/pixel)2

Provides a mean measure

of the size of the objects

composing the color pat-

tern. Quantifies the aver-

age overall size of the pat-

tern objects. Based on the

binary pattern image.

Red contrast (RC) Difference of the average red

pixels of the identified pattern

(pixels more yellow than average)

versus the non-pattern (dark

background) pixels, where the

red value of a pixel was the

value of the red RGB channel.

RC = mean





red of

pattern

pixels



 −

mean





red of

non−pattern

pixels





Provides a quantification of

contrast present in the red

pixels between the identi-

fied pattern and the non-

pattern (dark background

of the scute). Based on the

RGB pixel color channels.

Blue contrast (BC) Difference of the average blue

pixels of the identified pattern

(pixels more yellow than average)

versus the non-pattern (dark

background) pixels, where the

blue value of a pixel was the

value of the blue RGB channel.

BC = mean





blue of

pattern

pixels



 −

mean





blue of

non−pattern

pixels





Provides a quantification of

contrast present in the blue

pixels between the identi-

fied pattern and the non-

pattern (dark background

of the scute). Based on the

RGB pixel color channels.

(continued on next page)
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Table 1 (continued)

Name Definition and Formula Purpose Examples with low and high

values among study turtles

Green contrast (GC) Difference of the average green

pixels of the identified pattern

(pixels more yellow than average)

versus the non-pattern (dark

background) pixels, where the

green value of a pixel was the

value of the green RGB channel.

GC = mean





green of

pattern

pixels



 −

mean





green of

non−pattern

pixels





Provides a quantification

of contrast present in the

green pixels between the

identified pattern and the

non-pattern (dark back-

ground of the scute). Based

on the RGB pixel color

channels.

Yellow contrast (YC) Difference of the average yellow

pixels of the identified pattern

(pixels more yellow than average)

versus the non-pattern (dark

background) pixels, where

the yellow value of a pixel was

defined as the minimum of the

red and green RGB pixel values:

YC = mean





yellow of

pattern

pixels



 −

mean





yellow of

non−pattern

pixels





Provides a quantification

of contrast present in the

yellow pixels (combination

red and green pixels) be-

tween the identified pat-

tern and the non-pattern

(dark background of the

scute). Based on the RGB

pixel color channels.

Centrality ratio (CR) The centrality ratio is the ratio of

the average distance of pattern

versus non-pattern pixels from

the center of the scute, where the

center is the centroid
(

Cx,Cy
)

.

CR=
mean





pattern pixel

distances to centroid





mean





non−pattern pixel

distances to centroid





Provides a measure to

quantify on average how

close the pattern pixels are

to the center of the scute

in comparison to the non-

patten pixels. Based on the

binary pattern image.

Occupation factor (OF) The number of pixels of the pix-

elated convex hull* is divided by

the total number of scute pixels.

OF = (6(Convex Hull))
(6(scute))

Provides another measure

to quantify the fraction of

the scute area that the pat-

tern covers in comparison

to the overall pixels, but

specifically focuses on the

convex hull of the pattern.

Based on the binary pattern

image.

(continued on next page)

Maki et al. (2025), PeerJ, DOI 10.7717/peerj.19690 16/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.19690


Table 1 (continued)

Name Definition and Formula Purpose Examples with low and high

values among study turtles

Normalized offset (NO) The normalized offset is measured

as the distance of the pattern

center from the scute center

normalized by the scute radius

which is computed as the

square root of the scute area.

NO =
√

(Px−Cx)2+(Py−Cy)2√
6(scute pixels)

,

where (Px,Py) is the centroid

of the pattern pixels and (Cx,Cy) is

the centroid of the scute pixels.

Provides a measure to

quantify how far off cen-

ter the pattern is in relation

to the center of the scute.

Based on the binary pattern

image.

Measurement noise analysis

In this study, we investigate how various factors, such as the angle at which photos are

taken, different images of the same subject, and the placement of the color calibration

standard card influence the variation in pattern measurements. Regardless of the factor

being tested, the influence of these factors was assessed using the coefficient of variation

(CV) of pairwise differences. The CV in this study corresponds to the pairwise difference of

the image measurements obtained from the two (or three for the angle testing) pictures of

the same view on the same animal. CVs were calculated for each measurement separately.

CV calculated for three pictures per view used the standard CV formula σ
µ
, where σ is

the standard deviation and µ is the mean of the measurements. With only two images,

however, the standard deviation underestimates variability. The pairwise difference divided

by the mean offers a more accurate measure of relative variability between the two values.

For consistency, we refer to this relative difference calculation as ‘‘CV’’ in two-image

comparisons, which was computed using this equation:

Pairwise Difference =CV =
∣

∣

∣

∣

image 1− image 2

mean (image 1 & 2)
.

∣

∣

∣

∣

This analysis allows inferring the robustness of each pattern measurement under the

different tested sampling conditions. Coefficients of variation above 10% were considered

to indicate substantial variation in that measurement.

A p-value was computed to test whether pattern measurements differed significantly

between images from the field and those from the museum (‘Variation in pattern

measurements due to sample source’), and again to assess whether the coefficient of

variation (CV) of any measurement was significantly correlated with the consensus score

(‘Categorization and complexity of pattern’). Because T -tests, F-tests, and CV correlations

were conducted independently across 19 measurements, p-values were adjusted using the

Benjamini–Hochberg procedure to control the false discovery rate.

The absence of standardized lighting for field turtles could greatly affect the hue,

saturation and brightness (HSB) (Table 1, Table S1) if the standard is not exposed to the

same lighting conditions as the turtle, leading to variations in HSB between photographs

(Table S1). To test the influence of the placement of the gray standard in comparison to
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the object of interest, we used images taken of a hat with the gray color standard placed

at different distances from the hat. Images (two viewpoints and three photos taken per

viewpoint) were then color calibrated following the same methods described above and

values of HSB were measured on the images to infer the influence of different lighting

between color standard and object of interest on HSB using CVs as described above.

To test the effect of noise in the angle of photography, we tested angles of −5, −10, 0, 5

and 10 degrees from baseline to measure the coefficient of variation as the angle is varied

(Fig. 5).

Sensitivity analysis and threshold selection

The pattern identification algorithm uses a non-uniform threshold where values vary from

image to image.We found that a (110%) threshold on theminimum red and blue difference

(see ‘Color pattern identification algorithm’) created the most accurate pattern recognition

results based on human visual comparison (Fig. 6). This threshold can be adjusted to

add more or less total area (‘‘thickness’’) to the pattern as it increases or decreases the

number of pixels identified as ‘‘more yellow’’ than average (Fig. 6). To test the influence of

the threshold on the pattern identified by the algorithm, we changed the threshold from

110% by +/−5% (115% and 105%) and +/−20% (130% and 90%) (Fig. 6). These specific

percent increases and decreases were chosen to demonstrate how much the fractional area

changes with small and large changes to the threshold. We chose to focus on fractional

areas since we found it to be the least sensitive measurement to variation (see ‘Results’).

As such, although this is a conservative measure, if a threshold was found to affect this

measurement, it could be assumed that it would affect all the other measurements even

more. Each threshold was then run across all the images in the study. Fractional area

measures were then analyzed using CV to determine the variation between the original

threshold of 110% and each of the four test thresholds (90%, 105%, 115%, 130%) and

the percent change between the test thresholds and the optimal thresholds, generating a

framework of how sensitive to changes our algorithm is.

Citizen science: color pattern categorization to describe complexity

The color calibrated top view of 98 individuals was presented to 31 volunteers of different

genders and similar age to obtain an estimate of the color pattern complexity as seen by the

human eye. Color pattern complexity was inferred based on the consensus value obtained

across the volunteers on categorization of the observed patterns. The volunteers were all

undergraduate students at George Mason University who responded to an advertisement

asking for participants for a project to categorize the color pattern of different individuals

of box turtles. No remuneration or any other benefits was offered to participants and no

information on the participants was collected. Images (one top view image per individual)

were uploaded to a google drive folder where participants could see but not edit the images.

An Excel file with the individual/picture ID listed was also available on the Google drive.

Volunteers were instructed to work alone (no volunteer knew the identity of others), to

download the Excel file on their computer, and choose up to four categories per individual

of the nine categories presented (Table 2). In a pilot study, initial categories were suggested
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Figure 6 Effect of variation of the threshold on the extracted pattern.Visual comparison between the

pattern extracted by the algorithm and as seen by the human eye for each view for the optimal threshold

(110%), and the +/-5% (105% and 115%) and +/-20% (90% and 130%) thresholds.

Full-size DOI: 10.7717/peerj.19690/fig-6

Table 2 Categories and descriptions of categories presented to students for the pattern consensus

score.

Categories Descriptions

M-shaped Defined M shape present in pattern

Single spotted Single spot in the middle of the scute

Striated Irregular shaped stripes

Blotchy Irregular shaped spots

Spotted Distinct spots throughout the pattern

Speckled Many small spots throughout the pattern

Banded Clear uniform striped pattern

Patchy Random irregular shaped pattern objects

Starburst Pattern radiates out from a clear center point

to 10 volunteers, and respondents could also add their own pattern categories if they felt

that a better classification could be found for a certain pattern. For the follow-up analysis,

the most frequent categories write-ins were added and unused categories were subtracted

resulting in the nine categories listed in Table 2. Volunteers looked at the images on their

own devices (cell phones or computers) and were instructed to carry out the categorization

only on the basis of the pattern. Volunteers were provided with the descriptions for each

pattern as in Table 2. Although the use of different devices from volunteer to volunteer

may affect some aspects of coloration and as such some aspects of the patterns may be

more or less visible, we asked volunteers to focus on broad pattern categorization.

Consensus values were then obtained for the pattern of each turtle by calculating a

consensus score based on the diversity (low consensus) or uniformity (high consensus) of

the categories selected by volunteers. We first quantified the consensus for each category
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for each turtle using a consensus proportion method (also known as a majority voting

method) by determining whether students more frequently assigned a 0 (category does

not apply) or a 1 (category does apply) for that category, with the proportion reflecting

the level of agreement among students for that category and that turtle. For example, if six

students assigned a ‘0’ and four students assigned a ‘1’ for a category for a single turtle, the

consensus for that category was 60%. For a binary assignment as we used, the proportion

of the most frequent assignment (the proportion of ‘0’s or ‘1’s, whichever is higher) is a

value from 0.5 to 1.0 (low to high category consensus). Since volunteers could choose up

to four categories, and the categories were not mutually exclusive, the consensus score

was computed independently for each category in this way. Then, the overall consensus

score across all categories, for each turtle, was computed as the arithmetic mean of the

nine individual consensus proportions for each category. A complete lack of consensus

(for example, a random volunteer assignment of ‘0’s and ‘1’s) would predict an overall

consensus close to 0.5 and complete consensus (every volunteer agrees on whether a

category applies for every category) would have an overall consensus score of 1.0.

The consensus values were used as an indication of complexity of the pattern. The

stronger the consensus, the less complex the color pattern was considered. To infer which

pattern measurements may best reflect the complexity of the pattern, we ran a correlation

analysis using the corresponding value of each pattern measurement (as the average over

the two (n= 2) top view images) for each turtle versus the consensus score. The correlation

test was run for the turtle images for which we had both consensus scores and statistical

measures, a total of 53 turtle images (n = 43 from the Smithsonian Natural History

Museum and n= 10 from field sites). Although we had collected statistical measures for 55

turtles (see ‘Sample collection’), the 98 top views presented to the volunteers inadvertently

excluded two of these individuals so that there were only 53 turtles for which we had

both consensus scores and statistical measures. The correlation test was run for a total of

19 statistical measures in R (R Core Team, 2024) using the corr.test function (Pearson’s

correlation).

RESULTS

Our final dataset for the analysis of variation in pattern measurements includes 55 animals

each with photos from five views and two-three pictures taken per view (three pictures

per view were taken only for the angle analysis) for a total of 610 pictures analyzed (610 =
43*5*2+12*5*3).

Variation in pattern measurements

We developed algorithms to identify the color pattern and compute the pattern

measurements describing the different aspects of the pattern.We tested which of the pattern

measurements are more or less variable within and across individuals (3.1) and more or

less strongly influenced by variation in sampling conditions (3.2, 3.4, 3.5) or algorithm

threshold (3.3). We also measure how variation depends on pattern characterization (3.6).

As an estimate of themeasurement noise, we use the coefficient of variation (CV) calculated

on multiple images of the same view for the same individual.
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Figure 7 Variation across individuals. The coefficient of variation (CV) averaged for all views provides

a single CV that captures the variation of the pattern measurement between individual animals. The aver-

age CV is shown for all measures ranked from lowest to highest variation. Error bars indicate the standard

deviation across views. Full table with all the measurements for different viewpoints can be found in Ta-

ble S2A.

Full-size DOI: 10.7717/peerj.19690/fig-7

Variation in pattern measurements across and within individuals

Across individuals: To assess the measurement variation across all studied individuals, we

calculate the mean of the pattern measurements obtained for each individual as the value

of the pattern measurement for that turtle and measure the variation of those values across

the 55 individuals as CV= σ/µ. The coefficient of variation across all the 55 individuals

indicate that three measures (blue contrast, yellow contrast, and average area of objects)

were more variable across turtles (blue contrast CV = 0.985, yellow contrast CV = 0.890,

average area of objects CV = 0.645; Fig. 7). Three measures (mean eccentricity, centrality

ratio, and symmetry) were instead the least variable across the 19 measurements (mean

eccentricity CV = 0.078, centrality ratio CV = 0.144, and symmetry CV = 0.149; Fig. 7).

Full table can be found in Table S2A.

Within individuals: When looking at the CV obtained on the two images taken on the

same view of the same individual, six measures had high CVs (higher than 10%): average

area and number of objects, yellow, blue, and green contrast, and normalized offset (Fig. 8)

while the other measurements had low CVs (CVs < 10%, Fig. 8). This suggests that the

majority of the measures are stable when taking repeated images of the same individual

without changing the angle or lighting conditions (see below). Additionally, the variation

across each measurement for the two photos taken of each individual is similar across the

different viewpoints (Table S2B).
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Figure 8 Variation within individuals. Pairwise differences were calculated based first on the two images

per viewpoint and then normalized by the average across all individuals per viewpoint to yield the coeffi-

cient of variation (CV). The CV averaged for all views provides a single CV that captures the variation of

the pattern measurement across images within individual animals. The average CV is shown for all mea-

sures ranked from lowest to highest variation. Error bars indicate the standard deviation across views. Full

table with all the measurements for different viewpoints can be found in Table S2B.

Full-size DOI: 10.7717/peerj.19690/fig-8

Comparing the within-turtle variability and the across-turtle variability as a ratio

is a measure of the extent to which high across-turtle variability may be due to noise

(Table S2C). The overall variation attributable to measurement noise was 10 to 30% for

most (16 out of 19) measures.

Variation in pattern measurements due to sample source

Field versus museum sampling: To compare how the field sampling versusmore controlled

conditions (Smithsonian specimens) may influence the variation observed for the different

pattern measurements, we ran a T -test (difference in means), F-test (difference in

variances), and a second F-test (difference in CVs) across each individual and viewpoint

per measurement comparing the field vs the museum data. Overall, we found similar

means across views and pattern measurements independently of where the turtles were

sampled (T -test, Table S3) though occasionally the top view showed a significant difference

(T -test with significance p< 0.05) (Table 3). Comparing the museum and field samples,

the variation of the measures (F-test computed on the SD, Table S3) was significantly

different for the hue, brightness and red contrast (Table 3). The coefficient of variation

of the measures (F-test computed on the CV, Table S3) was significantly different for the

hue and the occupation factor (Table 3). With the exception of the occupation factor, all

measures identified for significant variation for any of the three tests were related to color,

especially hue.
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Table 3 Variation due to sample source. Significant difference was tested between data captured on the Smithsonian (n = 43) and field (n =
12) collected turtles. A T -test (testing means), F-test (testing variance) and F-test (testing coefficients of variation (CVs)) were conducted and the

adjusted p-values were recorded. Measures that showed a significant difference (p < 0.05) most frequently (for at least three views for any one test)

are in the table below. Significant differences of means, sd and cv are indicated with an asterick and a shaded cell. Data for all the measurements and

tests can be found in Table S3.

Pattern measurement Top view Right view Left view Front view Back view

Hue

Museum Vs. Field T -Test, p-value T(42,11) = −3.17,

p= 0.03*
T(42,11) = −2.64,

p= 0.15

T(42,11) = −2.68,

p= 0.31

T(42,11) = −2.61,

p= 0.40

T(42,11) = −1.92,

p= 0.50

Museum Vs. Field F-Test, p-value T(42,11) = 1.02,

p= 0.94

T(42,11) = 10.03,

p< 0.01*
T(42,11) = 11.37,

p< 0.01*
T(42,11) = 10.54,

p< 0.01*
T(42,11) = 9.50,

p< 0.01*

Museum Vs. Field CV diff., p-value T(42,11) = 13.76,

p< 0.01*
T(42,11) = 3.56,

p= 0.09

T(42,11) = 1.95,

p= 0.03*
T(42,11) = 11.12,

p<0.01*
T(42,11) = 4.24,

p= 0.20

Brightness

Museum Vs. Field T -Test, p-value T(42,11) = −3.46,

p< 0.01*
T(42,11) = 1.33,

p= 0.44

T(42,11) = 1.46,

p= 0.43

T(42,11) = 1.07,

p= 0.81

T(42,11) = 2.34,

p= 0.40

Museum Vs. Field F-Test, p-value T(42,11) = 5.60,

p< 0.01*
T(42,11) = 3.36,

p< 0.01*
T(42,11) = 3.49,

p< 0.01*
T(42,11) = 1.37,

p= 0.69

T(42,11) = 2.94,

p= 0.04*

Museum Vs.. Field CV diff., p-value T(42,11) = 32.11,

p< 0.01*
T(42,11) = 2.28,

p= 0.20

T(42,11) = 1.66,

p= 0.03*
T(42,11) = 1.20,

p= 0.80

T(42,11) = 13.22,

p= 0.07

Red Contrast

Museum Vs. Field T -Test, p-value T(42,11) = −4.17,

p< 0.01*
T(42,11) = −1.05,

p= 0.52

T(42,11) = −0.90,

p= 0.59

T(42,11) = −1.27,

p= 0.81

T(42,11) = 0.44,

p= 0.74

Museum Vs. Field F-Test, p-value T(42,11) = 3.80,

p< 0.01*
T(42,11) = 3.96,

p< 0.01*
T(42,11) = 2.84,

p= 0.05

T(42,11) = 2.66,

p= 0.10

T(42,11) = 3.13,

p= 0.04*

Museum Vs. Field CV diff., p-value T(42,11) = 30.23,

p< 0.01*
T(42,11) = 2.56,

p= 0.94

T(42,11) = 1.10,

p< 0.01*
T(42,11) = 1.14,

p= 0.78

T(42,11) = 9.50,

p= 0.99

Occupation Factor

Museum Vs. Field T -Test, p-value T(42,11) = 0.02,

p= 0.99

T(42,11) = 0.59,

p= 0.63

T(42,11) = −0.35,

p= 0.81

T(42,11) = −0.06,

p= 1.00

T(42,11) = 0.14,

p= 0.94

Museum Vs. Field F-Test, p-value T(42,11) = 2.38,

p= 0.22

T(42,11) = 1.60,

p= 0.42

T(42,11) = 1.26,

p= 0.75

T(42,11) = 1.36,

p= 0.61

T(42,11) = 1.18,

p= 0.84

Museum Vs. Field CV diff., p-value T(42,11) = 2.95,

p< 0.01*
T(42,11) = 1.07,

p= 0.22

T(42,11) = 4.00,

p< 0.01*
T(42,11) = 3.71,

p< 0.01*
T(42,11) = 6.89,

p= 0.99

Influence of the choice of threshold value

Since the threshold was chosen arbitrarily (‘‘by eye’’) to capture the pattern, we investigated

the effect of changing the threshold by a small and large percentage (Table 4). Increasing

the threshold by 5% or 20% decreases the area of the pattern identified, while decreasing

(−5%,−20%) the threshold increases the area of the pattern identified (Fig. 6 and Table 4).

Figure 6 shows the comparison between the pattern captured by the algorithm at the default

110% threshold (110% more yellow than average in the studied view) to what can be seen

by the human eye and in comparison to the increased or decreased thresholds across all

five viewpoints. At 110% threshold (our standard in this study), the algorithm captures a

large portion of the pattern as seen by the human eye with limited false negative and false

positive pattern area. When the threshold is lowered, the fractional area of the pattern is

increased since a lower threshold for identifying a pixel as ‘‘more yellow than average’’

is a less strict criterion and leads to the identification of more pattern pixels, and when
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Table 4 Variation of the threshold. For each view, percent change in the value of fractional area

obtained for 110% threshold and thresholds +/−5% and +/−20% as a mean across 55 individuals.

Coefficient of variation (CV) for fractional area was used to measure the variation between the optimal

110 threshold and thresholds +/−5% and +/−20%. For each image independently, the baseline threshold

of 110% identifies a pixel as a pattern pixel if the pixel is 10% more yellow than the average scute pixel of

that image; likewise a threshold of 90% or 130% identifies a pixel as a pattern pixel if the pixel is at least

90% as yellow or 130% as yellow as the average scute pixel.

Viewpoint 130% (+20%) 115% (+5%) 105% (−5%) 90% (−20%)

Top view %change: −11.7%

CV: 0.092

%change: −3.0%

CV: 0.025

%change: +3.9%

CV: 0.029

%change: +17.9%

CV: 0.110

Left view %change: −20.3%

CV: 0.170

%change: −5.3%

CV: 0.039

%change: +6.6%

CV: 0.044

%change: +26.6%

CV: 0.158

Right view %change: −19.9%

CV: 0.164

%change: −6.0%

CV: 0.046

%change: +5.5%

CV: 0.039

%change: +24.0%

CV: 0.146

Front view %change: −16.2%

CV: 0.134

%change: −4.7%

CV: 0.049

%change: +4.6%

CV: 0.043

%change: +23.7%

CV: 0.142

Back view %change: −21.1%

CV: 0.181

%change: −5.5%

CV: 0.043

%change: +6.7%

CV: 0.043

%change: +27.4%

CV: 0.142

the threshold is increased, the criterion becomes more strict and the fractional area of

the pattern is decreased. The impact of the threshold on the value of the fractional area

is shown in Table 4. Increasing or decreasing the threshold by 5% of the average value

resulted in a modest change in the fractional area of 3–7%. Changing the threshold by 20%

in either direction had a larger impact of 12–27% on the fractional area. Variation between

the new thresholds and the preferred were found to be fairly consistent across views with

the top scutes having less variation. For our criterion that a CV greater than 10% indicates

substantial variation, a threshold variation of 5% did not result in substantial variation

while a variation of 20% did result in substantial variation. Figure 6 visually presents the

changes in thresholds for one of the studied turtles.

Placement of the color standard

Placement of the color standard at different distances from the object of interest (Fig. S1)

resulted in significant variation (CV > 10%) in the brightness measurements. Specifically,

adjusting the position of the color standard when taking photos from above and in front

led to CVs of 47% and 38%, respectively. This highlights the substantial variability in color

measurements that can occur when the color standard is not exposed to the same lighting

conditions as the object of interest.

Influence of the angle at which pictures are taken

Due to the curved shape of the turtle carapace, we tested how small variation in the angle

at which the pictures of the animal are taken influences each pattern measurement for

each view. We found that out of the seven pattern measurements, the measurements with

the highest variation in relation to the CV were the normalized offset, intensity ratio,

average area of objects and the Euclidean distance while the three measurements with the

lowest variation were the mean eccentricity, occupation factor and centrality ratio (Fig. 9).

For added context, the measured coefficient of variation for the average area of objects
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Figure 9 Variation due to the angle of photography. The coefficient of variation (CV) averaged for all

views provides a single CV that captures the variation of the pattern measurement due to varying the an-

gle of photography. Each viewpoint had three pictures taken per viewpoint per angle: top (−10◦, −5◦, 0◦,

5◦, 10◦) and front, back, left, and right (0◦, 5◦, 10◦). The average CV is shown for all measures ranked from

lowest to highest variation. Error bars indicate the standard deviation across views. The full data set for an-

gle CV for all views for the 7 measures can be found in Table S4.

Full-size DOI: 10.7717/peerj.19690/fig-9

was comparable to that already measured for within individual turtle variation (Table S4

right-most column), but the normalized offset, Euclidean distance and intensity ratio that

were substantially elevated due to angle variation.

When looking at the CV measures for the different viewpoints, there is a clear difference

between the top view and the others (front, back, left, and right) (Table S4). For the

measures with the highest CVs, the top view generally has the lowest CV with most

measurements being under 15%, while for the other viewpoints more than half of the

measurements have a CV over 30% (Table S4).

Categorization and complexity of pattern

We used a consensus score—agreement in categorization of each individual turtle pattern

across 31 volunteers—as a measure of pattern complexity, with lower consensus scores

suggesting a more complex pattern and vice versa. We found that for the full set of 98

turtles that were categorized, the consensus scores ranged from 66% to 87%, suggesting

that the complexity of the pattern varied across turtles since this is a broad range of

complexity scores. For the subset of 53 turtles for which we had both consensus scores and
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Figure 10 Consensus scores. (A) A histogram of the consensus scores for 53 turtles (Smithsonian Natu-

ral History Museum, n= 43, and field sites, n= 10). The mean consensus was 76% (standard deviation of

5%) with 15% (n = 8) scoring lower than 70% and 21% (n = 11) scoring higher than 80%. (B) Cropped

image of the turtle (Smithsonian turtle with ID 519622) with the highest consensus score (87% consen-

sus). 31/31 students labeled the pattern as ‘‘M-Shaped’’ and were in high agreement (greater than 80%

consensus) for 8/9 categories. Of the nine categories, the category with lowest consensus was ‘‘Banded’’

(only 68% consensus that the pattern was not ‘‘Banded’’) . (C) Cropped image of the turtle (Smithsonian

turtle with ID 139611) with the lowest consensus score (67%). Students were uncertain (less than 60%

consensus) on 5/9 categories. The category with highest consensus was ‘‘Single-Spotted’’ (97% consensus

that the pattern was not ‘‘Single-Spotted’’).

Full-size DOI: 10.7717/peerj.19690/fig-10

the measurements used in this work (see ‘Citizen science: color pattern categorization to

describe complexity’), the consensus scores similarly ranged from 67% to 87% (Fig. 10).

Across all the 98 studied individuals, the categories ‘‘Patchy’’ and ‘‘Blotchy’’ had the

lowest average consensus scores of 67% and the category ‘‘Single-Spotted’’ had the highest

consensus score of 91%. Thus according to this chosen conceptualization of ‘‘complexity’’,

patchy and blotchy patterns have the highest complexity and single-spotted patterns have

the lowest complexity.

A correlation analysis was performed between the 19 pattern measurements and the

consensus score for 53 turtles to determine which measurement(s) may best describe

complexity in color pattern in box turtles. Correlation values above 30% were observed

for two pattern measurements. The largest correlations were found between the consensus

score and the average object area and the eccentricity (Fig. 11). Since we are using higher

consensus scores as a measure of lower complexity, this would be interpreted as bigger and

less rounded objects being correlated with patterns that are easier to characterize and lower

complexity. The largest negative correlation (−0.28) was found between the consensus

score and occupation factor (Fig. 11). This would be interpreted as a higher occupation

factor score being correlated with higher complexity. Although the fractional area was also

negatively correlated with consensus (−0.16), this correlation was not nearly as strong,

suggesting there is an interaction with the contour of the objects since the occupation factor

is based on the convex hull of pattern objects. For the 19 measures, none of the correlations

were significant after adjusting the p-values using the Benjamini–Hochberg correction to

control the false positive rate. Cook’s distance was run between the measurements and the

consensus scores to look for outliers skewing the results. A Cook’s distance (>1) indicates

that one individual influenced the significant results. The Cook’s distance was small for

these results signifying they are not too influenced by outliers.
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Figure 11 Correlation coefficients between 19 pattern measurements and consensus scores for 53 tur-

tles (Smithsonian Natural History Museum, n= 43, and field sites, n= 10).

Full-size DOI: 10.7717/peerj.19690/fig-11

DISCUSSION

In this work, we developed a new multi-color threshold-based method to identify and

extract complex color patterns. Additionally, we elaborated new algorithms to obtain data

on 19 different pattern measurements, capturing as many different aspects of the pattern

as possible including coloration and spatial structure of the pattern, object characteristics,

and contrast and intensity features of the pattern. The symmetry measure is a novel

measure that is particularly useful for animal patterning (e.g., animals often have bilateral

symmetry). We applied these methods to the complex color pattern of Eastern box turtles

(Terrapene carolina) sampled in the field and in a museum collection. We used the data

to evaluate how various factors related to capturing and analyzing animal images might

affect pattern identification and contribute to variation in pattern measurements. For this

reason, images of field turtles were taken of turtles in their natural environment under

natural conditions. Finally, we used a pattern categorization approach based on citizen

science work to identify which among the 19 pattern measurements used in this study

could best depict the complexity of the pattern in box turtles. The framework applied

in this study enables the capture of complex animal color patterns and helps identify

measurements that best represent this complexity while remaining robust to variations

in data collection under non-standardized conditions and during analysis. Despite the

importance of studying variation in the organism’s color pattern in detail by decomposing

it in its measurements, this is still limited due to the general lack of approaches to obtain

data on several different measurements of pattern. Advances in this context have been

made (Chan, Stevens & Todd, 2019; Glimm et al., 2021), but they are still largely limited

to discrete patterns. As such, our work on the development of an algorithm to extract 19
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different patternmeasurements capturing the spatial distribution, size and shape, symmetry

and color characteristics of the pattern represent an advancement to the field. We found

that among the 19 measurements, measures that depend on how the total pattern area is

identified as discrete objects (average object area, number of objects) and that depend on

the pattern contrast (blue contrast, yellow contrast) are the most variable across the 55

individuals studied in this work (Fig. 7). On the other hand, ratios that result in unitless

measures such as fractional area and centrality ratio vary much less (Fig. 7).

To establish how much of this variation could be due to how the images are taken under

non-standardized conditions, we used a coefficient of variation calculated across images of

the same individuals taken consecutively but independently one from another. Of the three

most variable measures, for the blue and yellow contrast measures, only a minor amount

of the variation can be attributed to technical aspects of how the images were obtained

(Fig. 8). Both contrast measurements had a variability of around 90–100% of which around

15% could be attributed to variation among picture replicates. The high turtle to turtle

variability of blue and yellow contrast reflects what can be observed by eye, since one of

the most striking differences between the 55 turtle patterns was the range for which the

yellow pattern did or did not have a high contrast with the background. Glare in the line

of sight due to how the pictures were taken was observed to influence the visibility of the

yellow pattern. The curvature of the carapace, as well as the curvature of individual scutes

and variation in reflective properties of the shell, likely plays a role in this (see below).

For the two contrast measures with high turtle to turtle variability, the relatively low

within turtle variability shows that the measured variability between turtles is an accurate

reflection of the pattern variation. Two measures (average area of objects, and mean

eccentricity) had an especially high ratio for the relative impact of the measurement noise

variation. This shows that the high variability of the average area of objects—the measure

with highest turtle to turtle variability other than the contrast measures—is likely largely

due to measurement noise variation. Indeed, the average area of objects had a turtle to

turtle variability of around 64.5% of which a large fraction (33.6%) could be attributed

to variation among picture replicates (Figs. 7 and 8). The high measurement noise in

object area underscores the challenge of reliably segmenting patterns with ambiguous

boundaries. The large measurement noise in the average area of objects (33.6%, Fig. 8) is

due to a relatively large measurement noise in the number of objects (12.8%, Fig. 8).

Many of the color patterns present in eastern box turtles are non-discrete and complex

and pattern objects can often be connected with a region of lower-contrast pixels (Fig. 2C)

with difficult to define boundaries. The number of objects of a pattern depends sensitively

on whether the algorithm identifies the lower contrast region as pattern pixels connecting

what would otherwise be separate objects. Measurements that depend on the number

of objects in the denominator (for example, the average area of objects) inherit a high

variability. Likewise, the eccentricity is disproportionately affected by this issue since

the shapes of objects change depending upon whether they are considered a single or

several objects. Although the eccentricity was a measure with especially low turtle to turtle

variability (7.8% variability between turtles)—to indicate that this parameter may be

relatively conserved in this species—it had a relatively high ratio (40%) of measurement
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variability (noise) relative to the turtle variability (Table S2), suggesting that the observed

variation is largely due to noise in the measurements. Measures that are less affected by

the challenge of defining object boundaries within a pattern are those that do not rely on

dividing the entire patterned region into discrete objects. Examples include total fractional

area and the ratio of perimeter to area.

Additionally, the carapace curvature adds noise to measurement variation, as the top

scutes show less variability on average than other scutes when the photography angle and

threshold are adjusted (Table 4 and Fig. 9). Top scutes are relatively flatter than the other

four viewpoints used (Fig. 5). Among the 19measurements used in this work, we developed

an algorithm to extract information on how symmetric the scute pattern within each view

is. The symmetry of the pattern has long been identified as an important factor for both

natural and sexual selection and has often been tested in predation studies (Cuthill, Hiby

& Lloyd, 2006; Enquist & Arak, 1994; Forsman & Herrström, 2004; Forsman & Merilaita,

1999). However, symmetry has been challenging to quantify and measure. In fact, studies

are often theoretically estimating the impact of symmetry without using empirical data and

measures of symmetries of the pattern obtained on organisms (Cuthill, Hiby & Lloyd, 2006;

Forsman & Herrström, 2004). However, some studies have also used fractal geometry to

describe self-similarity and symmetry in butterfly wings (e.g., Otaki, 2021). The algorithm

developed for this study to infer the degree of symmetry of the color pattern is based

on the maximum achievable area of overlap between the original pattern and its mirror

image under rotations and translations. We found that the range (min–max) of the mean

symmetry for the five views was (0.54–0.75) with a CV measure of 15% (Table S2A). This

suggests that the symmetry of all scutes is on average over 50%, but below 75%, meaning

the pattern generally has a moderate level of symmetry across the carapace and that overall

is not highly influenced by noise due to how the images are obtained.

Our results also highlight the importance of obtaining brightly colored images to study

color patterns in order tominimize variation due to how themeasurements are taken.When

data from turtles sampled in the field were compared to turtles samples at the Smithsonian,

we found consistently for many of the color measures, significant differences among the SD

and CV (F-tests and CV diff, p-values < 0.05, Table 3 and Table S3) even though the means

were not significantly different. A likely cause of this is that images obtained in the field

were on living individuals with more vibrant patterns than the museum specimens. More

vibrant colors of living specimens enhance pattern-background contrast and improve the

algorithm’s reliability in detecting pattern objects.

The pattern algorithm developed for this study utilized a threshold to distinguish a

pattern that exhibited a yellower hue than the average of all pixels for the studied region

(the scute). The threshold, a critical component of the algorithm, was employed to isolate

pixels that deviated by a specific percentage from the average yellow value. By utilizing

fractional area, a highly reliable patternmeasurement, we assessed the algorithm’s sensitivity

(Table 4) to determine the extent of variation in pattern identification when the threshold

was adjusted by 5% or 20%. We found that a 5% change to the threshold of the pattern

capture algorithm for image binarization had little impact on the value of fractional area,

while twenty percent change had a clear impact on the pattern recognized. We found that
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the coefficient of variation for the fractional area also increased, suggesting that the chosen

threshold for capturing the pattern was also optimized for minimizing variation, capturing

well the ‘‘true’’ pattern rather than noise artifacts.

Ourmulti-color pattern extractionmethod is fully automated; however, its development

was labor-intensive, and our findings indicate that pattern details of the automated extracted

pattern are sensitive to environmental factors. The fact that the process is fully automated

allows application to much larger datasets in the future. While fully functional, aspects

of the process could be made more efficient, such as developing a more sophisticated

algorithm for the symmetry index instead of an effective but slow brute force search

through all possible translations and rotations of the pattern. Certain distortion effects

due to the curvature of the scutes can be addressed by reconstructing three dimensional

representations instead of two dimensional images. We are also extending this work by

comparing its performance with deep learning approaches, trained on both automated

and hand-labeled datasets. Such an investigation will assess whether deep learning can

reduce the laborious aspects of the extraction process while accurately capturing pattern

features,and showcase the potential of emerging deep learning techniques in this domain.

Finally, we used a citizen science approach to understand how people visually estimate

the level of complexity in the color pattern of the studied box turtles. The level of complexity

was inferred from the overall consensus score based on 31 independent volunteers and

obtained across the provided classification categories of color pattern. Lower consensus

scores indicated that the pattern was more complex and more difficult to categorize, while

higher consensus scores signified more easily identifiable, potentially simpler, patterns.

We note that complexity of pattern can be defined in many different ways, and lack of

agreement in description is one measure among many potential metrics. For instance, a

different measure of complexity, ‘algorithmic complexity’ (Kolmogorov, 1965), has been

assessed by examining the file size of a compressed graphic interchange format (GIF) that

stores a pattern, a method previously used as a measure of pattern complexity (Chan,

Stevens & Todd, 2019). Our choice to use the consensus-of-description method was driven

by its straightforward implementation (each volunteer simply assigned a binary value

to each pattern description) and the ability to capture a wide range of perceptions since

the pattern descriptions were chosen interactively and were not mutually exclusive, thus

organically reflecting the diverse opinions of the participants. In contrast, asking volunteers

to assess the complexity of a pattern directly would require each volunteer determining

independently what is meant by complexity of pattern, with potentially inconsistent results,

or would require the imposition of a predefined, ‘‘top-down’’ definition of complexity.

Across the categorized 98 turtles, consensus scores varied from66% to 87%depending on

the individual animal pattern. A consensus of 67% is a relatively low score, considering that

a consensus of 50% would be the score of maximally divided students, and a score of 67%

means that on average only two out of three students agreed on the appropriateness of each

category. Thirteen turtles (13%) with scores lower than 70% support the complexity and

the difficulty of categorizing the color pattern of the Eastern box turtles. In contrast, 15% of

turtles with high consensus (>80% average consensus for all categories) reflect agreement
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on most categories for these turtles. Patterns with the highest consensus scores were ‘‘M-

shaped’’ or ‘‘single-spotted’’, while ‘‘banded’’ patterns had lower consensus scores. We then

determined which pattern measurements best capture the complexity of the color patterns.

Measurements that were found to positively correlate with the complexity (that is, with

a decrease in consensus) was the occupation factor, while measurements that displayed

negative correlations to complexity were the average object area and eccentricity. The

interpretation of these correlations requires some care. For example, it is not necessarily

the case that these measures intrinsically correlate (or anti-correlate) with complexity.

Rather it is likely that certain turtle pattern phenotypes correlate with complexity, and that

these patterns have distinctive measurements that influence the correlations. For example,

if ‘‘M-shaped’’ patterns typically have high consensus, then the distinctive measurements

properties ofM-shaped patterns, whatever theymay be, will anti-correlate with complexity.

We do not study pattern variation among Terrapene carolina turtles here, but develop

methods that can be applied to studying that variation using digital photographs. We

provide a summary of several ‘‘best practices’’ in Table S5. The methods produced in this

research are not only relevant to study color pattern variation in Terrapene carolina. While

this algorithm was developed to identify a distinct pattern seen on this species, the pattern

recognition algorithm can be modified relatively easily to identify other color patterns that

have distinct colorations and a relatively high contrast to the background coloration. As

such the identification and extraction algorithm, as well as the codes to obtain measures on

the pattern measurements can be highly customizable and applied to study color pattern

variation in other organisms. Additionally, this work provides a pipeline to infer the

influence of variation in how images are obtained and data are extracted on variation in the

algorithm and the studied pattern measurements, something that should be incorporated

also in future studies on color pattern variation. Although our study focused on Terrapene

carolina—a species benefiting from the stability of a hard shell—the algorithm is inherently

adaptable to other taxa with distinct color patterns, such as those available fromopen-access

platforms like iNaturalist. Extending the methodology for other contexts and especially to

species with flexible bodies, would require extensive data cleaning and modifications to

account for distortions introduced by body movement and variable imaging conditions.
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