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ABSTRACT
Purpose. We investigated core body temperature (CBT) during a graded exercise test
(GXT) in comparison with gas exchange dynamics.
Methods. Thirty-two active males performed a treadmill GXT (0.5 km/h increments
every 30 seconds, 1.5% incline) until exhaustion. Gas exchange data and rectal
temperature (Tre) were continuously registered. Ten participants repeated the test for
reliability assessment. The first and second gas exchange thresholds (VT1 and VT2)
were determined by the simplified V-slope method, while CBT dynamics and eventual
temperature thresholds (TT1 and TT2) were assessed according to the criteria defined
in this study. Three independent evaluators determined gas exchange and temperature
thresholds.
Results. In 29 subjects, Tre increase was best fitted with a 3-phase segmented model of
successively steeper slopes, with a linear relationship in all three segments (17 subjects),
or in two segments, with a quadratic relationship for the remaining segment (12
subjects). The between-segment intersection points were considered as TT1 and TT2.
In three participants, Tre was best fitted with a two-segment, single-breakpoint (TT1 or
TT2) model. The evaluators’ objectivity was satisfactory for VT1 (α= 0.786), very high
for TT2 (α= 0.941) and VT2 (α= 0.948). TT1 and VT1 were moderately correlated
(ρ = 0.41, p= 0.021) while VT2 and TT2 were highly correlated (r = 0.78, p< 0.001)
showing a small, yet statistically significant difference (12.95± 1.9 vs 13.43± 1.7 km/h,
p= 0.039). However, test-retest reliability was low.
Conclusion. The breakpoints in CBT increase observed during graded running may
represent transitions between the three intensity domains of physical activity.

Subjects Anatomy and Physiology, Sports Medicine
Keywords Gas exchange, Method comparison study, Rectal temperature, Treadmill running,
Ventilatory threshold

INTRODUCTION
All physical activity can be sorted into three distinct intensity domains—moderate, heavy,
and severe (Skinner & Mclellan, 1980; Antonutto & Di Prampero, 1995; Meyer et al., 2005;
Binder et al., 2008). They reflect different metabolic sources and processes providing energy
for muscular contraction, and are delineated by two transition points, or thresholds. The
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aerobic (or lactate) threshold (AeT) is the upper limit for the moderate intensity. Exceeding
the AeT intensity, the body is progressively more reliant on carbohydrates vs fats as fuel,
and blood lactate [La -] increases significantly compared to resting values. Carbon dioxide
output (VCO2) and pulmonary minute ventilation (VE) show disproportionate increase
compared to oxygen uptake (VO2), needed to eliminate excess CO2 produced by working
muscles, and maintain homeostasis of CO2 pressure (Wasserman et al., 1973; Kindermann,
Simon & Keul, 1979; Meyer et al., 2005). The upper limit for the heavy domain is the
anaerobic threshold (AnT), also called respiratory compensation point (RCP) (Wasserman
et al., 1973). AnT represents the highest intensity at which there is still an equilibrium
between lactate production and elimination (maximal lactate steady state), and at higher
intensities blood [La −] and [H +] rise inexorably and cannot be stabilized. At the AnT
there is a second disproportionate increase in VCO2 and VE as compared to VO2, as well
as a decrease in arterial pH and CO2 pressure (Rusko et al., 1986; Meyer et al., 2005). To
test whether buffering of the metabolic acidosis prevents the occurrence of the AnT,Meyer
et al. (2004) administered intravenous injections of bicarbonate during a ramp cycling test.
The delayed (but not prevented) occurrence of AnT in their study indicates that exercise
induced metabolic acidosis is, to a certain extent, causally involved in the occurrence of
hyperventilation at the AnT.

This concept of three domains and two threshold intensities as delineating breakpoints
has long been recognized and used both in medicine and sports (Loat & Rhodes,
1993)—in prescription of exercise intensity, monitoring of training and rehabilitation
effects, performance and clinical outcome prediction, and athlete selection (Meyer et
al., 2005; Faude, Kindermann & Meyer, 2009). Despite its widespread use, the concept of
aerobic/anaerobic thresholds still remains a controversial topic in terms of its definition,
underlying physiological mechanisms, as well as its measurement methods and even its
mere existence (Brooks, 1985; Anderson & Rhodes, 1989; Loat & Rhodes, 1993; Myers &
Ashley, 1997; Bosquet, Léger & Legros, 2002; Svedahl & MacIntosh, 2003; Poole et al., 2021).

In addition to the most widely used methods of threshold identification—blood lactate
and gas exchange measurements (Svedahl & MacIntosh, 2003; Meyer et al., 2005)—a
number of other methods have been proposed to explain and enhance the objectivity
of the determination of aerobic-anaerobic transition. These include field and laboratory
measurements of heart rate (Conconi et al., 1982), heart rate variability (Kaufmann et al.,
2023), catecholamines in plasma (Schneider, McGuiggin & Kamimori, 1992; Chwalbinska-
Moneta et al., 1996),myoelectric signals (Nagata et al., 1981; Lucía et al., 1999), ammonium
ion in plasma (Buono, Clancy & Cook, 1984;Yuan et al., 2002), saliva electrolytes (Chicharro
et al., 1994) or self-reported subjective measures (Bok, Rakovac & Foster, 2022).

Different research approaches reflect different hypotheses on the physiological
mechanisms underlying the thresholds. The use of electromyography (EMG) to analyze the
aerobic-anaerobic transition during graded exercise (Nagata et al., 1981; Moritani et al.,
1984; Airaksinen et al., 1992; Mateika & Duffin, 1994; Chwalbińska-Moneta, Hanninen &
Penttila, 1994; Taylor & Bronks, 1994; Lucía et al., 1997; Lucía et al., 1999; Hug et al., 2003;
Frazão et al., 2021) is based on the hypothesis that the increases in EMG activity, resulting
from the increased recruitment of fast twitch motor units during incremental exercise,
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would appear as noticeable thresholds that would correlate with the ones detected by
conventional methods for determination of the aerobic-anaerobic transition.

Building on this, we formulated a hypothesis on possible temperature thresholds based
on the changes in motor units recruitment during incremental exercise. Namely, it has
been shown that within muscle fibers, compared to type-I isoforms, type-II specific myosin
ATPase isoforms require 1.6−2.1 times more ATP per unit force production and therefore
have a proportionately lower thermodynamic efficiency (Stienen et al., 1996; Reggiani,
Bottinelli & Stienen, 2000; Barnes & Kilding, 2015). Moreover, an increase in intracellular
free ADP, Pi and H+ occurs with increasing intensity of muscle contraction, leading
to a decrease of the free energy (1G) for ATP hydrolysis (González-Alonso et al., 2000).
Therefore, we hypothesized that amore pronounced recruitment of fast twitchmotor units,
and lower thermodynamic efficiency characteristic for increasing intensity of exercise and
the aerobic-anaerobic transitions, would reflect in clearly detectable threshold-like changes
in the increase of the core body temperature (CBT) during a ramp test in controlled
environmental conditions. As the recruitment of fast-twitch motor units (especially type
IIb at the intensities above the anaerobic threshold) results in an appreciable increase in the
energy turnover per unit of work, a disproportionate increase in heat production might be
expected, and detected as threshold-like CBT changes. Consequently, we hypothesized that
with increasing exercise intensity the CBT slope changes would coincide with the changes
in ventilatory parameters used to determine the first (aerobic) and the second (anaerobic)
gas exchange thresholds (VT1 and VT2, respectively).

In the context of ventilatory and temperature parameters, Whipp & Wasserman (1970)
were the first to explore the relationship between hyperpnea and rectal temperature during
a progressive exercise test to fatigue, in normothermic and hypothermic state. Pulmonary
ventilation in their study increased proportionally to VCO2 and was independent of
the body temperature level, suggesting that during exercise body temperature cannot be
considered an independent stimulus to ventilation. White & Cabanac (1995); White &
Cabanac (1996) also explored the ventilatory response as a function of body temperature
increase during incremental cycling. Contrary to the study of Whipp & Wasserman
(1970), they (White & Cabanac, 1995; White & Cabanac, 1996) reported the occurrence
of a breakpoint in the relationship between esophageal and tympanic temperatures and
ventilatory equivalents for VO2 and VCO2, thus termed as core temperature threshold
for increased ventilation (White & Cabanac, 1995;White & Cabanac, 1996). They assumed
that hyperventilation during high-intensity exercise could be in part a thermolytic response
involved in selective brain cooling.

Countless graded exercise tests are performed each day in clinical and sports diagnostics
settings. Remarkably, to the best of our knowledge, despite the importance and extensive
research of the CBT and thermoregulation, CBT dynamics in relation to increasing
work rate have not been addressed in prior studies. Moreover, none of these studies
evaluated core body temperature and its relationship with gas exchange data during a
finely graded running test to exhaustion. Thus, the aim of our study was to (1) explore
and characterize core body temperature response to graded treadmill exercise, and (2)
compare core body temperature and gas exchange data measured concurrently during
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a finely graded GXT. Rectal temperature (Tre) has been shown as a reliable and stable
measure/representative of the internal body temperature (Armstrong et al., 2007; Lee et al.,
2010) and it was intentionally chosen as the index of CBT in our study due to its proximity
to the large muscle groups active in running. We hypothesized that with increasing
exercise intensity the CBT would show a disproportionate increase (with threshold-like
phenomena) coincident with the changes in ventilatory parameters used to determine the
aerobic and the anaerobic thresholds.

MATERIALS & METHODS
Participants
Thirty-two recreationally active males (age 26.5 (6.6) yrs; height 179.2 (5.0) cm; body mass
76.8 (8.1) kg; mean (SD) for all values) participated in the study. The participants were
kinesiology students and recreational runners recruited by the Diagnostic Center of the
University of Zagreb Faculty of Kinesiology. The inclusion criteria were engagement in
running activities at least four hours per week during the year prior to testing, experience in
treadmill running, absence of any musculoskeletal or cardiovascular symptoms or diseases
that might have influenced the results, normal resting body temperature on the day of the
testing, and no recent exposure to high environmental temperatures. The measurements
were performed during the spring and autumn months, so no seasonal acclimatization was
expected. The participants were asked to refrain from strenuous physical activity at least 24
h, have a light breakfast at least 2 h before testing, and show up dressed in light clothing and
running shoes. The purpose of the study and potential harms were explained, and written
informed consent provided from all subjects. The study, approved by the Review Boards of
the University of Zagreb Faculty of Kinesiology and School of Medicine (approved research
proposal 04-3741/2-2008), conforms to the Helsinki Declaration.

Study protocol
All subjects performed a graded exercise test on a motorized, calibrated treadmill (Run
Race, Technogym, Italy) with incline set at 1.5%. Following a short warm-up and stretching
procedure, the participants started walking for 3 min at three km/h. Thereafter, speed
increased by 0.5 km/h every 30 s. The participants were instructed to start running at the
speed of five km/h. At low running speeds the aerial (airborne) phase was not required, as
just the stance leg had to be flexed in the mid-stance phase (spring-mass model). The test
was performed until volitional exhaustion. The last full stage the subject could sustain was
defined as the subject’s maximal speed. During recovery, the subjects walked at five km/h
for 5 min. To determine the test-retest reliability, ten participants repeated the test within
one week.

All tests were performed in the morning hours, in stable microclimatic conditions (air
temperature 20−22 ◦C, relative humidity ≤ 60%, no appreciable sources of air flow) to
keep the increase of the CBT proportional to the amount of metabolically produced heat
(Lind, 1963).
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Acquisition and analysis of gas exchange parameters
We monitored gas exchange parameters continuously throughout the test, using an
automated breath-by-breath system (Quark b2, Cosmed, Rome, Italy). The system includes
a face mask worn by participants (Hans Rudolph, Shawnee, KS, USA), connected to
a turbine with opto-electronic air flow meter. Expired air (one ml/s) passes through
a capillary tube (Nafion Permapure®) to reach analyzers for O2 (zirconia) and CO2

(infrared). The gas concentrations are measured with an accuracy of ± 0.03%. Prior to
each test the turbine was calibrated with a 3-L pump, and the O2 and CO2 analyzers were
calibrated with a calibration gas (O2 16.10%, CO2 5.20%, NO2 rest).

Gas exchange data analysis and VT1 and VT2 assessment were performed within
the Quark b2 software (Version 8.1a, Cosmed, Italy) as previously described (Sentija &
Markovic, 2009). Briefly, determination of both thresholds is based on the accelerated
rate of CO2 output compared to VO2 (simplified V-slope method) (Sue et al., 1988;
Schneider, Phillips & Stoffolano, 1993). The point of the first disproportionate increase of
VCO2 in comparison to VO2 indicated the oxygen uptake at VT1 and the corresponding
speed. The point of the second disproportionate increase of VCO2 in comparison to VO2

(the intersection point of the below and above regression lines) represented the second
ventilatory (anaerobic) threshold (VT2). When needed, threshold determination was
supported with inspection of the VE, VE-VCO2 plot, respiratory exchange ratio (RER),
and ventilatory equivalents for O2 (VE/VO2) and CO2 (VE/VCO2). The highest oxygen
uptake for any 30-s period recorded in the incremental running test was defined as peak
VO2. Three experienced evaluators detected VT1 and VT2 independently.

Acquisition and analysis of core body temperature
Rectal temperature was measured with a single-use fast-response temperature probe
connected to a datalogger (Xplorer GLX, PASCO Scientific, Roseville, CA, USA) with
DataStudio software for data storage and analysis. The logger contains built-in temperature
sensors with a resolution of 0.01 ◦C. The frequency of data collection was set at two Hz.
Prior to each testing, the instrument was calibrated according to the manufacturer’s
instructions. Subjects were carefully instructed to insert the temperature probe into the
rectum, eight cm from the anal opening (Åstrand et al., 2003). The probe cable was fastened
to the participants’ shorts and additionally secured with an elastic strap around the waist.
After the test, temperature data were exported to Microsoft Excel and analyzed graphically.

If manifested, the temperature thresholds (TT1 and TT2) were assessed by the same
evaluators that detected the gas exchange thresholds. The evaluators were instructed to
determine the temperature thresholds visually (by detecting breakpoints of abrupt change
in the slope of the CBT-time/speed relationship) and perform computer-assisted regression
analysis for confirmation. To improve the detection of the thresholds, all data were viewed
and analyzed graphically as raw data, and with three different time-averaging intervals:
15-s (half-stage), 30-s (full stage), and 60-s (two-stage). Temperature data for a subject
with three distinct linear phases and clear TT1 and TT2 are shown in Fig. 1.

Piecewise linear and second-order polynomial (quadratic) models were used to fit
temperature data. If both the linear and polynomial functions fitted the data equally well,
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Figure 1 Core body temperature of one participant during graded treadmill running, in relation to (A)
time (raw data), and speed averaged every 15 s (B), 30 s (C) and 60 s (D). In (A) Tre throughout 5 min of
recovery is also shown. In (B, C, and D) regression lines with corresponding equations for the three seg-
ments are shown.

Full-size DOI: 10.7717/peerj.19686/fig-1

the lower order (linear) model was chosen. To detect trend changes and avoid overfitting,
a minimum range of CBT observations for any phase was defined as four stages (2 min, or
two km/h range) and a maximum number of two allowed breakpoints was selected, in line
with the presumed three-domain model of physical activity. This prevented that detected
breakpoints were solely affected by step-to-step changes and supported the detection of only
major breakpoints in the entire intensity range. Furthermore, to identify the breakpoint as
either TT1 or TT2 in cases where only one breakpoint could be discerned, it was assumed
that both breakpoints are roughly equidistant from start to end of running in the test.

Evaluation of the temperature and ventilatory data was performed separately, and the
evaluators were blinded for both data sets. If evaluators disagreed about a detected gas
exchange or temperature threshold value, the value considered in further analyses was
either: (a) the value on which two evaluators agreed (in case only one evaluator selected
a different threshold value), or (b) the median value (in case all three evaluators selected
different threshold values).
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Data analysis
Descriptive statistics (arithmetic mean, standard deviation and range) were calculated
for each variable. The normality of data distribution was tested by the Kolmogorov–
Smirnov test. The relationship between ventilatory and temperature parameters was tested
using Pearson’s correlation coefficient (TT2 and VT2) and the Spearman rank correlation
coefficient (TT1 and VT1). The statistical significance of the differences between ventilatory
and temperature parameters was tested by the paired samples t -test (TT2 and VT2) and
the Wilcoxon signed-rank test (TT1 and VT1). The agreement between the temperature
and ventilatory thresholds was tested using regression analysis with 95% prediction and
confidence intervals and by the Bland-Altman method (Altman & Bland, 1983). The
objectivity of the three evaluators in identification of the ventilatory and temperature
thresholds was determined by the Cronbach α coefficient. The test-retest reliability was
determined by the intraclass correlation coefficient (ICC). In order to reveal the dynamics
of CBT in relation to running speed and in relation to gas exchange thresholds within the
whole dataset the following procedure was used: (1) the relative speed for each stage was
calculated (in % of maximal speed), for each participant; (2) CBT data for all participants
were added together, grouped and averaged within categories representing a relative 2%
running speed increase (from 24 to 100%). Statistical significance was set at p≤ 0.05. All
statistical analyses were performed using Statistica, version 14.0.1.25 (StatSoft Inc., Tulsa,
OK, USA).

RESULTS
Modeling of core body temperature
Different patterns characterized the increase of rectal temperature during graded treadmill
running. The most common (detected in 17 participants) was a 3-phase segmented linear
regression model, with successively steeper temperature slopes at higher speeds (Fig. 1).
The second model was detected in 12 participants: the temperature data were best fitted
with a quadratic relationship in one segment, and a linear relationship for the remaining
two segments (Fig. 2). The breakpoints between the segments were considered as the first
and second temperature thresholds (TT1 and TT2).

In the remaining three subjects, the temperature data were best fitted with a single
breakpoint (TT1 or TT2) between two segments, one with a quadratic and one with a linear
function (Fig. 3).
The mean resting rectal temperature at the start of the exercise test was 37.20± 0.27 ◦C.

Initial dips in rectal temperature were observed in certain subjects, but no systemic tendency
at the onset of running exercise was found. That is, Tre within the first (moderate) domain
slowly rose in some, whilst it was preserved or even decreased in others. Rectal temperature
rose with higher exertion, and continued to increase throughout the recovery period
(see Fig. 1A), during which the highest values were observed in all subjects (on average,
38.42 ± 0.38 ◦C).

Four participants showed a sporadic drop in temperature readings lasting 1–5 s, probably
caused by errors in signal transmission; the missing values of those brief periods between
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Figure 2 Core body temperature in relation to running speed in one participant with one quadratic
(central) and two linear (initial and final) segments.

Full-size DOI: 10.7717/peerj.19686/fig-2

validly collected temperature data were easily recovered with appropriate estimated
values, allowing us to construct representative core temperature profiles throughout the
measurement for all participants.

Gas exchange and temperature thresholds
Descriptive data of the temperature and gas exchange thresholds are presented in Table 1.
Both gas exchange thresholds (VT1 and VT2) were determined from the VO2/VCO2

relationship (V-slope, Fig. 4A). However, due to artefacts in the gas exchange data,
one participant was excluded from the analysis. In three participants, there was a clear
breakpoint with an abrupt rise between the first and second segment in the VCO2/VO2

relationship (and was adjudicated as VT1), although the slope coefficient for the second
segment (data between VT1 and VT2) was below 1.00 (Fig. 4B). Overall, smoother between-
phase transitions and higher signal-to-noise ratio were noted for CBT, than for gas exchange
parameters.

Objectivity of the evaluators
Although noticeable in most subjects, the evaluators’ objectivity in the assessment of
TT1 was unsatisfactory (α= 0.693). In seven participants one of the evaluators could not
identify TT1. On the other hand, the evaluators’ objectivity in the assessment of TT2 was
very high (α= 0.941). The objectivity of the assessment of gas exchange thresholds was
satisfactory both for VT1 (α= 0.786) and for VT2 (α= 0.948).
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Figure 3 Core body temperature with a single breakpoint in relation to running speed (A, B and C
showing data for three participants).

Full-size DOI: 10.7717/peerj.19686/fig-3
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Table 1 Descriptive statistics of the variables at the thresholds, and at peak running speed.

Speed
(km/h)

Temp
(◦ C)

VO2

(ml/kg)
%VO2max K-S

p

TT1 8.14± 0.9
(7–11)

37.33± 0.29
(36.61–37.83)

33.9± 5.0 56.8± 7.1 <0.01

VT1 8.35± 1.3
(6–11)

37.33± 0.29
(36.65–37.83)

34.5± 4.4 57.6± 5.2 >0.20

TT2 13.43± 1.7
(10.5–18)

37.59± 0.31
(36.92–38.13)

51.2± 6.1 85.4± 6.0 >0.20

VT2 12.95± 1.9
(9.5–17.5)

37.57± 0.29
(36.98–38.09)

50.3± 5.3 83.6± 3.9 >0.20

Max 17.78± 2.1
(14–22.5)

37.96± 0.37
(37.11–38.84)

59.9± 5.4 — >0.20

Notes.
TT1 and TT2, first and second rectal temperature threshold; VT1 and VT2, first and second gas exchange threshold; Max,
maximal values at exhaustion; Temp, rectal temperature; K-S p, p-value in Kolmogorov–Smirnov test.
Values are means± standard deviation, with ranges in parentheses.

Relationship between temperature and gas exchange thresholds
No significant differences were found between TT1 and VT1 (p= 0.407), while there was a
small, but significant mean difference between running speed at TT2 and VT2 (p= 0.039).
However, when expressed as temperature, oxygen uptake or percentage of VO2max, the
average values of VT2 and TT2 thresholds did not differ significantly (p> 0.10 in all cases).
There was a moderate correlation between TT1 and VT1 (ρ= 0.41, p= 0.021) and a strong
correlation between TT2 and VT2 (r = 0.78, p< 0.0001). In Fig. 5, rectal temperature data
for all participants are presented in relation to the relative running speed, expressed as a
percentage of maximal running speed (averaged at 2% steps), to visualize and confirm
the presence of three CBT domains during incremental running and the similarity of
breakpoints between them with the gas exchange thresholds.

The regression analysis for comparison of temperature with gas exchange thresholds is
shown in Fig. 6.

The agreement between TT2 and VT2, tested by the Bland-Altman method, was
satisfactory. After exclusion of an outlier (participant no. 8), the mean difference between
VT2 and TT2 was −0.47 ± 1.24 km/h, with 95% LoA −2.90–1.97 km/h. In 68% of
participants the differences between TT2 and VT2 were within ± 1 SD of the mean
difference (i.e., within −1.71–0.77 km/h range). Only in four participants (12.5%) the
differences were greater than 1.5 km/h.

Test-retest reliability
Test-retest reliability for threshold values expressed as running speed was low (ICCs for
VT1, TT1, VT2, and TT2 were 0.39, 0.18, 0.49, and 0.23, respectively). In some cases, the
evaluators indicated a first-choice and an alternative (third) breakpoint/threshold value.
In all such cases the indicated values matched among evaluators but were not always
designated as the same level of choice. When these values were matched and included in
analysis, the test-retest reliability was higher for VT2 (ICC = 0.93) but still showing poor
reproducibility for TT2 (ICC = 0.36). The test-retest reliability was generally higher for
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Figure 4 VO2 in relation to VCO2 (V-slope) and rectal temperature in two participants. Note that the
marked temperature thresholds were determined from the temperature data in relation to running speed
(see Fig. 1). (A) Identical gas exchange and temperature thresholds; (B) TT1 is one stage (0.5 km/h) higher
than VT1.

Full-size DOI: 10.7717/peerj.19686/fig-4
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Figure 5 Core body temperature data for all participants, averaged in relation to the percentage of
maximal running speed (2% steps). The linear regressions for the three domains were calculated with av-
erage VT1 and VT2 values as breakpoints (dashed lines).

Full-size DOI: 10.7717/peerj.19686/fig-5

Figure 6 The relationship between (A) the first gas exchange (VT1) and temperature (TT1) thresholds,
and (B) the second gas exchange (VT2) and temperature (TT2) thresholds. The thick continuous line
shows the linear regression with corresponding equation; the short- and long-dashed lines show the 95%
prediction and confidence intervals, respectively. The thin line shows the identity line.

Full-size DOI: 10.7717/peerj.19686/fig-6
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threshold values expressed as VO2 (ICC= 0.52, 0.72, 0.69 and 0.68 for VT1, TT1, VT2 and
TT2, respectively).

DISCUSSION
The aim of this study was to model the changes of core body (rectal) temperature during
graded treadmill running to volitional exhaustion and to evaluate the relationship between
CBT pattern with concurrent ventilatory and gas exchange pattern. The results confirmed
our hypothesis that rectal temperature in young, fit men increases disproportionately with
increasing running speed, showing threshold-like changes. Moreover, in most cases, two
breakpoints in theCBT-speed relationship are present, and those thresholds are significantly
correlated (TT1, moderately; TT2, strongly) to the first and second gas exchange threshold
(VT1 and VT2, respectively).

The increase of rectal temperature in most of our participants followed a 3-phase model,
while a two-segment model was detected in only three of our participants (Fig. 3), showing
a single breakpoint that occurred at ∼70% of the maximal attained intensity (Figs. 3B,
and 3C), similar to esophageal temperature thresholds for VE/VO2 and VE/VCO2 in the
studies ofWhite & Cabanac (1995) andWhite & Cabanac (1996).

Baseline temperature (37.20 ± 0.27 ◦C) and the highest temperature measured during
the recovery of our participants (38.42 ± 0.38 ◦C) were also comparable, although higher,
than the range of esophageal temperatures registered in the previous studies (White
& Cabanac, 1995; White & Cabanac, 1996; Sancheti & White, 2006). Lower readings of
esophageal vs rectal temperature during exercise in different environmental conditions
were also described by previous studies (Mündel et al., 2016). A rectal temperature dip was
observed in some of our participants at the beginning of the exercise. Small esophageal
(blood) temperature dips (−0.2 ◦C) at the very beginning of a cycle ergometer test (White
& Cabanac, 1995; Sancheti & White, 2006) were previously described and interpreted as
a result of: (1) an increased limb perfusion causing increased return of cold blood from
cutaneous circulation to the core, and (2) the heat produced and retained in active muscles
for intramuscular warming, rather than being transported away from the muscles by blood
(Alt et al., 1986; Alt, Stangl & Theres, 1993). Arguably, the stagnant or slow CBT rise in the
moderate intensity range observed in some participants can be partly attributable to the
lower temperature in the working muscles at the start of a graded running test, and the
time needed for heat accumulation in the active muscles and equalization of muscle and
core temperatures.

In the study comparing CBT with ventilatory parameters during graded cycling to
exhaustionWhite & Cabanac (1995) described a disproportionate increase of both VE/VO2

and VE/VCO2 in relation to CBT. This onset of hyperventilation proportional to the
increase in CBT at higher exercise intensities was described as a thermolytic response for
selective brain cooling, from enhanced upper-airway evaporation and heat loss (White
& Cabanac, 1995; White & Cabanac, 1996; Sancheti & White, 2006). Unfortunately, the
authors did not report the CBT/workload relationship, hence giving no real evidence on
the occurrence of a core temperature thresholdwith increasing exercise intensity.Moreover,
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the reported CBT threshold values were dependent upon the testing protocol (fast vs slow
workload increase) and temperature probe placement (tympanic vs esophageal).

The premise that hyperventilation during high intensity activity contributes to selective
brain cooling has also been contested, as decreasing arterial CO2 pressure (at intensities
above AnT) contributes to cerebral hypoperfusion, thus diminishing heat removal and
likely increasing brain temperature (Kety & Schmidt, 1948; Nybo et al., 2002; Nybo &
Secher, 2011a; Nybo & Secher, 2011b). Therefore, it seems that metabolic factors, rather
than brain cooling, primarily drive the disproportionate increase of both core temperature
and ventilatory indexes during incremental exercise, following increased recruitment of fast
twitchmotor units at higher intensities (Nagata et al., 1981;Moritani et al., 1984;Airaksinen
et al., 1992; Mateika & Duffin, 1994; Chwalbińska-Moneta, Hanninen & Penttila, 1994;
Taylor & Bronks, 1994; Lucía et al., 1997; Lucía et al., 1999; Hug et al., 2003). Aaron et al.
(1992) measured the O2 cost of hyperpnea during progressive exercise in healthy young
subjects. Frommoderate to severe exercise, they noted an∼80% increase in the oxygen cost
per L of ventilation, while the average increase in total VO2 per step devoted to ventilation
increased fivefold, from 8% to 39 ± 10%. The results of this study indicate that the
decrease of ventilatory efficiency with increasing workload may considerably contribute to
steeper CBT rise and the appearance of CBT thresholds. Meyer et al. (2004) demonstrated
that metabolic acidosis induced by exercise is causally involved in the occurrence of
hyperventilation at the respiratory compensation point (VT2). However, the VT2 in their
study occurred even with complete buffering of metabolic acidosis, indicating that other
physiological stimuli are included in the regulation of hyperpnea during intense exercise
to volitional exhaustion.

Expressed as % VO2max, the average values of TT1 andTT2 in our participants were
56.8 ± 7.1% and 83.3 ± 10.0% VO2max, respectively. The average observed value was
somewhat higher for TT2 than VT2 (Table 1), congruent with the results of Lucía et al.
(1999) who reported higher values of the second EMG threshold for bothm. vastus lateralis
(86.9 ± 1.5% VO2max) and m. rectus femoris (88.0 ± 1.4% VO2max) compared with the
values of VT2 (84.6 ± 6.5% VO2max). No statistically significant differences between the
thresholds were found in that study (p> 0.05) (Lucía et al., 1999).

The objectivity of evaluators in determining TT2 was high, and threshold values were
clearly identifiable in most participants. However, the existence of TT1 could not be firmly
sustained due to poor agreement between the evaluators, as well as due to several cases
(22%) in which this threshold could not be identified. In the study by Lucía et al. (1999)
the first EMG threshold was identifiable in all 28 participants, although the authors did
not state the level of agreement between evaluators in identification of the threshold. The
low objectivity of the evaluation of TT1 indicates that the aerobic threshold cannot be
reliably assessed from changes in CBT during a treadmill GXT. This might be influenced
by the very low variability of VT1/TT1 and by discrete metabolic changes taking place at
lower workloads, producing an unfavorable signal-to-noise ratio. In addition, the difficulty
of TT1 assessment could result from the fact that the intensity at the aerobic threshold
corresponds to the transition speed betweenwalking and running gaits (Sentija & Markovic,
2009), a speed naturally avoided in locomotion (Minetti, Ardigo & Saibene, 1994).
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The good agreement between TT2 and VT2 is comparable to the LoA (≈ 2–2.5 km/h)
found between the second EMG and ventilatory thresholds (Lucía et al., 1999) as well as
between the lactate and ventilatory thresholds (≈ 2–3 km/h) in the study of Gaskill et al.
(2001) (approximate values, recalculated from original values reported in watts (Lucía et
al., 1999) and ml O2/min (Gaskill et al., 2001)).

The mean difference between TT2 and VT2 (0.48 km/h, p= 0.029, Table 1) converted
to time difference between the two equals 28.2 ± 74.4 s, with TT2 lagging behind VT2.
This statistically significant difference between thresholds, defined as running speed, is
negligible from a practical standpoint. TT2 and VT2 are two different indicators supposedly
originating from the same underlying physiological processes and the time lag in their
onset might be the consequence of their sequential occurrence and/or data latency. With
increasing running speed, changes in some ventilatory variables like minute ventilation,
tidal volume and breathing frequency are registered almost instantaneously. On the other
hand, the change in CBT kinetics (increased rate of heat production within the active
muscles) is registered with a delay for the blood transit time from the muscle capillaries
of the locomotor and respiratory muscles to the temperature collection point (Dempsey,
Harms & Ainsworth, 1996; Kalliokoski, Knuuti & Nuutila, 2004).

The high correlation between TT2 and VT2 is congruent with the results of previous
studies that compared different methods for threshold detection, such as the study by
Tikkanen et al. (2012), showing a high correlation between the EMG threshold and VT2

(r = 0.86, p< 0.001) and between the EMG threshold and the onset of blood lactate
accumulation (r = 0.84, p< 0.001). Kang et al. (2014) compared anaerobic thresholds
estimated by EMG and ventilatory parameters using different data filtering intervals (9, 15,
20, 25, 30 s) and detected a high correlation (r = 0.89−0.99) for different combinations of
EMG and gas exchange data filtering.

The test-retest reliability found in the present study is lower than previously observed
for EMG thresholds (ICC range 0.73–0.96 for the first and second EMG threshold) (Lucía
et al., 1999) and for thresholds determined by the Dmaxmethod (r = 0.78−0.93) (Cheng et
al., 1992). On the other hand, our results are comparable to those of Dickhuth et al. (1999),
who found a low reliability of epinephrine and norepinephrine thresholds (r = 0.49
and r = 0.46, respectively). The possible reasons behind the low test-retest reliability of
the temperature thresholds determined in the present study include: small sample size;
biological variability of the measured variables; error(s) caused by variation inherent to
the measurement methods; error in subjective estimation (inter- and intra-evaluator),
previously identified as potentially appreciable source of error (Gladden et al., 1985).
Moreover, the results might have been influenced by the homogeneity of the sample of
participants who repeated the test (showing above average fitness, and a narrow overall
TT2 range), and by the suboptimal running speed resolution in the test (0.5 km/h).

Limitations of the study
The findings of this study can only be generalized in reference to the characteristics of
the sample, and therefore the conclusions drawn from the data are limited to healthy,
active young men. Nevertheless, since the proposed causal physiological mechanism
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behind the occurrence of the thresholds (a steeper temperature increase at the transition
from moderate to heavy, and from heavy to severe intensity) is metabolically driven and
therefore supposed to be ubiquitous, we may presume the appearance of the temperature
thresholds regardless of the participants’ characteristics. The study also failed to account
for thermoregulatory factors like sweating and skin temperature regulation. To improve
research findings, further studies should ensure representative samples with a broader
range of participants, including both genders, various age groups and different fitness
levels. The intra-evaluator reliability in detecting the temperature thresholds should also
be tested.

Another methodological limitation of this study refers to the anatomical location
for collection of CBT data. The use of tympanic and/or esophageal temperature was
recommended in previous studies, as measurement sites more closely reflecting core
(brain) temperature (White & Cabanac, 1995; White & Cabanac, 1996; Sancheti & White,
2006; Lim, Byrne & Lee, 2008), and, arguably, esophageal temperature also better reflected
the increased passage of warm air through the adjacent airways. In line with our hypothesis,
rectal temperature should more closely reflect the intensity-related increase in CBT, with
a fast response due to the proximity of large pelvic and thigh muscles active in running,
both via conductive (solid tissue) and convective (blood) heat transfer. The depth of
insertion of the temperature probe was shallower than recommended by Hymczak et al.
(2021), as it was chosen not to represent the best indication (highest value) of internal body
temperature, but rather to be most reflective to rapid core temperature changes during
incremental running. As shown in the study by Lee et al. (2010), Tre at shallower depths is
most reflective of those rapid core temperature changes. Even so, and regardless of the strict
procedure for insertion and securing of the rectal temperature probe, and the instructions
given to the subjects regarding the depth of insertion (∼8 cm beyond the anal sphincter),
we cannot exclude possible minor displacements of the temperature probe within the rectal
area during measurement. Therefore, the location and variation of the depth of the rectal
probe insertion may have contributed to a certain amount of variability of the measured
temperature values (Lee et al., 2010) and the derived parameters.

CONCLUSIONS
In conclusion, graded treadmill running induces a disproportionate increase in rectally
measured core body temperature, with detectable breakpoints moderately (TT1) and
highly (TT2) related to the first (aerobic) and second (anaerobic) ventilatory thresholds.
Different patterns of rectal temperature increase were registered, with a 3-phase segmented
linear regression model as the most common. Overall, smoother between-phase transitions
and a higher signal-to-noise ratio was noted for CBT data, than for breath-by-breath gas
exchange parameters. Highly objective assessment of the TT2, satisfactory agreement and
correlation between TT2 and VT2 imply the presence of a temperature threshold that
may be used in estimation of the anaerobic threshold. On the other hand, TT1 showed
unsatisfactory reliability, lower objectivity and correlation with VT1. We presume that the
same underlying physiological mechanisms account for the occurrence of gas exchange and
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core temperature thresholds with increasing workload. Namely, a decrease in locomotor
and ventilatory efficiency, due to sequential motor unit recruitment pattern and hyperpnea,
are manifested as thresholds delineating the moderate, heavy and severe intensity domains
of physical activity. Further studies should be considered to elucidate the low reproducibility
of the temperature thresholds described in this study, and to improve the methodology and
enable practical implementation of core body temperature measurement for demarcation
of exercise intensity domains. Future studies should also investigate the comparison of
the temperature thresholds with other parameters used to assess the anaerobic threshold
(EMG, blood lactate, etc.), and whether the findings in this study can be translated to
diverse populations in regard to sex, age, fitness and acclimatization level, to modalities of
graded exercise other than running (i.e., cycling, walking, rowing, etc.), and test protocols
of different total duration and workload increment.

Abbreviations

AeT aerobic (or lactate) threshold
AnT anaerobic threshold
BF breathing frequency
CBT core body temperature
CO2 carbon dioxide
EMG electromyography
GXT graded exercise test
ICC intraclass correlation coefficient
RCP respiratory compensation point
Tre rectal (core body) temperature
TT1 first temperature threshold
TT2 second temperature threshold
TV tidal volume
VE minute ventilation
VCO2 carbon dioxide output
VO2 oxygen uptake
VT1 first gas exchange (ventilatory) threshold
VT2 second gas exchange (ventilatory) threshold
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