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Morphometric variation of extant platyrrhine molars:
taxonomic implications for fossil platyrrhines

Moénica Nova Delgado, Jordi Galbany, Alejandro Pérez-Pérez

The phylogenetic position of fossil platyrrhines with respect to extant ones is not clear yet.
Two main hypotheses have been proposed: the layered or successive radiations
hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking
modern descendants, whereas the long lineages hypothesis argues for an evolutionary
continuity of all platyrrhine lineages. Despite dental morphology may reflect a certain
degree of homoplasia, a significant genetic signal has been detected, reflecting
phylogenetic relationships among extant taxa. A geometric morphometric analysis of a 15
landmark-based configuration was applied to a sample of 802 platyrrhines' first and
second lower molars representing all living families and subfamilies (62 species). A Linea
Discriminant Analysis was applied to derive the post-hoc probability of classification of 11
fossil Platyrhins and 1 fossil anthrpoid from El Fayum within the extant comparative
collection. The phenipic affinities within the fossil specimens and with the extant groups
were used to test hypotheses of Platyrhine diversification and evolution. The reduced
geometric morphometric molar shape variation observed within both the fossil and living
taxa suggest that morphological stasis, a slow rate of phenotypic change, may explain the
great similarities between both groups. Platyrrhine lower molar shape might be a primitive
retention of the ancestral state affected by strong ecological constraints thoughout the
radiation the main platyrrhine families. The Patagonian fossil specimens showed two
distinct morphological patterns of lower molars, Callicebus-like and Saguinus-like, which
might be the precursors of the extant forms, whereas the Middle Miocene specimens,
though showing morphological resemblances with the Patagonian fossils, also diplayed
new, derived molar patternss, Alouatta-like and Pitheciinae-like. Phenotypic diversification
of molar shaped was already settled during the Middle Miocene, which may reflect either
that platyrrhines share a retention of a primitive molar shape or that an early divergence
between two parallels shapes, Callicebus-like and Saguinus-like, would be the ancestral
precursors to all other forms, with Callicebus-like and Saguinus-like morphologies already
present in the early stem platyrrhines.
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ABSTRACT

The phylogenetic position of fossil platyrrhines with respect to extant ones is not clear yet. Two
main hypotheses have been proposed: the layered or successive radiations hypothesis suggests
that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants,
whereas the long lineages hypothesis argues for an evolutionary continuity of all platyrrhine
lineages. Despite dental morphology may reflect a certain degree of homoplasia, a significant
genetic signal has been detected, reflecting phylogenetic relationships among extant taxa. A
geometric morphometric analysis of a 15 landmark-based configuration was applied to a sample
of 802 platyrrhines' first and second lower molars representing all living families and subfamilies
(62 species). A Linea Discriminant Analysis was applied to derive the post-hoc probability of
classification of 11 fossil Platyrhins and 1 fossil anthrpoid from El Fayum within the extant
comparative collection. The phenipic affinities within the fossil specimens and with the extant
groups were used to test hypotheses of Platyrhine diversification and evolution. The reduced
geometric morphometric molar shape variation observed within both the fossil and living taxa
suggest that morphological stasis, a slow rate of phenotypic change, may explain the great
similarities between both groups. Platyrrhine lower molar shape might be a primitive retention of
the ancestral state affected by strong ecological constraints thoughout the radiation the main
platyrrhine families. The Patagonian fossil specimens showed two distinct morphological
patterns of lower molars, Callicebus-like and Saguinus-like, which might be the precursors of the
extant forms, whereas the Middle Miocene specimens, though showing morphological
resemblances with the Patagonian fossils, also diplayed new, derived molar patternss, Alouatta-
like and Pitheciinae-like. Phenotypic diversification of molar shaped was already settled during

the Middle Miocene, which may reflect either that platyrrhines share a retention of a primitive
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42 molar shape or that an early divergence between two parallels shapes, Callicebus-like and
43 Saguinus-like, would be the ancestral precursors to all other forms, with Callicebus-like and

44 Saguinus-like morphologies already present in the early stem platyrrhines.
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INTRODUCTION

Platyrrhine evolution is controversial. Despite they most likely constitute a monophyletic
clade derived from African ancestors (Fleagle and Kay, 1997; Takai et al., 2000; Kay et al.,
2004; Oliveira et al., 2009; Bond et al., 2015), the phylogenetic position of some living taxa and
the affinities of fossil specimens axg still uncertain. Currently, two different viewpoints have
been proposed about the evolutionary history of the earliest platyrrhines and their overall
relationships with extant forms. The “long lineages™ hypothesis argues that the oldest known
Patagonian fossils (1620 Ma) are to be included within the extant Platyrrhines (Rosenberger,
1979, 1980, 1981, 1984; Rosenberger et al., 2009; Tejedor, 2013), whereas the “layered or
successive radiations” hypothesis suggests that these fossils constitute a geographically isolated
stem, phylogenetically unrelated to the crown platyrrhines, that went extinct (along with some
Antillean species) lacking modern descendants (Kay, 2010; 2014; Kay and Fleagle, 2010; Kay et
al., 2008). According to Kay (2014), the divergence of modern lineages occurred in the tropics.
The Late Oligocene and Early Miocene platyrrhines would have branched off from the ancestral
lineage when climatic conditions in Patagonia became unfavorable and the Andean uplift was a
potential barrier to their dispersal. However, Tejedor (2013) has suggested that Chilecebus (20
Ma), a fossil specimen (Tejedor, 2003) from the western Andean cordillera, south of Santiago de
Chile, is indicative that the Andean mountains did not constitute a biogeographic barrier. Tejedor
(2013) argued that a paleobiogeographic corridor throughout western South America would have
allowed for a continental connectivity between the north and the southernmost fossil
platyrrhines. Unfortunately, the datings of the fossil specimens and the fossil-based approaches
for calibrating the molecular phylogeny support both models. Perez et al. (2013) have estimated

a crown platyrrhine origin at around 29 Ma (27- 31), which allows for the inclusion of the fossil
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69 Patagonian primates into a crown Platyrrhini lineage showing evolutionary continuity with the
70 Middle Miocene lineages. In contrast, Hodgson et al. (2009) have dated their origin between 16.8
71 and 23.4 Ma, suggesting an unlikely relationship of the early Miocene fossils with the crown

72  platyrrhine clade (but see different temporal models in Goodman et al., 1998; Opazo et al., 2006;
73 Chatterjee et al. 2009; Perelman et al. 2011; Wilkinson et al. 2011; Jameson Kiesling et al.

74 2014).

75 Molar morphology analyses of both extinct and extant forms may be a useful tool to gain

76  further insight into this debate on evolutionary continuity (Cardini and Elton, 2008; Klingenberg
77 and Gidaszewski, 2010), since tooth development is under strong genetic control (Jernvall and
78  Jung, 2000). Indeed, dental morphology has been widely used to determine the phylogenetic

79  positions of extinct specimens with respect to living forms (e.g., Kay, 1990; Rosenberger et al.,
80 1991a, b; Benefit, 1993; Meldrum and Kay, 1997; Miller and Simons, 1997; Horovitz and

81 MacPhee, 1999; Kay and Cozzuol, 2006; Kay et al., 2008). We have recently reported a

82 significant phylogenetic signal of molar morphology in some Platyrrine taxa (Nova Delgado et
83 al., 2015), with closely related species exhibiting common phenotypic traits.

84

85  Affinities of the fossil platyrrhine primates

86 A total of 31 Early Miocene Platyrrhini fossil genera have been so far reported in the South
87 American continent and the Caribean: 11 in La Venta (Colombia), 8 in the Argentinian

88 Patagonia, 4 in the Greater Antilles, 5 in Brazil, and 1 each in Chile, Bolivia and Peru (Tejedor,
89 2013; Bond et al., 2015). Neosaimiri, Laventiana (La Venta, Colombia) and Dolichochebus

90 (Chubut Province, Argentina) have been included within the Cebinae (Rosenberger, 2011),

91 whereas Neosaimiri has been considered a direct ancestor of the extant Saimiri, with which
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shares a symmetric molar shape pattern (Rosenberger et al., 1990a; 1991a). Its molars exhibit
sharp cusps, well-developed distal cusps, buccal cingulum, a strong buccal flare, and a distinct
post-entoconid notch on molars only found in Saimiri and Laventiana (Rosenberger et al., 1991a,
1991b; Takai, 1994; Tejedor, 2008). Laventiana is a synonym of Neosaimiri (Takai, 1994;
Meldrum and Kay, 1997), although it has been suggested to be more primitive than Neosaimiri
(Rosenberger et al., 1991b). Laventiana's teeth closely resemble those of Saimiri and Cebus-
Sapajus; it shows thick-enamel, bunodont molars exhibiting a small buccal cingulum and an
angular cristid obliqua, lacking buccal flare (Rosenberger et al., 1991b). Dolichocebus has been
suggested to be a member of the Saimiri lineage, mainly for its interorbital fenestra considered a
derived feature in squirrel monkeys (Tejedor, 2008; Rosenberger et al., 2009; Rosenberger,
2010). However, Kay and colleagues (Kay et al., 2008; Kay and Fleagle, 2010) argued that
Dolichocebus is a stem platyrrhine and that the description of the orbital region was probably
affected by postmortem damage. Aotus dindensis was first described as a sister taxon of Aotus
(Setoguchi and Rosenberger, 1987), although Kay (1990) has suggested that it is probably
conspecific with Mohanamico hershkovitzi, which may be closely related to the callitrichines,
especially Callimico, due to their morphological similarities in the canine and the seconf
premolar. Aotus dindensis is included into the Pitheciidae (Rosenberger et al., 1990a) and
Callicebus has been classified within the Homunculinae, along with Aofus and some Argentinian
and Caribbean fossil primates (Rosenberg, 1981, 2002, 2011). Tejedor and Rosenberger (2008)
proposed that Homunculus is likely the ancestral pitheciine because although it shows a primitive
dental morphology, it notably resembles that of Callicebus. The two taxa show rectangular-
shaped molars, small incisors and non-projecting canines, a trait shared with Carlocebus

(Fleagle, 1990). Nonetheless, unlike Callicebus, the molars of Homunculus exhibit well-marked
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crests and prominent cusps (Tejedor, 2013), and an unusual paraconid on the lower first molar
(also found in Dolichocebus; Kay et al., 2008).

Soriacebus, another fossil included in the same monophyletic clade, would represent the
earliest Pitheciinae taxon (Perez et al 2013), which it shares anatomical traits on the anterior
dentition and the mandibular shape (Fleagle et al., 1987; Fleagle, 1990; Fleagle and Tejedor,
2002; Tejedor, 2005). Some dental traits of Soriacebus (premolars-molars size, lower molar
trigonid, and reduction hypocone) may suggest a link with the Callitrhichines, but Kay (1990)
has considered them to be homoplasies and has placed Soriacebus as stem platyrrhine. Xenothrix
is a Late Pleistocene Caribbean fossil from Jamaica that shows a callitrichine-like dental formula
(2132; MacPhee and Horovitz, 2004), low relief molars and a narrowing of intercuspal distance
and augmentation of the mesial and distal crown breadths (Cooke et al., 2011), a feature also
seen in Insulacebus toussaintiana, a Caribbean primate. Rosenberger (2002) argued that
Xenothrix is closely related to Aotus and Tremacebus by the enlargement of the orbitst and the
central incisors enlargment, while MacPhee and Horovitz (2004) suggested a possible
Pitheciidae affinity, due to its low relief molar pattern. Nonetheless, the puffed cusps and the
lack of crenulation on the molar crown discriminate the Jamaican fossil from the Pitheciidae
(Kay, 1990; Kinzey, 1992).

Cebupithecia and Nuciruptor, two Colombian Middle Miocene genera, also share some traits
with the extant Pitheciidae family, mostly in the anterior dentition but also in their low molar
cusps and poorly developed crests (Kay, 1990; Meldrum and Kay, 1997). Nuciruptor does not
exhibit several of the shared traits among Pitheciines (projecting canine and small or absent
diastema). Cebupithecia, although considered to be more derived than Nuciruptor, it was

interpreted by Meldrum and Kay (1997) as convergent evolution and, thus, not a direct ancestor
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of extant pitheciines. Finally, Stirtonia (originally from Colombia but also recovered from Acre
State, Brazil) exhibits similar dental size and morphology to extant Alouatta; both showing molar
teeth with sharp and well-formed crests, a long cristid oblique, small trigonid, and spacious
talonid basin (Hershkovitz 1970; Kay et al., 1987; Kay and Frailey, 1993; Kay and Cozzuol,
2006; Kay, 2014).

Numerous studies have examined landmark-based geometric morphometrics (GM) of molar
shape for studying patterns of inter-specific variation and their implication in phylogeny and
ecological adaptations (e.g., Bailey 2004; Cook 2011; Gémez-Robles et al., 2007, 2008, 2011;
Martinon-Torres et al., 2006; Nova Delgado et al., 2015; Singleton et al. 201 lglﬁte 2009).
However, in Platyrrhini primates GM of molar shape has mainly focused on dietary adaptations
(Cooke, 2011), rather than to predict the phylogenetic attribution of unclassified specimens
(Nova Delgado et al., 2014). The aim of the present study was to use the two-dimensional (2D)
GM variability of occlusal shapes of lower molars (M; and M,) of extant Platyrrhini primates to
asesses the affinities of the Patagonian, Colombian and Antillanean fossil taxa with the extant

forms and to estimating the efficiency of molar shape for discriminating fossil specimens.

MATERIAL AND METHODS

Images of the dental crowns, in occlusal view and including a scale line, of 12 holotype fossil
platyrrhine specimens and one fossil from Fayum (Proteopithecus sylviae), used as an outgroup,
were obtained from the literature. The platyrrhine fossil specimens included 12 genera
(Soriacebus, Dolichocebus, Homunculus, Carlocebus, Neosaimiri, Laventiana, Mohanamico,
Aotus, Stirtonia, Nuciruptor, Cebupithecia, and Xenothrix), discovered in Argentina, Colombia

and Jamaica, and dated to between Holocene and 35 Ma (Table 1).
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The extant comparative samples (Table 2) consisted in 802 adult individuals representing all
recognized platyrrhine groups (3 families, 18 genera, 61 species, one subspecies), whose 2D and
3D morphometric variability of lower molars has partialy-been analysed (Nova Delgado et al.,
2015). Dental casts were obtained from original specimens housed at various institutions: Museu
de Zoologia Universidade de Sao Paulo (MZPS), Museu Nacional do Rio de Janeiro (MNRJ) in
Brazil, and from Hacienda La Pacifica (HLP) in Costa Rica. Only unworn teeth were studied.
The casts were made following published protocols (see Galbany et al., 2004, 2006). 2D images
of molar occlusal surfaces of the extant specimens were taken with a Nikon D70 digital camera
fitted with a 60 mm optical lens held horizontally on the stand base, at a minimum distance of 50
cm. The dental crown was imaged with a 0° of tilt with the cervical line perpendicular to the
camera focus (Nova Delgado et al., 2014). The images of the dental crowns of the fossil
specimens, obtained from the literature, were imported into Adobe Photoshop and scaled to the
same resolution (400 dpi) than those of the extant specimens. In both cases, the images were
standardized to right side, with the mesial border facing to the right, the distal border to the left,
and the lingual and buccal sides facing upward and downward, respectively. All images were

saved at high resolution (1600 x 1200 pixel) in JPEG format.

Geometric morphometric analysis

Geometric Morphometrics (GM) quantifies shape differences between biological structures
using a set of digitized homologous points (landmarks) in two-dimensional or three-dimensional
spaces (Bookstein 1991; Adams et al. 2004; Slice 2005). Landmarks are numerical values
(coordinates) that reflect the location and orientation of each specimen in the morphospace

(Slice, 2007). The two-dimensional (2D) landmark protocol used in this study was adapted from
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184 Cooke (2011) and consisted of 15 landmarks (Table 3). The tips of the four main cusps

185  (protoconid, metaconid, hypoconid and entoconid) defined the molar occlusal polygon. The

186  crown outline was represented by eight landmarks, which included two landmarks on fissure
187 intersections, four corresponding to maximum crown curvatures, and two in the mid mesio-distal
188 line on the crown perimeter. Further, three landmarks were used to represent the positions of the
189 crests (Fig. 1). Landmark recording was performed with TPSDig v 1.40 (Rohlf, 2004) and

190 landmark coordinates were then imported into Morphol (Klingenberg, 2011). The most

191 commonly employed method to remove the information unrelated to shape variation is the

192 generalized procrustes analysis (GPA) (Rohlf, 1999, 2005). GPA is based on a least squares

193 superimposition approach that involves scaling, translation and rotation effects so that the

194  distances between the corresponding landmarks are minimized (Rohlf, 1999; Rohlf and Slice,
195  1990; Rohlf and Marcus 1993; Goodall, 1991; Adams et al., 2004). After the procrustes

196  superimposition, the covariance matrix of all the compared shapes is used to derive a Principal

197 Components Analysis (PCA) (Zelditch et al., 2004).

un <0
un o

198

199  Figure 1. Set of landmarks used in the geometric morphometrics analyses. a) My; Alouatta

200 guariba 23177 MNRIJ; b) My: Sapajus libidinosus 23246 MNRJ.
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201

202 The PCAs of M; and M, morphometric variability of the extant species was used to explore
203 dental affinities of the fossil specimens with the extant comparative platyrrhine sample. One-way
204 ANOVA comparison was carried out to evaluate statistically significanf between subfamilies.
205 The procrustes coordinates of the extant samples were used to make a Linear Discriminant

206 Function analyses (LDA) to classify the ungrouped fossil specimens (Zelditch et al., 2004). LDA
207 maximizes differences between groups but allows classifying isolated cases based on their

208 distances to the group centroids of the extant taxa. The probability that a case belongs to a

209 particular group is proportional to the distance to the group centroid (Kovarovic et al., 2011).
210  The reliability of the classification was estimated from the post-hoc correct classification

211 probability after cross-validation (pcc), and the a posteriori probability score was used as the
212 probability that a fossil belongs to a particular group. Several LDAs were made considering
213  different discriminant factors: 1) family (Cebidae, Atelidae, Pitheciidae), 2) the subfamily-level
214  classification proposed by Groves (2005) (Subfamily G) (Cebinae, Saimiriinae, Callitrichinae,
215 Pitheciinae, Callicebinae, Aotinae, Atelinae, Alouattinae), 3) the subfamily classification by
216  Rosenberger (2011) (Subfamily R) (Cebinae, Callitrichinae, Pitheciinae, Homunculinae,

217 Atelinae), and 4) a genus level (Cebus, Sapajus, Saimiri, Callithrix, Mico, Cebuella, Callimico,
218  Leontopithecus, Saguinus, Aotus, Callicebus, Cacajao, Chiropotes, Pithecis, Lagothrix,

219  Brchyteles, Atelles, Allouatta). The LDF and One-way ANOVA analyses were carried out with
220  SPSS v.15 (SPSS, Inc. 2006).

221

222  RESULTS

223  Principal components analyses
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224 The first two PCs of the PCA analysis of M, for all platyrrhines (Fig. 2) explained 42.06 %
225 of total shape variance (PC1 30.60%; PC2 11.46%). Positive scores on PC1 corresponded to

226 molars with a broad occlusal polygons and a mesiodistally rectangular outline; whereas a

227 negative PC1 score was indicative of a relatively quadrangular outline and slight buccolingually
228 rectangular occlusal polygon, characterized by a mesio-lingual displacement of the distal cusps
229  (entoconid and hypoconid) and a disto-lingual one of the mesial cusps (metaconid and

230 protoconid). Positive scores on PC2 indicateed a rectangular occlusal polygon and a

231 mesiodistally rectangular outline, whereas negative score on PC2 reflected molars with relatively

232 quadrangular outline and a slightly rectangular occlusal polygon, wider on the buccal side.

Saimiriinae

PC211.46 %

Alouattinae

-0.12 7 v T T Y Y '
-0.12 -0.08 -0.04 0.00 0.04 0.08 0.12 0.16 0.20

PC1 30.60 %

!
A
SRR
e e

233

234 Figure 2. Scatterplot of the first two principal components (PCs) derived from the PCA of M,
235 shape variability of Platyrrhini. Grids indicate the deformations associated with the extreme

236  values of each principal component.
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In the PC1 versus PC2 plot (Fig. 2) the 95% confidence ellipses of the subfamily groups
greatly overlapped. However, the One-way ANOVA analyses detected statistically significant
differences between the groups (PC1: F=361.0 P <0.0001; PC2: F=39.7 P <0.0001).
Alouattinae clearly clustered on the positive scores of PC1, whereas Pithecinae and Cebinae
greatly overlapped on the most negative scores of PC1. The rest of the groups (Saimirinae,
Callicebinae, Callitrichidae, Atellidae and Aotinae) showed intermediate values for PC1. For the
function (PC2), all groups greatly overlapped, though Saimirinae, Callitrichinae and Callicebinae
showed somewhat htegher PC2 scores than the rest. Most of the fossil specimens showed
positive PC1 scores, except Carlocebus (F5) and especially Nuciruptor (F11) and Cebupithecia
(F12) that had negative PC1 and positive PC2 scores. Most extinct forms overlapped with the
extant platyrrhines, within Callicebinae, Callitrichinae and Atellinae, except Xenothrix (F13) and

Nuciruptor and Cebupithecia.
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Alouattinae

Callicebinae

Saimiriinae

Callitrichinae

0.12 -008 -0.04 000 004 008 012 0.16
a L PC1 28.58 %

250

251 Figure 3. Scatterplot of the first two principal components (PCs) derived from the PCA of M,
252  shape variability of Platyrrhini. Grids indicate the deformations associated with the extreme

253 values of each principal component.

254

255 The first two PCs for M, (Fig. 3) accounted for 42.80% of the total variance (PC1: 28.58%;
256 PC2:14.22%). The molar shape changes for positive and negative PC1 scores for M, were

257 similar to those observed for M, whereas positive PC2 scores for M, corresponded to the

258 negative ones on PC2 for M, and negative ones on PC2 for M, were equivalent to the positive
259  score of PC2 for M. The PC1 versus PC2 plot (Fig. 3) showed similar distributions of the

260 subfamilies to those for M, although greater separations between groups were observed. Further,

261 a One-Way ANOVA of the two first PC scores showed that dental shapes among subfamilies
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were statistically distinct (M,; PC1: F=455.8 P <0.0001; PC2: F=102.6 P <0.0001).
Alouattinae showed the largest positive scores for PC1 and Pitheciinae and Cebinae the most
negative scores, with the other groups showing again intermediate values. Callitrichinae and
Saimiriiane were placed mainly on the negative score of the PC2 axis, although overlapped
somewhat with the other groups. Most fossil specimens again clustered on positive scores for
PC1 and PC2, mainly within the dispersion of Atellinae, Callitrichinae and Atellinae, although
Stirtonia (F10), Dolichocebus (F3) and Nuciruptor (F11) clearly fell within the Alouattinae
clade, and Nuciruptor (F11) was closer to Cebinae and Pitheciinae on the negative scores of
PC1. Homunculus (F4) did not fall at all within any extant taxa, showing highly possitive PC2
scores.
Discriminant analyses of the fossil speciomens

The post-hoc percentages of correct classification after cross-validation (pcc) were high both
for M, (Table 4a, range = [85.7—88.0%]) and M, (Table 4b, range = [84.7—90.6%]). In both
cases the highest pcc value was obtained when Groves' subfamily factor was discriminated. The
range of differences between pcc values before and after cross-validation was [1.3—4.7%] and in
both teeth the genus discrimiant factor showed the highest decrease in pcc. The difference in pcc
values between Grooves' (Cebinae, Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae,
Aotinae, Atelinae, Alouattinae) and Rosenberger's (Cebinae, Callitrichinae, Pitheciinae,
Homunculinae, Atelinae) pcc values were 2.3% for M, and 1.6% for M, (Table 4). The
percentage of total variance explaine by the first two discriminant functions (DF1, DF2; Table 4)
for all discriminat factors ranged from 63.3% (genus) to 100% (family) for M;, and from 66.1%

(genus) to 100% (family) for M,. The highest percentage of total variance explained by DF1 was
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56.0% (family) for M; and 68.3% (family) for M,, and the highest one for DF2 was 44.0%
(family) for M, adn 32.8% (subfamily R) for M.

Regarding the classification of the fossils specimens, the ranges of the a priori classification
probabilities varied depending on the discriminant factor used (Table 4; Fig. 4, showing the
landmark configurations of the fossil specimes analysed). Mohanamico showed a high
probability of belonging to the callitrichines clade, as well as Carlocebus, although the
probability was smaller for M,. Both Neosaimiri and Soriacebus showed high probabilities of
belonging to the callitrichines for M, though to Callicebinae/Homonculinae for M,.
Cebupithecia (M, not available) and Nuciruptor neotypes showed a high probability of
belonging to the pitheciid clade. In contrast, Xenothrix (M, not available) likely belonged to
Callithrix, despite in the PCA this fossil specimen did not fall within the Callitrichinae range.
Stirtonia was assigned to the Atelidae clade, and to Alouatta at the genus level (except for
Rosenberger' subfamily factor for M,). Laventiana was also classified into the atelids for M, but
was more closely related to the callitrichids for M,. Aotus dindensis showed a high probability of
belonging to Aotus taxa for M, but Callicebus was the group with the greatest affinity for M,.

Finally, Proteopithecus showed a high resemblance to Saimiri for M, but to Callimico for M.
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Figure 4. Firts and second molar shapes of the extinct fossil platyrhines used in this study.

DISCUSSION

Proteopithecus sylviae (F1) showed molar shape resemblances with the platyrrhines.
Although many dental and postcranial features of P. sylviae are considered to be
symplesiomorphic traits of all anthropoids, it is considered a stem anthropoid (Kay, 1990, 2014).

However, the recently discovered Perupithecus ucayaliensis, from the Late Eocene, exhibits
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similarities with Proteopithecus, as well as with Talahpithecus and Oligopithecidae (Bond et al.,
2015). The upper molars of Perupithecus are similar to those of the calitrichines, but their
morphology more closely resemble that of Proteopithecus and Talahpithecus (Bond et al., 2015).
Proteopithecus sylviae differes from extant and extinct platyrrhines in having a distomesially
expanded molar and a rectangular occlusal polygon (especially M,) (also described in
Xenothrix). If the Fayum fossil is a sister taxon to platirrhines, the interspecific variation of
molar shape would have shown relatively little change through time molars shapes in
platyrrhines would represent a retention of the primitive ancestral form. The LDA showed a high
probability of P. sylviae belonging to the Cebidae clade, suggesting that the molar of the earliest
ancestors of platyrrhines might have exhibited close similarities to Saimiri-Callimico. This
resemblance matches with the description of Branisella —a South American Oligocene fossil
primate (Rosenberger, 2002; Rosenberger et al., 2009) — that shows a Saimiri-like M,
morphology and a Callimico-like upper P? (Rosenberger, 1980). However, the shapes of both
molars of P. sylviae more closely resembled those of Callimico than of Saimiri. In addition, its
subtriangular upper molars also show similarities with Callimico (Bond et al., 2015). If P. sylviae
was a sister taxon to platirrhines, it is likely that the ancestral molar shape of pre-platyrrhines
would have been similar to the molar shape of Callimico. By contrast, if P. sylviae was a stem
species, Callimico dental anatomy would represent a retention of the primitive pre-anthropoid

molar shape.

Early Miocene platyrrhines from Patagonia
The Early Miocene fossils were mainly assigned to either Callicebus or Sagunus in the LDA.
Dolichocebus (F3) was classified as a pitheciid, mainly by having a square occlusal polygon, but

while the PCA for M, placed this specimen in the callicebinae range, a morphological similarity
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with saimiriinae was seen for M, (Fig. 3a). In contrast, Soriacebus (F2) was related mainly to the
callitrichid clade, but for M, the probability of belonging to this group was small (Table 4).
Soriacebus showed a rectangular occlusal polygon on M, and its ectoconid was inclined
distolingually. Regarding callitricids, although Soriacebus also showed differences in cusp
configuration, the callitricids and Soriacebu share a C-shaped distal side and a somewhat straight
lingual-side contour (mostly seen in Saguinus). Kay (1990) reported that many dental features of
marmosets and Soriacebus were convergent; in contrast, Rosenberger et al. (1990b) suggested
that there are some similarities with callitrichines (development of hypoconids and entoconids in
the talonid). However, based on the anterior teeth, Soriacebus rmay epresent the first branching
of pitheciids. Although marmosets are considered a derived clade (e.g. Chatterjee et., 2009;
Perelman et al., 2009; Jameson Kiesling et al., 2014), it is likely that their relationship with
Soriacebus may be due to the fact that callitrichines exhibit primitive traits on their molars,
which might indicate that both taxa share the retention of a rectangular contour of the occlusal
polygon. Carlocebus (F5) was classified as a callitrichinae by the LDA but it more closely
resemble Callicebus than marmosets in the shape contour and square alignment of cusps in both
molars. Homunculus (F4) was placed outside the range of Patagonian forms (Fig. 2a), but the
LDA indicated a high probability of belonging to Pitheciidae (ca. 91-99%; Table 4), and
especially to Calliecebus. Nonetheless, Homunculus molar showed an asymmetrical shape
compared to the pitheciids and, unlike pitheciids, Homunculus cusps were more distally place
and the trigonid was almost as broad as the basin-like talonid, which indicates that although
sharing some traits with pitheciids, its position is still highly uncertain. It is likely that some
Patagonian lineages became extinct without direct descendants, but other taxa could have

significantly diversified after migrating north in South American.
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Middle Miocene platyrrhines from Colombia and the Caribbean

Most Miocene fossils were catalogued as callitrichines, specifically into the Saguinus clade,
except Nuciruptor, Cebupithecia, Aotus dindensis, and Stirtonia. The fossil specimens mainly
differred from the extant forms (excepting Alouatta and Brachyteles) in their rectangular-shaped
molar, which indicates that a rectangular-shaped molar may represents a plesiomorphy retention
in the Patagonian fossils. Thus, the trend toward ovoid molar shape might be a derived feature in
many living forms. Laventania (F7) exhibits distally oriented cusps on M, showing considerable
resemblances with some atelid groups, which results in a confusing classification between atelids
and Callicebus in the LDA (Table 4). The trend to rectangular shape for M, in Laventania differs
notably from the phylogenetic relationship between Cebinae and Saimiriinae. Nonetheless, when
M, was analyzed, the fossil was classified as a member of the Callitrichinae clade. As with
Laventania, some neotypes of Neosaimiri (F6) were classified in distinct taxonomic groups
(Table 4). Despite this, Neosaimiri was associated to the Cebidae family, although the molar
shape was found to have more affinities with callitrichines than Saimiri. Mohanamico (F8) and
Aotus dindensis (F9) have been considered by Kay and collaborators (Meldrum and Kay, 1997,
Kay 2014) to belong to the same genus, despite Takai et al. (2009) suggested that 4. dindensis
should be assigned to a distinct genus. According to their molar shape, Mohanamico and A.
dindensis may be classified into different species. Both fossils showed a relatively rectangular
molar outline, although M, in both species were slightly square shaped. In fact, the LDA for M,
(Fig. 2a) placed the two forms close to each other, likely because the two forms might have
shared ecological niches; Mohanamico and A. dindensis were found in the same locality and at
the same stratigraphic level (Kay, 1990). However, the LDA classification probabilitis different

in the two taxa: Aotus dindensis was mainly related to Aotus/Callicebus, whereas Mohanamico
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was assigned to Callitrichinae (Table 4). In the case of Nuciruptor (F11) and Cebupithecia (F12),
the occlusal views in both species were relatively rounded, with a slightly rectangular alignment
of the cusps that were buccally oriented, which resembles the condition in most extant
pitheciinae. Cebupithecia and Nuciruptor had close affinities with the Pitheciidae clade (Table
4), although they were not placed within the extant species range (except Nuciruptor on M,)
(Fig. 2a). Several studies have suggested that, although there are important characteristics that
have been associated with the living taxa, both fossils should be considered stem pitheciids
(Meldrum and Kay, 1997; Kay et al., 2013; Kay, 2014).

The sister relationship between Stirtonia and Alouatta was classified was shown both LDA
analyses (99.9% probability for M, and 94.0% for M,) Likewise, the PCA showed that Stirtonia
was placed close to the howler monkeys (Figs. 2a and 3a). However, differences between
Stirtonia and Alouatta were mainly seen in the occlusal polygon of M,. The metaconid of
Stirtonia was located near the protoconid and the ectoconid was distolingually inclined, similar
to the Cebuella configuration.

Finally, Xenothrix (F13), the Caribbean platyrrhine form, has been allied with pitheciids
(Rosenberger, 2002; Horovitz and MacPhee, 1999). In the LDA Xenothrix was assigned to the
pitheciids, but at the genus level it was classified as Callithrix (Table 4). Resemblances with the
marmosets could be interpreted as convergent evolution but the relationship between Xenothrix
and the pitheciids is highly uncertain because its molar morphology (especially the occlusal
configuration) differs from that of the pitheciids. It is likely that Xenothrix could be a distinct
branch that evolved independent from crown platyrrhines: an early Antillen arrival (Iturralde-
Vinent and MacPhee, 1999; MacPhee and Iturralde-Vinent, 1995; MacPhee and Horovitz, 2004;

Kay et al., 2011; Kay, 2014).
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As a whole, the reduced morphological variability observed in platyrhin molars shape,
suggests a slow rate of phenotypic change. A morphological stasis, (a different concept to the
long lineages hypothesis) would explain the low interspecific variation seen between extinct and
extant linages and between Early Miocene platyrrhines (including P. sylviae) and forms from La
Venta. This small phenotypic variation — as well as the reduced dietary diversification in
platyrrhines compared to carnivores — could be due to developmental and functional constraints,
given the significant role of dental occlusion during masticarion (Gémez-Robles and Polly
2012).). This ecological constraint might derive from a phenotypic adaptation of the main
platyrrhine families in the Amazon rainforest (Jameson Kiesling et al. 2014). Following an
African origin scenario, and taking into account the oldest fossil found in Peru, Perupithecus
(Bond et al., 2015), it is likely that the ancestor of the extant platyrrhines could have exhibited a
Callimico-like molar shape. Saguinus and Callicebus were the main assigned groups for the
Patagonian fossils in the LDA and, thus, both Callicebus-like and Saguinus-like morphologies
might have beeb presented in the stem platyrrhines. At present both Callicebus and Saguinus
show a high species diversity and geographic dispersion (Rylands and Mittermeier 2009), which
might have diversifyjed in the Amazon basin during platyrrhine evolution (Ayres and Clutton-
Brock, 1992; Boubli et al., 2015). It is feasible that Callicebus and Saguinus molar shape would
be an ancestral precursor for all extant forms and, thus, Middle Miocene platyrrhines molar
shape would represent evolutionary continuity in molar shape pattern from earlier fossils along

with new molar pattern, such as Alouatta-like and the Pitheciinae-like forms.

CONCLUSIONS

This study develops a dental model based on molar shapes of M; and M, to explores

phenotypic variation in extinct platyrrhine specimens. The results show that morphological stasis
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explains the low phenotypic changes in both extinct and exetant platyrrhines, probably due to the
ecological constraint, caustag by phenotypic adaptation of platyrrhine in a relative narrow
ecological niche. Early and Middle Miocene platyrrhines show similar molar shape pattern,
while 4Alouatta-like and Pitheciinae-like molar patterns were incorpored in the Colombian fossils.
The similarities among all the fossil samples studied could be due to: 1) all platyrrhine molar
shapes share a primitive retention of the ancestral state; 2) an early divergence between two
parallels shapes, Callicebus-like and Saguinus-like, would be the ancestral precursors to all other
forms; and 3) Callicebus-like and Saguinus-like morphologies could have been present in the

early stem platyrrhines.
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Table 1: List of fossils used in the study.

Fossils Location Age (Ma) Phylogenetic position

reference

F1 Proteopithecus sylviae Fayum, Egypt 33.9-28.48  stem anthropoid®

(1997)

F2 Soriacebus spp. Pinturas Formation, 17¢ stem platyrrhined/
Santa Cruz Province, Pitheciidae®
Argentina

F3 Dolichocebus gaimanesis Gaiman, 20t stem platyrhine/
Chubut Province, sister to Saimiri®
Argentina

F4 Homunculus spp. Santa Cruz Formation, 16.5" stem platyrrhine/

Rosemberger
Santa Cruz Province, Pitheciidae
Argentina

FS Carlocebus spp. Pinturas Formation, 18-191 stem platyrrhine/
Santa Cruz Province, Pitheciidae
Argentina

F6 Neosaimiri fieldsi La Venta, Huila, 13.5 -11.81 sister to Saimiri*
Colombia

F7 Laventiana annectens La Venta, Huila, 13.5 -11.8 sister to Saimiri/
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Specimen number and

CGM 42209; Miller and Simons

MACN-SC 2!, MACN-SC 52
MPM-PV 363; Tejedor (2005)

MPEF 5146; Kay et al. (2008)

MACN-A5969; Tejedor and

(2008)

MACN-SC 266; Fleagle (1990)

IGM-KU 890294, IGM-KU 890195,
UCMP 39205¢, IGM-KU 890027,
IGM-KU 390348, IGM-KU 89053°,
IGM-KU 89130'%; Takai (1994)

IGM-KU 880; Rosemberger et al.,
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699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721
722

723

724
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Colombia

F8 Mohanamico hershkouitzi La Venta, Huila,

Colombia
F9 Aotus dindensis La Venta, Huila,
Colombia
F10 Stirtonia spp. La Venta, Huila,
Colombia
F11 Nuciruptor rubricae La Venta, Huila,
(1997)
Colombia

F12 Cebupithecia sarmientoni  La Venta, Huila,
(1997)
Colombia

F13 Xenothrix macgregori Jamaica
Horovitz

synonymy with
Neosaimiri!

13.5 -11.8 sister to Callimico™
13.5-11.8 sister to Aotus™/

coespecific with
Mohanamico®

13.5 -11.8 sister to Alouatta®

13.5 -11.8 Pitheciidae?/
stem Pitheciinae’

13.5 -11.8 Pitheciidae/
stem Pitheciinae

Holocene® stem platyrhine/

(1991b)

IGM 181500; Kay (1990)

IGM-KU 8601; Kay (1990)

UCPM 38989; Kay et al. (1987)

IGM 251074; Meldrum and Kay

UCMP 38762; Meldrum and Kay

AMNHM 148198; MacPhee and

retaded to Callicebus' (2004)

References used in the table: Miller and Simons 19972; Kay 1990°; Fleagle et al., 1987¢; (Kay, 2010; 2014"; Kay and Fleagle, 2010;

Kay et al., 2008)4; (Rosenberger, 1979¢; Tejedor 2000¢; Tejedor and Rosenberger, 2008")¢; Rosenberger, 1979¢; Fleagle 1990'; Flynn

et al., 1997; Rosenberger et al., 1991b¥; (Takai, 1994; Meldrum y Kay 1997)!; Rosenberger et al., 1990b™; (Setoguchi and
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Rosenberger, 1987; Takai et al., 2009)"; Meldrum y Kay, 1997°9; (e g., Hershkovitz P 1970; Kay et al., 1987)P; Cooke et al., 20115;
MacPhee and Horovitz 2004!

Institutional abbreviations: CGM: Cairo Geological Museum; MPM-PV: Museo Regional Provincial Padre Manuel Jests Molina, Rio
Gallegos, Argentina; MPEF: Museo Paleontologico E. Feruglio, Trelew, Chubut Province, Argentina; MACN, MACN-SC/A: Museo
Argentino de Ciencias Naturales “Bernardino Rivadavia,” Buenos Aires, Argentina; SC/A denotes locality; IGM, IGM-KU: Museo
Geologico del Instituto Nacional de Investigaciones Geoldgico-Mineras, Bogota, Colombia; KU denotes Kyoto University; UCPM:
University of California Museum of Paleontology, Berkeley, California; AMNHM: Division of Vertebrate Zoology Mammalogy,

American Museum of Natural History.
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733 Table 2. Comparative sample of extant Platyrhini specimens included in the analysis of the
734  fossils specimens. The total number of M; and M, teeth studied (N) and the provenance

735  (Collection) are indicated.

736  Genus / species N Collection?

737  Subfamily: Cebinae

738  Cebus (gracile capuchins)

739 C. albifrons 9 MZUSP, MNRJ
740 C. olivaceus 6 MNRIJ

741  Sapajus (robust capuchins)

742 S. apella 14 MZUSP
743 S. libidinosus 15 MNRIJ
744 S. nigritus 15 MNRJ
745 S. robustus 15 MNRIJ
746 S. xanthosternos 7 MNRIJ

747  Subfamily: Samiriinae

748  Saimiri (squirrel monkeys)

749 S. boliviensis 17 MZUSP, MNRIJ
750 S. sciureus 25 MZUSP, MNRJ
751 S. ustus 18 MZUSP, MNRJ
752 Saimiri vanzolinii 8 MNRIJ

753  Subfamily: Callitrichinae
754  Callithrix (marmosets from Atlantic Forest)

755 C. aurita 11 MNRJ
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760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

C. geoffroyi
C. jacchus

C. kuhli

C. penicillata

Mico (marmosets from Amazon)

M. argentata
M. chrysoleuca
M. emiliae
M. humeralifer
M. melanura
Cebuella (pygmy marmoset)
C. pygmaea
Callimico (goeldi’s marmoset)
C. goeldi
Leontopithecus (lion tamarins)
L. chrysomelas
L. rosalia
Saguinus (tamarins)
S. fuscicollis
S. imperator
S. labiatus
S. midas

S. mystax

15

21

20

14

21

16

17

13

10

22

13

MNRJ
MZUSP
MNRIJ

MNRIJ

MZUSP, MNRJ
MZUSP, MNRJ
MZUSP
MZUSP

MZUSP, MNRJ

MZUSP

MZUSP

MZUSP, MNRJ

MZUSP, MNRJ

MZUSP
MZUSP
MZUSP, MNRJ
MZUSP, MNRJ

MZUSP, MNRJ
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784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

S. niger

Subfamily: Aotinae

Aotus (ow] or night monkeys)

A. azarae
A. nigriceps

A. trivirgatus

Subfamily: Callicebinae

Callicebus (titi monkeys)

C. bernhardi
C. cupreus
C. hoffmanni
C. moloch
C. nigrifrons

C. personatus

Subfamily: Pitheciinae

Cacajao (uakaris)

C. calvus

C. melanocephalus

Chiropotes (bearded sakis)

C. albinasus
C. satanas
Pithecia (sakis)

P. irrorata

14

21

14

12

16

16

14

18

15

17

M:NRIJ

MZUSP, MNRJ
MZUSP, MNRJ

MZUSP

MNRIJ
MZUSP, MNRJ
MNRIJ
MZUSP, MNRJ
MNRIJ

MZUSP, MNRJ

MZUSP, MNRJ

MZUSP, MNRJ

MZUSP, MNRJ

MZUSP, MNRJ

MZUSP, MNRJ
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806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

P. monachus

P. pithecia
Subfamily: Atelinae
Lagothrix (woolly monkeys)

L. cana

L. lagotricha
Brachyteles (muriquis)

B. arachoides

B. hypoxanthus
Ateles (spider monkeys)

A. belzebuth

A. chamek

A. marginatus
Subfamily: Alouatinae
Alouatta (howler monkeys)

A. belzebul

A. caraya

A. discolor

A. guariba

A. g. clamitasT

A. nigerrima

A. paliatta

A. seniculus

16

16

15

20

15

15

10

15

10

15

15

MZUSP, MNRJ

MZUSP, MNRJ

MNRIJ

MZUSP

MZUSP, MNRJ

MNRIJ

RBINS
MNRIJ

MZUSP

MZUSP
MZUSP, MNRJ
MNRIJ

MZUSP, MNRJ
MNRIJ

MNRIJ

HLP

MZUSP
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825 A. ululata 7 MNRJ

826 T Subspecies of Alouatta guariba

827 ?Institutional abbreviations: MZUSP: Museu de Zoologia Universidade de Sao Paulo (Brazil);

828 MNRJ: Museu Nacional do Rio de Janeiro (Brazil); HLP: Hacienda La Pacifica.
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831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

Table 3. Landmarks considered for the geometric morphometrics analysis of dental crown shape.

Landmark

1

2

10

11

12

13

14

15

Type
2

2

Definition

Tip of the distolingual cusp (entoconid)

Tip of the mesiolingual cusp (metaconid)

Tip of the mesiobuccal cusp (protoconid)

Tip of the distobuccal cusp (hypoconid)

Most distal point of the mid mesiodistal line on the crown outline
Point of maximum curvature directly below the entoconid*

Point on the dental crown outline at the lingual groove

Point of maximum curvature directly below the metaconid*
Most mesial point of the mid mesiodistal line on the crown outline
Point of maximum curvature directly below the protoconid*
Point on the dental crown outline at the mesial groove

Point of maximum curvature directly below the hypoconid*

Midpoint between the preentocristid and postmetacristid*

Lowest point on the protocristid*

Lowest point on the crista oblique*

* Landmarks follow definitions by Cooke (2011)
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848 Table 4. Summary of the DFA, including the percentage of variance for the two discriminant function (DF1 and DF2), the percentage
849 of original grouped cases correctly classified and the percentage of cross-validated. Further, the percentage of probability that each
850 case (fossil) belongs to the predicted group. Soriacebus'-%? and Neosaimiri* > % 7-8% 10 corresponding to the holotypes numbered on

851 Table 1b.

852 a)M;

853 Family% Subfamily by G % Subfamily by R % Genus %
854 DF1 56.0 50.5 42.4 49.0
855 DF2 44.0 19.1 29.1 14.2
856 Classification 88.7 91.3 88.2 91.0
857 Cross-validation 87.4 88.0 85.7 86.3
858 (My) Family % Subfamily by G% Subfamily by R% Genus %
859  Proteopithecus Cebidae 99.6  Saimiriinae 99.2 Cebinae 99.9  Saimiri 99.3
860 Soriacebus Cebidae 99.9 C(allitrichinae  99.9 Callitrichinae  99.8  Saguinus 89.6
861  Soriacebus * Cebidae 99.1 Callitrichinae 76.6 Callitrichinae  94.0  Callithrix 69.1
862 Dolichocebus Cebidae 86.5 Callicebinae 77.9 Homunculinae 67.4 Callicebus 86.4
863  Carlocebus Cebidae 97.0 Callitrichinae 94.2  Callitrichinae  83.7  Callithrix 87.1
864  Neosaimiri * Pitheciidae = 48.5 Atelinae 48.8 Callitrichinae  52.2  Saguinus 78.7
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870

871
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873

874

875

876

877

878

879

880

881
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Neosaimiri ° Cebidae 98.4 Callitrichinae 97.5 Callitrichinae  97.3  Saguinus 99.6
Neosaimiri ® Cebidae 97.0 Callitrichinae  76.5 Callitrichinae 94.6  Saguinus 72.2
Laventiana Atelidae 94.6  Atelinae 44.5 Atelinae 949 Callicebus  53.0
Mohanamico Cebidae 96.2 Callitrichinae 87.3 Callitrichinaec  70.3  Leontopithecus  65.4
Aotus dindensis Pitheciidae  59.0  Aotinae 99.7 Homunculinae 97.4  Aotus 98.7
Stirtonia Atelidae 98.9  Alouattinae 99.9 Atelinae 98.2  Alouatta 99.9
Nuciruptor Pitheciidae ~ 99.7 Callicebinae 99.5 Homunculinae 83.6 Callicebus  63.3
Cebupithecia Pitheciidae ~ 96.5 Pitheciinae 92.1 Pitheciinae 65.3  Chiropotes  59.2
Xenothrix Pitheciidae =~ 75.8  Callicebinae 30.5 Homunculinae 61.9  Callithrix 90.7
b) M,

Family% Subfamily by G % Subfamily by R % Genus %
DF1 68.3 45.6 47.6 43.5
DF2 31.7 29.0 32.8 22.6
Classification 89.5 93.3 90.3 88.7
Cross-validation 88.2 90.6 89.0 84.7
M,) Family % Subfamily by G %  Subfamily by R% Genus %
Proteopithecus Cebidae 99.4 Callitrichinae 82.3 Callitrichinae  80.3  Callimico  86.7
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883

884

885

886

887

888

889

890

891

892

893

894

895

Soriacebus !
Soriacebus 3
Dolichocebus
Homunculus
Carlocebus
Neosaimiri
Neosaimiri 8
Neosaimiri ®
Neosaimiri 1
Laventiana
Mohanamico
Aotus dindensis
Nuciruptor

Stirtonia

PeerJ

Cebidae 65.6
Atelidae 77.1
Cebidae 50.7

Pitheciidae91.4

Cebidae 55.6
Cebidae 98.3
Cebidae 64.9
Cebidae 99.5
Cebidae 98.9
Cebidae 99.9
Cebidae 97.7
Cebidae 84.4

Pithecidae 89.7

Atelidae 81.8

Callicebinae

Callitrichinae

Callicebinae

Callicebinae

Callitrichinae

Callicebinae

Callicebinae

Callitrichinae

Callicebinae

Callitrichinae

Callitrichinae

Callicebinae

Pitheciinae

Alouattinae

81.6

96.7

92.6

93.7

58.8

92.9

61.2

61.3

84.6

99.8

94.9

88.9

89.7

86.0

Homunculinae

Callitrichinae

Homunculinae

Homunculinae

Callitrichinae

Cebinae

Homunculinae

Callitrichinae

Callitrichinae

Callitrichinae

Callitrichinae

Homunculinae

Pitheciinae

Callitrichinae
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58.4

98.0

90.1

97.3

50.4

35.8

93.7

51.7

71.9

99.7

94.6

76.1

73.0

92.1

Saguinus
Saguinus
Callicebus
Callicebus
Mico
Callicebus
Saguinus
Saguinus
Saguinus
Saguinus
Saguinus
Callicebus
Pithecia

Alouatta

74.6

65.6

92.6

99.9

72.5

67.2

65.1

92.3

98.3

40.8

99.9

96.5

49.4

94.
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