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ABSTRACT
Wastewater treatment plants in Tunisia are recognized as key locations for the spread
of antibiotic and heavy metal resistance genes among bacteria. Despite the widespread
presence of pollutants in these treatment systems, there is still a significant gap in our
understanding of resistance dynamics. This study focused on analyzing the bacterial
community and resistome-mobilome profiles of the Charguia wastewater treatment
plant (WWTP). Usingmetagenomics sequencing, six samples from the influent, sludge,
and effluent were thoroughly examined. Our research findings indicated the prevalence
of Proteobacteria and high levels of Bacteroidota, Firmicutes, Campylobacterota, and
Patescibacteria. After conducting a species level analysis, we identified important
species such as Pseudomonas psychrophila, Pseudomonas fragi, Pseudomonas lundensis,
Acinetobacter johnsonii, and Thiothrix unzii linked to antibiotic resistant genes (ARGs)
like mdtA and merR1 and heavy metal resistance genes (MRGs), including czcA and
cnrA. Our study illustrated the persistence of specific species in the effluent due to the
co-occurrence of ARGs/MRGs andmobile genetic elements (MGE). Notably, IncQ and
IncP were found to be associated with mdtA, mexR, arsR1, and merR. The conclusions
drawn from our research suggest that the WWTP has been potentially effective in
reducing multidrug resistance.

Subjects Genomics, Microbiology, Molecular Biology, Environmental Contamination and
Remediation
Keywords Metagenomics, Antibiotic and metal resistance genes, Wastewater, Horizontal transfer

INTRODUCTION
Antimicrobial resistances (AMRs) pose a major threat to the environment and human
health worldwide. Recent data from 2019 showed that antimicrobial bacteria (ARBs) were
responsible for 1.27million deaths (Murray et al., 2022). If left unchecked, the uncontrolled
spread of antibiotic resistance could lead to a staggering 10 million deaths by 2050,
exceeding the estimated number of deaths caused by cancer (Aljeldah, 2022). This global
trend is mirrored in Africa, where the growing burden of AMR is particularly alarming
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due to limited surveillance and control measures. Africa is particularly vulnerable, with 88
combinations of drug-resistant pathogens documented in the World Health Organization
(WHO) region (Mestrovic et al., 2022). Excessive and inappropriate use of antibiotics in
various fields, including veterinary, medicine, and agriculture, has led to the emergence of
resistant microbial strains and impaired our ability to effectively combat certain infections.

Tunisia represents a specific case that highlights the consequences of widespread
antibiotic use at the national level. In 2015, Tunisia was reported to be the second-
largest consumer of antibiotics worldwide (Klein et al., 2018), underscoring the scale of
antimicrobial consumption in the country. Although data from other African countries
also point to rising resistance levels, Tunisia’s high antibiotic use and increasing evidence of
resistance in environmental samples suggest a particularly urgent need for local surveillance
and mitigation strategies.

One of the primary environmental pathways for the spread of resistance is through
aquatic systems, which serve as reservoirs for resistant bacteria and genes.

Aquatic environments such as rivers, groundwater, fish farms, and wastewater
treatment systems have been identified as significant antibiotic reservoirs, as Marti,
Variatza & Balcazar (2014) emphasized. In particular, wastewater treatment plants are
considered a major source of various pollutants, including antibiotics, heavy metals,
and biocides (Chukwu et al., 2023). These pollutants originate from urban, industrial,
and pharmaceutical discharges and exert selective pressure on microbial communities,
thereby promoting the survival of resistant bacteria and the dissemination of resistance
genes (Sambaza & Naicker, 2023). This occurrence may lead to an increased prevalence of
resistant bacteria in wastewater that evades conventional treatment methods (Niestepski et
al., 2020).

While the global impact of wastewater on AMR is widely recognized, several studies
have also explored this issue in the Tunisian context. Research efforts in Tunisia have shed
light on the complex problem of antibiotic and heavy metal resistance in the country’s
environment. Significant progress has been made in understanding the prevalence of
antibiotic resistance, particularly in wastewater and other environmental samples. Studies
on sewage treatment plants, water samples, rivers, and seawater have provided valuable
information about the antibiotics found. For example, aminoglycoside and phenicol
antibiotics have been detected in seawater samples from Charguia and Chotrana as well
as sewage treatment plants. In this context, Charguia, located on the outskirts of Tunis,
is a highly urbanized and industrialized zone that receives a mix of domestic, hospital,
and pharmaceutical wastewater, making it a hotspot for diverse pollutants and resistance
genes. On the other hand, Chotrana is a semi-urban residential area where environmental
monitoring has revealed the presence of antibiotics in coastal waters, despite its lower
industrial activity. Another study found the common presence of sulfonamides, macrolides,
and quinolones in sewage treatment plants in Tunis, Bizerte, Sousse, andMonastir. Notably,
these regions are major coastal cities with high population densities and significant urban
and touristic activities, contributing to complex wastewater profiles that impact local
ecosystems.
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Beyond the detection of antibiotics, numerous investigations have also identified
multidrug-resistant bacteria in diverse environmental settings. Bouamama, Bour & El
(2006) began this investigation by examining multidrug-resistant isolates in the marine
species Mytilus galloprovincialis from the Bizerte Lagoon and discovered Aeromonas
hydrophila, Enterobacter sakazakii, and Pseudomonas cepacia. In Tunisia’s wastewater
treatment plants, Chouchani, Marrakchi & El Salabi (2011) reported that beta-lactam
resistance genes are most common in gram-negative bacteria, while Rafraf et al. (2016)
found quinolone and beta-lactam resistance genes in Monastir. These genes have also been
detected in pharmaceutical wastewater in northern Tunisia (Tahrani et al., 2015; Tahrani
et al., 2017).

Freitas et al. (2017) reported linezolid-resistant Enterococcus faecalis strains in urban
wastewater treatment plants. These resistant strains were also detected in clinical samples
in Tunisia (Raddaoui et al., 2020) and in food-producing animals (Elghaieb et al., 2019).
In addition, a study by Ben Said et al. (2017) investigated multidrug-resistant bacteria
in sewage treatment plants and identified Staphylococcus aureus strains in the Charguia
and El Menzeh 1 facilities. These strains showed resistance to penicillin, erythromycin,
tetracycline, and clindamycin. Hassen et al. (2020) found multidrug-resistant Klebsiella
pneumoniae strains in the treated wastewater of the El Menzeh 1 pilot plant and in streams
of the Oued Rouriche Wadi in the city of Tunis.

To provide broader context, studies from other parts of the world have similarly
demonstrated the presence of multidrug-resistant bacteria in wastewater environments.
Research conducted in Brazil has uncovered resistant strains in wastewater, including
Aeromonas, Arcobacter, Stenotrophomonas, Streptococcus, Bacillus, and Shigella (Leroy-
Freitas et al., 2022; Machado et al., 2023). Other studies, conducted in Spain, Egypt,
and China, have identified Enterococcus spp., Staphylococcus aureus and Escherichia coli
in wastewater before they enter the environment (López et al., 2019; Mehanni et al.,
2023; Yuan, Guo & Yang, 2015). These bacterial strains exhibit multidrug resistance
and exhibit different levels of resistance to antibiotics such as tetracycline, ampicillin,
amoxicillin, chloramphenicol, and erythromycin (Mehanni et al., 2023). Moslah et al.
(2018) documented increased concentrations of these resistant strains in Tunisia,
particularly in Charguia, Chotrana, and Rades.

In addition to antibiotic pressure, co-selection mechanisms, particularly those involving
heavy metals, are increasingly recognized as key drivers of resistance. Heavy metals, present
in the environment through agricultural and industrial discharges, can exert selective
pressure similar to antibiotics (Gupta, Sreekrishnan & Ahammad, 2022). This influence
is observed not only in rivers but also in wastewater treatment plants, as shown by Di
Cesare et al. (2016) and Gupta et al. (2023). In Tunisia, Miloud et al. (2021) examined this
interaction in Bizerte, Rades, Gafsa, and Gabès and identified resistance genes for silver,
copper, and mercury. Their results showed that 97.43% of the isolates had simultaneous
resistance to both antibiotics and heavy metals. In addition, Bizerte Lagoon sediments
have been found to be contaminated with heavy metals such as nickel, copper, zinc, lead,
chromium, and cadmium, according to studies by Ben Said et al.. (2010) and Zaaboub et al.
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(2015). This comprehensive review highlights the complex relationship between antibiotic
resistance and heavy metal contamination in different environments.

The transfer of resistance traits is not only influenced by selective pressures but also
facilitated by mobile genetic elements (MGEs), which play a central role in horizontal
gene transfer within wastewater ecosystems. Activated sludge is considered a key point for
the transfer of both antimicrobial and heavy metal resistance genes (Gibson et al., 2023).
Recent studies have focused onMGE such as plasmids, transposons, and integrons to gain a
better understanding of how resistance genes are transferred horizontally between bacteria
through processes such as transformation or conjugation, which has been extensively
studied in the existing literature (Li et al., 2021; Lood, Ertürk Bergdahl & Mattiasson, 2017).
Furthermore, there is growing interest in the involvement of bacteriophages that help
transfer resistance genes through transduction (Lood, Ertürk Bergdahl & Mattiasson, 2017).
In the sewage treatment plants of Tunis and El Menzeh, a study revealed class 1 integrons in
isolates carrying aminoglycoside and trimethoprim resistance genes (Hassen et al., 2020).
An evaluation of the Monastir wastewater treatment plant also revealed the presence of
antimicrobial resistance genes (ARGs) and the IntI1 gene (class 1 integon integrase gene)
(Rafraf et al., 2016). As for the plasmids, the IncP and IncFIB predominant in bacterial
isolates from the Tunis and El Menzeh wastewater treatment plants were associated with
ARGs-bearing Enterobacteriaceae, as reported by Hassen et al. (2020). This collaborative
research highlights the important role of activated sludge in the complex dynamics of
resistance gene transmission and provides insights into specific discoveries in various
wastewater treatment plants.

However, despite these important findings, significant knowledge gaps remain,
particularly concerning the interaction between ARGs, MRGs, and MGEs in Tunisian
wastewater systems. The need for continued research to understand the complex
interactions between antibiotic resistance and heavy metal contamination underscores
the importance of solving this problem. Tunisia has played an important role in the global
discussion on antibiotic resistance, but further advances in research and the introduction
of sustainable management strategies are important to effectively address this ever-evolving
challenge.

Despite the increasing number of publications on ARBs and ARGs from wastewater
treatment plants worldwide, the complex relationship between the core components of
ARBs, ARGs/MRGs andMGE in the studiedwastewater treatment plants in Tunisia remains
poorly understood. Therefore, this study applies a metagenomic resistome-mobilome
analysis to assess the occurrence and dynamics of resistance genes and mobile elements in
the Charguia wastewater treatment plant, a representative biological treatment facility in
Tunisia.

This strategy aims to address challenges by (i) conducting comprehensive screening of
bacterial diversity and identification of resistant bacteria, (ii) profiling ARGs/MRGs and
MGE, and (iii) studying the dynamics of the bacterial ecosystem within the activated sludge
is analyzed acts as a transmission center of resistance and its removal efficiency.
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MATERIALS AND METHODS
Wastewater sample collection and DNA extraction
In November, wastewater samples of 1L each were collected from three different lines
within the Charguia sewage treatment plant over a period of two years, specifically 2022
and 2023. These lines were designated as INF1 and INF2 for influent, SLD1 and SLD2
for sludge, and EFF1 and EFF2 for effluent. The Charguia wastewater treatment plant
(WWTP) treats mixed urban wastewater primarily from domestic, industrial, and hospital
sources across the greater Tunis area. After transport to the laboratory, the influent and
sludge samples, which contain high levels of suspended solids, were centrifuged at 13,000
rpm for 15 min at a temperature of 4 ◦C, resulting in the recovery of the microbial biomass
in the pellet. However, the effluent samples, which are typically clearer and contain fewer
solids, were filtered with a 0.22 µm diameter filter to concentrate the microbial content for
DNA extraction. The AllPrep PowerViral DNA/RNA Kit (Qiagen, Hilden, Germany) was
used for DNA extraction.

Metagenomic sequencing
Metagenomic sequencing was performed on the Illumina Novaseq 6000 platform with
2 × 150 bp paired ends, enabling the precise identification and classification of bacterial
communities present in each sample as well as the profiling of antibiotic resistance genes
(ARGs), heavy metal resistance genes (MRGs), and MGEs. This thorough methodology
was developed to study resistome-mobilome dynamics and understand their influence on
resistance transfer. Raw sequences were submitted to the Sequence Read Archive (SRA)
database of theNational Center for Biotechnology Information under the accession number
PRJNA1199733.

Taxonomic profiling in Charguia WWTP
First, the metagenomic data were subjected to quality screening using Fast QC. To ensure
high-quality sequencing, the Biobakery suite’s built-in tool, Kneaddata v0.7.7-alpha (McIver
et al., 2018), specifically designed for Illumina sequencing and integrating Trimmomatic
and Bowtie2, was used for quality filtering. This process included trimming Illumina
adapters and removing host contamination using default parameters, discarding reads
smaller than 75 bp and with a Phred quality score below Q30. Metaphlan 4 v4.1.0 (Manghi
et al., 2023) was used to profile microbial community composition at the species level. It
uses a marker-gene-based approach for accurate species identification while minimizing
false positives, making it ideal for profiling dominant taxa in wastewater microbiomes.

The retained sequences were evaluated by calculating richness and alpha diversity indices
(Shannon, Simpson, and Phylogenetic Diversity Faith (PD_faith)) using Phyloseq v1.38
and Abdiv v0.2. Each sample was subjected to taxonomic profiling and the results were
presented in bar graphs using R packages such as Phyloseq v1.38 andMicrobiome v1.16. To
identify bacterial taxa with notable differences in abundance between samples, the DESeq2
package v1.36 was used (Love, Huber & Anders, 2014). This method works by modeling
count data with a negative binomial distribution, which helps account for variability in the
data. It also adjusts for factors like library size and sequencing depth to ensure accurate

Naccache et al. (2025), PeerJ, DOI 10.7717/peerj.19682 5/31

https://peerj.com
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1199733
http://dx.doi.org/10.7717/peerj.19682


comparisons of taxa abundance. The results were visualized through a heatmap created
with Complex Heatmap v2.16.0.

Screening of ARG/MRG and MGE profiles
After preprocessing the metagenome sequencing data, the obtained clean reads were
assembled de novo using MEGAHIT v1.2.9 (Li et al., 2015), a computationally efficient
assembler optimized for short-read, large-scale metagenomic datasets. MEGAHIT is
particularly suited for reconstructing contigs from complex microbial communities,
making it ideal for wastewater metagenomic studies. The quality assembly report was then
generated using QUAST v5.2.0 with a metagenomic-adapted pipeline (Mikheenko, Saveliev
& Gurevich, 2016). A detailed overview of sequence read metrics is presented in Table S1.
The annotation process began with a comprehensive approach using Prokka v1.14.5
(Seemann, 2014) with metagenome parameters, which is known for its comprehensive
annotation capabilities. This was followed by more targeted identification of ARGs
and MGEs using ABRicate v1.0.0 (Seemann, 2020). The results of both processes are
compared and refined to ensure a coherent set of resistance profiles and a comprehensive
understanding of resistance transmission within the ecosystem. A custom MGE database
was created for ABRicate, complementing the analyzes with a curated collection of
pretreated sequences from various sources, ultimately comprising 278 genes.

After performing data analysis, contigs with ARGs/MRGs and those with MGEs were
extracted. These contigs were then subjected to in-depth analysis usingKraken v2.1.3 (Wood
& Salzberg, 2014), a k-mer-based taxonomic classification tool that assigns reads to known
genomes with high speed and accuracy. Kraken was used to cross-validate the taxonomic
assignments previously obtained with Metaphlan 4, ensuring a more comprehensive
and reliable identification of bacterial hosts. Furthermore, the metagenomic workflow
optimized for Salmon v1.10.1 was used to accurately estimate the abundance of ARGs,
which were expressed as the number per 1 million sequences in the metagenomic dataset.
Using the quasi-mapping approach, the predicted protein-coding regions annotated with
Prokka served as a reference for the quantification of genes. The quant command was
then used to map reads against the indexed reference. Abundance was normalized by
dividing raw ARG read counts by the total mapped reads and multiplying by one million
to adjust for sequencing depth. To perform a complete analysis, the identified ARGs and
MRGs were divided into classes based on the antibiotic and heavy metal to which they
are resistant. These categorized genes were then visualized through bar graphs to provide
a comprehensive representation. Furthermore, detailed heat maps were constructed
separately for ARGs and MRGs to analyze the flux dynamics of resistance genes at different
locations of the Charguia WWTP.

Statistical analysis
The Analysis of Variance (ANOVA) test was performed to evaluate the significance of
the richness and alpha diversity indices at the different lines within the Charguia WWTP.
For the analysis of differential abundance, whether in taxonomic analysis or ARGs/MRGs
analysis, the Wald test was used. To evaluate the co-occurrence of ARGs/MRGs andMGEs,
a Pearson correlation matrix was also created and visualized as a heatmap.
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RESULTS
Analysis of bacterial abundance and diversity across different
sections of the wastewater treatment plant
Metagenomic approaches provide deep insights into bacterial composition and diversity,
unlocking a thorough understanding of complex ecosystems. In this study, metagenomic
sequencing generated an average of approximately 16.43 million paired-end reads,
corresponding to 4.93 Gb of raw data and resulting in 2.29 GB of FASTQ files. After
trimming and filtering, 4.27 Gb of high-quality reads were retained and subsequently
assembled into contigs. Detailed sequencing information for the Illumina platforms used
in this study is provided in Table S1. Taxonomic assignment identified 513 taxa for
contigs. Figure S1 shows that the content, as indicated by the observed taxa, decreased in
the wastewater samples after treatment. The results of the Shannon and Simpson diversity
indices at different lines showed that certain taxa can dominate, which is particularly evident
in the sludge samples; however, these differences were not statistically significant (Shannon;
F = 0.89, p-value > 0.05, Simpson; F = 0.302, p-value > 0.05) (Fig. S1). A comprehensive
bacterial composition study was conducted to compare bacterial community profiles in
the Charguia wastewater treatment plant. The analysis revealed that Proteobacteria was
the dominant phylum in all samples, accounting for 85.48% of metagenomic readings,
particularly in wastewater samples. Bacteroidota were more abundant in sludge compared
to the effluent, with relative abundances of 10.35% and 5.84%, respectively. Conversely,
Firmicutes showed a notable decrease from 6.7% in sludge to 1.85% in the effluent. In
contrast, Actinobacteriota exhibited an increase, with average abundances rising from
1.56% in sludge to 3.64% in the effluent. The phyla Fusobacteriota and Verrucomicrobiota
were minimally represented in the effluent, accounting for only 0.03% of the microbial
community (Fig. 1).

When analyzing the bacterial taxonomic profiles using metagenomic data, we observed
apparent differences in the relative abundance of taxa between individual samples (p-value
= 0.007). However, at the species level, no statistically supported differences in abundance
were detected between origins (p-value > 0.05). These observations suggest that despite
sample-specific variations, the overall microbial community structure may be influenced
more by sample origin. Therefore, to improve the robustness and interpretability of the
metagenomic analysis, samples were merged based on their respective origins.

At a more specific level, contigs-based analysis identified 29 taxa with notable differences
in abundance across all samples, as shown in Fig. 2. Among these species, Thiothrix
eikelbomii was particularly abundant in wastewater samples after treatment, accounting
for 30.65%. Additionally, the examination of the metagenomic data revealed a wide range
of species, including three Pseudomonas species (P. psychrophila, P. fragi and P. fluvialis),
as well as Psychrobacter species and Aliarcobacter cryaerophilus, which were abundant
in the influent but declined in the effluent. In the sludge, species such as P. veronii,
P. lundensis and P. weihenstephanensis, as well as others identified as GGB46571_SGB64436
and GGB64019_SGB86406, were found to be declining in the effluent. As not previously
mentioned, other Pseudomonas species were detected at varying abundances throughout the
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Figure 1 Phylum-level taxonomic composition across all samples from CharguiaWWTP. Circular
barplots based on metagenomic data from the first (2022) and the second (2023) year of sampling.

Full-size DOI: 10.7717/peerj.19682/fig-1

treatment process (Fig. 2). These findings highlight the depth of metagenomic sequencing
in characterizing microbial communities and their dynamic shifts within the wastewater
treatment system.

Abundance and diversity of ARG in the different lines of Charguia
WWTP
After completing the annotation processes, a total of 46,187 reads were assigned to 42
different ARGs. These ARGs were present to varying extents in the influent (34 ARGs),
sludge (39 ARGs), and effluent (38 ARGs) of the WWTP. Figure 3A shows that these
identified ARGs belonged to 10 different antibiotic classes. The influent samples had the
highest frequency of multi-resistance genes at 453,013 parts per million (ppm), with a
significant reduction of 22% in the effluent. In addition, resistance to fluoroquinolone,
fosmidomycin, tetracycline, peptide, and anthracycline were found in all samples, with
average frequencies ranging from 7,801 ppm to 43,493 ppm. These genes either persisted
in the effluent or became more prominent. The Penam class had the lowest abundance of
ARGs with a value of 863 ppm. It was present in the sludge and remained in the effluent.

An in-depth study of the different ARG subtypes revealed that mdt A had the highest
concentration in the sludge, averaging 80,027 ppm. However, this concentration in the
effluent decreased to 58,370 ppm (Fig. 3B). Similar patterns were observed for other
multiresistance genes such as lmrA, marA, bmrA, mexA, and yhel. These genes collectively
accounted for 20,343 ppm in inflow and experienced a significant decrease of 74%. On
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Figure 2 Normalized abundance boxplots (Z -score) and heatmap of the differential abundance of the
29 identified metagenomic ASVs between the different sites (INF, SLD and EFF).Only significant values
(p-value < 0.05) were retained.

Full-size DOI: 10.7717/peerj.19682/fig-2

Figure 3 Diversity of antibiotic classes (A) and heatmap illustrating differential analysis of ppm values
for identified ARGs across various sites (INF, SLD and EFF) of CharguiaWWTP (B).

Full-size DOI: 10.7717/peerj.19682/fig-3
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Figure 4 Diversity of heavy metal classes (A) and heatmap illustrating differential analysis of ppm val-
ues for identifiedMRGs across various sites (INF, SLD and EFF) of CharguiaWWTP (B).

Full-size DOI: 10.7717/peerj.19682/fig-4

the other hand, specific genes associated with resistance to glycopeptides (vanW and
vanC), tetracycline (tetA), and anthracycline (drrA) showed lower levels in the effluent,
ranging from 0 ppm to 42,050 ppm. Interestingly, certain genes such as ykkD, ebrA, emrK
(multidrug), and gyrBR (aminocoumarin) were not detected in the influents but were
present in the sludge and effluent and contributed to approximately 8,008 ppm after
treatment. Genes such as norM, ddrB, and sbmA, which confer resistance to multidrug,
anthracycline and peptide, respectively, showed an increase of about 78% in effluent.

Abundance and diversity of MRG in the different lines of Charguia
WWTP
RegardingMRGs, a total of 16,247 reads were mapped to 22MRGs, which were categorized
into seven classes. Among these classes, two, namely nickel-cobalt and cobalt-zinc-
cadmium, offered resistance to multiple metals (Fig. 4A). Sixteen MRGs were identified
in the influent, while there were 20 and 21 MRGs in the sludge and effluent, respectively.
After the treatment process, the most common class, arsenic resistance, showed a slight
decrease in frequency in effluent from 109,704 ppm to 107,700 ppm. A similar trend was
observed for the second most common class, genes resistant to cobalt-zinc-cadmium,
with frequencies between 82,376 ppm and 52,346 ppm. The number of genes conferring
resistance to mercury fell by 11%. However, the effluent had higher levels of ammonium,
copper and nickel-cobalt resistance genes, accounting for approximately 48,580 ppm,
39,441 ppm and 25,173 ppm, respectively. Among all genes, tellurite resistance genes had
the lowest abundance in effluent with an average frequency of 18,068 ppm.

Different subtypes of MRG were identified, as shown in Fig. 4B. The arsenic resistance
class is represented by the arsR and ars R1 genes, which had average concentrations of
20,574 ppm and 54,521 ppm in effluent, respectively. Additional resistance genes were
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observed in the effluent samples, namely acr3 and arsR2 for arsenic, pcoC for copper and
merR1 for mercury. There was a 37% decrease in these genes. On the other hand, copper
resistance genes including copK, copB and copC showed a significant increase of 72% from
sludge to effluent. Likewise, mercury (merR) and nickel-cobalt (cnrB) resistance genes
showed similar patterns with concentrations of 29,545 ppm and 7,282 ppm, respectively.
Regarding cobalt-zinc-cadmium resistance genes, the effluent had higher concentrations of
czcC (3,594 ppm) compared to genes czcA, czcB, and czcI, whose concentration decreased
(55,807 ppm, 18,766 ppm and 2,676 ppm, respectively).

Correlation between ARGs and MRGs in the lines of Charguia WWTP
The correlation matrix shows the selection of ARGs in the Charguia sewage treatment plant
that were affected by heavy metal contamination (Fig. S2). The analysis initially focused
on the ARGs that showed a decline in effluent and revealed various relationships. The
mdtA gene, a common multidrug subtype in all samples, showed a positive correlation
with pcoC and arsR2, the genes associated with copper and arsenic resistance. On the
other hand, a negative correlation was observed between cobalt-zinc-cadmium (czcB)
and arsenic (acr3) resistance genes. In contrast, some ARGs such as yhel, vanW, tetA and
drrA, which are responsible for multidrug, glycopeptide, tetracycline and anthracycline
resistance, showed an opposite pattern with a decrease in effluent samples. Furthermore,
a connection between prominent ARGs in the effluent and MRGs was found. The results
showed that aminocoumarin (gyrBR), anthracycline (drrB), and peptide (sbmA) subtypes
were positively correlated with merR, copA, copD, copC, and czcC and conferred resistance
to mercury, copper, and cobalt-zinc-cadmium, respectively. The merR1 gene (mercury)
showed a negative correlation with the ARGs. Interestingly, multidrug-resistant genes
showed significant correlations, with genes such as ebrA and emrK being associated with
the presence of cobalt-zinc-cadmium (czcB and czcA) and arsenic (acr3). However, norM
and ykkD showed a negative association with the arsenic resistance gene arsR1.

Bacterial host association of ARG/MRG-carrying contigs
To identify the bacterial species that have ARG/MRG genes, we used Circos plots where
links were created to visualize the relationships between ARG/MRG subtypes andmicrobial
taxa, with the abundance within the samples providing the basis for the link weights (Fig. 5).

A comprehensive classification of 129 hosts was achieved, accounting for 56% of the
resistance genes identified. Within the potential hosts (65 in the influent, 41 in the sludge
and 72 in the effluent), the frequencies showed differences between samples. Certain ARGs
were present in multiple hosts within the same sample. Notably, Pseudomonas psychrophila
and Pseudomonas ludensis were specifically associated with resistance genes such as mdtA,
marR, arsR2, and merR1, which were abundant in tributaries and sludge (Figs. 5A, 5B),
but absent in effluents (Fig. 5C). This pattern was also observed for mexA, norM, arsR2,
and merR1 in Pseudomonas fragi and drrA in Aliarcobacter cryaerophilus and Psychrobacter
sanguinis (comparison Figs. 5A, 5B and 5C). Acinetobacter johnsonii carried the ARGs
vanW, bmrA and emrK as well as the heavy MRGs copA, czcA, and cnrA in the effluent
(Fig. 5A), which were eliminated after treatment as shown in Fig. 5C.
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(a)

(b)

(c)

Figure 5 Circos plots summarising the connection patterns between ARG/MRG subtypes andmicro-
bial taxa of the three sites of CharguiaWWTP: influent (A), sludge (B), and effluent (C).

Full-size DOI: 10.7717/peerj.19682/fig-5
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Conversely, there were persistent bacterial species in the effluent (Fig. 5C) that showed
resistance, including Aliarcobacter cryaerophilus (mexB, mdtC, and arsR1), Acinetobacter
johnsonii (norM) and Pseudomonas fragi (copC, czcB). Distinct resistance genes appeared
in effluent from certain hosts, as shown in Fig. 5C, with Thiothrix unzii carrying drrA,
cnrA, and mdtC. Other genes observed were czcB in Aliarcobacter cryaerophilus and czcC
in Pseudomonas stutzeri in the effluent samples (Fig. 5C). Furthermore, Fig. 5C showed
that the multi-resistance gene mdtK was exclusively present in Pseudomonas putida in
effluent. Pseudomonas fluorescens was identified as the species with the highest number of
resistance genes. These genes included arsR1/R2, cnrA, merR1, copA/B/D, and czcB (heavy
metal resistance), as well as the ARGs drrA, mexB, bmrA, mdtA, lmrA, emrY, and marR
(Fig. 5C).

Gene transfer potential in the different lines of Charguia’s WWTP
Various MGEs were discovered in all pipes of the Charguia wastewater treatment
plant, which serve as potential transmission carriers. These elements included plasmids,
conjugative transposons (Tn), and insertion sequences (IS). The heatmap in Fig. 6 shows
the co-occurrence of ARGs/MRGs and MGEs, shedding light on their relationship and
contributing to the understanding of bacterial dynamics in resistance gene transfer. Several
plasmids such as IncFII, IncU, IncP(6), IncQ1, and IncQ2 were among the identifiedMGEs
and played an important role in the spread of resistance genes. These plasmids showed
different correlation profiles, with IncFII and IncU showing similar patterns of negative
correlation with the multiresistance genes mdtA, mexR, and lmrA as well as the resistance
genes arsenic arsR1 and mercury merR. On the other hand, IncP(6), IncQ1, and IncQ2
showed inverse correlation profiles with both the aforementioned multidrug and heavy
MRGs, except for merR, which was positively correlated with IncP(6) and IncQ2.

In addition, IS26, IS91, and ISCR21, which share similarities with the IS91 family,
were identified as IS elements. Elements associated with integron class I have also been
detected, such as int I1 integrase genes. These elements and the integron were positively
correlated with bmrA, marR, and merR1, while they showed negative correlations with
norM, mexR, and cop. The istA and istB genes, which are essential for the transposition
process and associated with the IS21 family, showed an opposite pattern compared to the
genes consistently.

Furthermore, theMGEs identified included transposons such as Tn916, which contained
Orfs in addition to the Int -Tn916 integrase and Xis-Tn916 excisionase genes. Together,
these components facilitated the conjugative transmission of transposons. Tn916 showed
positive correlations with the multiresistance genesmdtB andmexA and the mercury genes
merR1, while it showed negative correlations with the arsenic and cobalt-zinc-cadmium
genes acr3 and czcA, respectively. These results highlight the significant association between
resistance traits and transposons within the different lines of the wastewater treatment
system.
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Figure 6 Heatmap illustrating the Pearson correlation between ARGs/MRGs (columns) andMGEs
(rows) in the sampled CharguiaWWTP.Green= Positive correlation, Pink= Negative correlation.

Full-size DOI: 10.7717/peerj.19682/fig-6

DISCUSSION
Comparative analysis at the phylum level of the bacterial diversity
This study presents a preliminary investigation aimed at comprehensively monitoring
antibiotic resistance and investigating the potential factors contributing to its spread
within bacterial communities. Using a metagenomic approach, we achieved precise
taxonomic identification at the species level, providing a comprehensive view of bacterial
composition across influent, sludge, and effluent wastewater samples from the Charguia
sewage treatment plant.

Our statistical analyses confirmed the dominance of Proteobacteria, along with other
prevalent taxa, highlighting their significant role in the wastewater microbial community.
Metagenomics also allowed for high-resolution characterization of dominant taxa, offering
deeper insights into the functional and ecological dynamics ofmicrobial populations within
the treatment system. These findings from our study reinforce the value of metagenomic
sequencing in capturing the complexity of wastewater microbiomes with high taxonomic
precision (Rieder et al., 2023; Srivathsan et al., 2015).
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In our study, Proteobacteria was the dominant phylum followed by Bacteroidota, which
is consistent with results from studies conducted in WTTPs in Germany (Numberger et al.,
2019) and Malaysia (Yu, Tang & Lee, 2021). Similarly, research in Tunisia on wastewater
treatment plants in Kerkennah and Sidi Mansour revealed similar phylum abundances
(Boujelben et al., 2021; Mlaik et al., 2022). These phyla are known for their important
role in the removal of organic matter and nutrients, which explains their distribution in
activated sludge (Weissbrodt, Shani & Holliger, 2014). In contrast to some studies that have
found declines in these phyla in effluent (Li et al., 2022a), our study demonstrated their
persistence. A study in Poland suggested that the inefficiency of the treatment process
could be the reason for the persistent presence of these bacteria (Niestepski et al., 2020).
While Firmicutes were initially abundant in the influent, Actinobacteriota were present in
lower proportions. However, both persisted in the effluent, with Actinobacteriota showing
an increase in abundance. This pattern has been observed in various WWTPs and their
discharges to the environment suggesting a potential selection or enrichment process
favoring Actinobacteriota during wastewater treatment (Azli et al., 2022; Li et al., 2022b;
Li et al., 2022c; Zieliński et al., 2022). Their enrichment in effluents may reflect their key
role in pollutant biodegradation as recently reported (Zheng et al., 2024), highlighting
their potential contribution to the breakdown of organic contaminants and wastewater
treatment efficiency.

Species-level analysis of different resistant bacteria
A preliminary overview of the present genera was conducted to assess their distribution
and dynamics before analyzing species-level variations. The metagenomic analysis revealed
a diverse bacterial community, with key genera showing varying degrees of persistence
and adaptation throughout the wastewater treatment process. Genera such as Thiothrix
and Pseudomonas were among the most prevalent, highlighting their potential roles in
both biodegradation and resistance mechanisms. Thiothrix genus are commonly found in
WWTPs andnot only lead to sludge bulking but also enhance granular sludge quality, sulfide
oxidation, denitrification, and phosphate removal (Gureeva et al., 2024). Meanwhile,
Pseudomonas genus is prevalent and is of significant concern due to their ability to
develop antibiotic resistance (Li et al., 2022b; Li et al., 2022c). While some genera exhibited
resilience and increased in abundance in effluents, others declined namely Acinetobacter
and Aliarcobacter, likely due to treatment pressures. Acinetobacter, an opportunistic human
pathogen, has been detected in different WWTPs as well as in surface waters and soil
(Zhang et al., 2020). Likewise, Aliarcobacter genus is prevalent in WWTPs and can persist
in effluents, posing potential health risks (Kristensen et al., 2020).These variations reflect
the selective pressures exerted by wastewater treatment and underscore the importance of
understanding bacterial dynamics at both the genus and species levels.

The analysis of species focused specifically on those that provide resistance. Within the
Proteobacteria phylum, the study at the species level revealed Thiothrix unzii, Pseudomonas
putida, Pseudomonas stutzeri, and Pseudomonas fluorescens, which were particularly
common in the effluent samples. Recent research, including studies by Spindler et al.
(2012) and Li et al. (2022a) has shown that Pseudomonas species such as P. putida and
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P. fluorescens are opportunistic pathogens. These bacteria have been reported as potential
carriers of multidrug resistance in soil and aquatic environments, contributing to the
dissemination of antibiotic resistance under certain environmental conditions (Camiade
et al., 2020; Meng et al., 2022). On the other hand, despite its pathogenic potential in
humans, P. stutzeri has been classified as a heavy metal-resistant bacterium, and certain
strains have shown promise for bioremediation in metal-contaminated environments,
as reported by Coelho da Costa Waite et al. (2020), El-Bestawy & Aburokba (2017) and
Kuroda et al. (2011). Thiothrix species were commonly found in sewage treatment plants
and hot springs, as Chernitsyna et al. (2024) reported and De Graaff, Van Loosdrecht &
Pronk (2020). Furthermore, Thiothrix have been observed to be the most active bacteria in
wastewater treatment systems and have a growth advantage over other bacteria in sludge,
as Brigmon, Furlong & Whitman (2003) determined, De Graaff, Van Loosdrecht & Pronk
(2020) andMeng et al. (2022).

On the other hand, there was a decrease in the occurrence of several Proteobacteria
species in effluent. These species include Pseudomonas psychrophila, Pseudomonas
fragi, Pseudomonas veronii, Pseudomonas ludensis, Psychrobacter sanguinis, Acinetobacter
johnsonii, and Streptococcus parasuis. This finding is consistent with previous studies by
Kosheleva et al. (2021) and Oliveira et al. (2021) on multi-resistant bacteria. Psychrobacter
sanguinis is typically found in low temperature marine environments and has been
recognized as an opportunistic human pathogen (Bakermans, 2018; Maruyama et al.,
2000; Le Guern et al., 2014). Shi et al. (2023) reported their presence only in the sewage
treatment plant in China. In addition, Acinetobacter baumanii was the most commonly
detected Acinetobacter species in effluent, as shown by various research studies (Murphy
et al., 2021; Zhang et al., 2009). In our study, we found Acinetobacter johnsonii in effluent,
suggesting that they can adapt to the treatment process by developing resistance (Jia et
al., 2022; Kisková et al., 2023; Murphy et al., 2021). Despite the treatment, the pathogenic
Aliarcobacter cryaerophilus from the strain Campylobacterota remained in the mud; its
occurrence in the drains decreased, but was not completely eradicated. Similar results
were reported by Yuan et al.(2021) reported and highlight their classification as resistant
pathogens that can evade treatment (Müller et al., 2020; Yuan et al., 2021). Contrary to
recent studies showing increased abundance in effluent (Nataraj et al., 2024), Streptococcus
parasuis, a zoonotic pathogenwithin the Firmicutes phylum, was found primarily in effluent
(Ma et al., 2024; Qi et al., 2023).

Examination of the selective forces and co-selection mechanisms of
antibiotic and heavy MRGs
Our research focused on the specific species identified as carriers of ARGs and/or MRGs
in different lineages within the Charguia WWTP. These organisms, present either in
the influent or in the sludge, were subjected to selective pressure after treatment. This
phenomenon often led to a reduction in certain resistance genes until the water reached
the effluent stage. However, we saw another trend where resistance genes increased in
effluent. To understand these dynamics within bacterial communities, we first examined
the resistance profiles and acquisition of genes conferring resistance to antibiotics and
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heavy metals. Interestingly, our results showed that despite a decrease in abundance in
effluent, Pseudomonas psychrophila and Pseudomonas ludensis had a significant presence
of multi-resistance genes such as mdtA and marR, as well as the genes arsR2 and merR1,
which confer resistance to arsenic and mercury, respectively. The possible co-selection
mechanism is evident from the positive correlation between these resistance genes and
provides information about their co-elimination after treatment. The situation is similar
with the study by Gibson et al. (2023) also identified multiresistance genes that exhibit
the same pattern. Furthermore, the presence of the arpC multi-resistance gene in effluent
carried by Pseudomonas psychrophila adds an interesting piece of research and highlights
the dynamic nature of resistance gene profiles during the treatment process.

According to Kosheleva et al. (2021), Pseudomonas ludensis was reported to be a
host carrying the tet gene. Other studies on heavy metals have examined arsenic and
mercury resistance genes in wastewater treatment plants, although with different hosts
such as Klebsiella pneumoniae and Acinetobacter baumannii (Zagui et al., 2021). ArsR
was found to be most abundant in water samples of Escherichia coli (Tseng et al., 2023)
and Staphylococcus aureus in macaques (Monecke et al., 2022). The influent and effluent
samples had the same MRGs arsR2 and merR1 as well as the multidrug genes norM and
mexA carried by Pseudomonas fragi. Interestingly, there was a positive correlation between
norM and merR1, suggesting a possible cooperative relationship between these resistance
mechanisms. In a study by Finton et al. (2020), norM,mexA, andmerR1 were also detected
in Stenotrophomonas maltophilia from a Norwegian pond. Furthermore, norM has been
identified in hospital settings, particularly in Staphylococcus aureus, as reported by Correia
de Oliveira et al. (2023). In addition, a number of genes, includingmdtA, emrY (multidrug),
copB, copC, and copD (copper), were abundant in Pseudomonas fragi-associated effluent.
These genes showed a positive correlation, suggesting a possible common mechanism or
genetic link in response to selection pressure in the wastewater treatment process. Copper,
commonly used as an antimicrobial agent in areas such as agriculture and industry, may
play a role in this connection (Arendsen, Thakar & Sultan, 2019; Coelho da Costa Waite et
al., 2020). The positive correlation between copper resistance genes and multi-resistance
genes could indicate co-selection, where exposure to copper inadvertently favors the
maintenance or co-occurrence of certain multi-resistance genes (Baker-Austin et al., 2006;
Zhang et al., 2019).

The drrA genes carried by Aliarcobacter cryaerophilus and Psychrobacter sanguinis were
detected in tributaries and sludge but were successfully eliminated after treatment. Our
study is consistent with previous research on micropollutants in wastewater, such as
the identification of anthracycline products in hospital wastewater (Ajala et al., 2022;
Ghafuria et al., 2018) and the effective removal of these drugs through treatment (Sharma
et al., 2013). Interestingly, drrA genes were found to confer resistance to doxorubicin in
E. coli (Kaur, 1997) and to daunorubicin in Streptomyces peucetius (Castillo Arteaga et al.,
2022; Karuppasamy et al., 2015), which differs from the identified host species differs in our
study. In addition,Thiothrix unzii, was found to carry anthracycline resistance genes drrA in
effluent. Our research also revealed the persistence ofAliarcobacter cryaerophilus in effluent,
harboring the genesmexB,mdtA and arsR1 as well as an emerging gene czcB. Interestingly,
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theMRGs arsR1 and czcB showed a negative correlationwith anthracycline resistance genes,
suggesting a complex interplay of resistance mechanisms and the possibility of co-selection
(Wang et al., 2020; Yang et al., 2020). The results of Acinetobacter johnsonii in effluent
reveal a diverse and complex collection of resistance genes, indicating the adaptability and
versatility of the strain in response to environmental challenges. Various multi-resistance
genes such as bmrA, emrK, and glycopeptide vanW genes were detected. Previous studies
have shown that Acinetobacter johnsonii also carries various resistance genes, including
those that provide resistance to carbapenem, which was discovered in Chinese effluent
(Zong & Zhang, 2013), as well as aminoglycoside, tetracycline and sulfonamide (Castillo-
Ramírez et al., 2020). Our results also showed that the MRGs copA/R, czcA, and cnrA
are associated with Acinetobacter johnsonii. CnrA genes were found in Thiothrix unzii
persisting in effluent. These genes have been observed to persist in wastewater discharges
and lead to contamination of the aquatic environment (Yu et al., 2022; Zieliński et al.,
2021). Furthermore, the persistent presence of the norM gene associated with Acinetobacter
johnsonii in wastewater samples after treatment highlights its resilience and possible role
in multidrug resistance. The complex correlation patterns between these genes suggest
complicated interactions and selection pressures and highlight the need for further
investigation into the mechanisms shaping the resistome of Acinetobacter johnsonii in
wastewater treatment processes (Timková et al., 2023).

Analyzing the mobilome: investigating the interactions between
antibiotic and MRGs in Charguia WWTP
Our investigation of the ARGs-MRGs-host triad included analysis of MGEs in the
wastewater treatment plant, which helped in the horizontal transfer of resistance genes
between different bacterial strains. Activated sludge is considered the conductive medium
for this transmission. The detection of resistance genes such as drrA, cnrA, merR1, arsR
and czcA in various bacterial species, including Pseudomonas psychrophila, Pseudomonas
fragi, and Pseudomonas ludensis, indicates the horizontal transmission of these genes or
co-resistance to antibiotics and heavy metals on their persistence in activated sludge.
The anthracycline resistance gene drrA was consistently found in both influent and sludge
samples associated with Pseudomonas psychrophila and Pseudomonas ludensis. Interestingly,
these genes were present in Pseudomonas fragi within the sludge and Pseudomonas
fluorescens and Thiothrix unzii in the effluent. The drrA gene in different bacterial species at
different stages of wastewater treatment suggests horizontal gene transfer. The coexistence
of anthracycline resistance genes with other severe MRGs suggests significant correlations
that could explain their persistence in effluent. Some studies have suggested a self-resistance
mechanism in certain strains to anthracycline, which could explain these genes in the
discharges.

The importance of comprehensive analysis of the mobilome to track the transmission
of ARGs and MRGs between bacteria within the wastewater treatment plant ecosystem is
highlightedwhen assessing resistance profiles alongwith their associated hosts. Our research
revealed multi-resistance genes in sludge, with mdtA and mdtK found in Pseudomonas
fluorescens and Pseudomonas putida in effluent and norM in Acinetobacter johnsonii. The
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transfer of these resistance genes could be facilitated by plasmids such as IncU and
IncQ1 and IS elements such as IS21, which were positively correlated in our study. These
results are consistent with previous studies showing a high prevalence of such plasmids in
wastewater systems containing multidrug-resistant strains of the Pseudomonas, Escherichia
and Sphingobacterium genera. Furthermore, IncU plasmids, which are typically rare in
Enterobacteriaceae, were identified as carriers of multidrug resistance, consistent with our
results showing a positive correlation with the yhel, mdtB, and marR genes. IncP plasmids
were also found to co-occur to a significant extent withmdtA,mexR, and lmrA, particularly
in Pseudomonas spp. contributes to multi-resistance. isolated from sewage treatment plant
wastewater and surface water. Multi-resistance genes encoded in plasmids can improve
the survival of hosts in discharges and provide a route for the introduction of additional
resistance genes.

The IncF plasmid, known for its ability to carry multidrug-resistant genes in wastewater
treatment plants (Szczepanowski et al., 2005; Szczepanowski et al., 2004; Wibberg et al.,
2013), was discovered to contain mercury and arsenic resistance genes contained in
bacterial isolates from hospital samples (Evans et al., 2020; Rozwandowicz et al., 2018). This
confirms our previous results that IncFII showed a positive correlation with merR1 and
arsR2. Similarly, mercury resistance genes were detected in the pBP plasmid in Pseudomonas
stutzeri (Reniero et al., 1998). These results shed light on the presence of merR1 genes
associated with Pseudomonas fluorescens in the Charguia sewage treatment plant. A study
that examined the relationship betweenARGs and IS elements usingmetagenomics revealed
a high abundance of IS elements in wastewater treatment plants and water bodies (Razavi
et al., 2020). Our results are consistent with this, as we identified various IS elements such
as IS26, IS91, ISCR20, and ISCR21, which showed a positive correlation with bmrA and
marR, which confers resistance to multiple antibiotics, and merR1 for mercury resistance.
Other studies also support the association between ARGs and class 1 IS elements and/or
integrons, including intI1, which were abundant in a wastewater treatment plant in China
(Zheng et al., 2020).

Our study is the first to usemetagenomics to investigate resistance bacterial communities,
resistome and mobilome profiles in a wastewater treatment plant in Tunisia. Despite
the known potential of wastewater treatment plants, particularly activated sludge, to
promote ARG proliferation among bacterial species, our results show a significant
decline in resistance levels, particularly multidrug resistance. This indicates that the
Charguia Wastewater Treatment Plant is likely effective in treating and eliminating certain
resistant bacteria. We recommend further research using long-read technologies for
high-resolution real-time monitoring to comprehensively analyze and explore MGEs
and novel resistance elements. Our study highlights the need for additional research
using long-read sequencing technologies and deeper short-read sequencing to improve
species-level resolution and further enhance our understanding of the effectiveness of
the Charguia Wastewater Treatment Plant in combating antibiotic resistance, ultimately
contributing to the development of advanced and targeted wastewater treatment strategies
with broader implications for global public health.
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