

Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines

Mónica Nova Delgado, Jordi Galbany, Alejandro Pérez-Pérez

The phylogenetic position of fossil platyrrhines with respect to extant ones is not clear yet. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineages hypothesis argues for an evolutionary continuity of all platyrrhine lineages. Despite dental morphology may reflect a certain degree of homoplasia, a significant genetic signal has been detected, reflecting phylogenetic relationships among extant taxa. A geometric morphometric analysis of a 15 landmark-based configuration was applied to a sample of 802 platyrrhines' first and second lower molars representing all living families and subfamilies (62 species). A Linea Discriminant Analysis was applied to derive the post-hoc probability of classification of 11 fossil Platyrhins and 1 fossil anthrpoid from El Fayum within the extant comparative collection. The phenipic affinities within the fossil specimens and with the extant groups were used to test hypotheses of Platyrhine diversification and evolution. The reduced geometric morphometric molar shape variation observed within both the fossil and living taxa suggest that morphological stasis, a slow rate of phenotypic change, may explain the great similarities between both groups. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints thoughout the radiation the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus-like and Saguinus-like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also diplayed new, derived molar patternss, Alouatta-like and Pitheciinae-like. Phenotypic diversification of molar shaped was already settled during the Middle Miocene, which may reflect either that platyrrhines share a retention of a primitive molar shape or that an early divergence between two parallels shapes, Callicebus-like and Saguinus-like, would be the ancestral precursors to all other forms, with *Callicebus*-like and *Saguinus*-like morphologies already present in the early stem platyrrhines.

- 1 Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil
- 2 platyrrhines
- 3 Mónica Nova Delgado, a Jordi Galbany, a-b and Alejandro Pérez-Péreza

- 5 ^a Secció d'Antropologia, Departament de Biologia Animal, Universitat de Barcelona, Av.
- 6 Diagonal 643, 08028 Barcelona, Spain.
- 7 b Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George
- 8 Washington University, 800 22nd Street NW, Ste 6000, Washington DC 20052, USA.

9

- 10 *Corresponding author:
- 11 Dr. Alejandro Pérez-Pérez
- 12 martinez.perez.perez@ub.edu
- 13 Tf. +34-934021460
- 14 Dept. Animal Biology (Anthropology). Av. Diagonal 645, 08028 Barcelona Spain.

15

16 Grant sponsors: Spanish grants SGR2009-0884 and CGL2011-22999

17

18 **Key words:** Molar shape, platyrrhines, Geometric morphometric, phylogeny

ABSTRACT

20	The phylogenetic position of fossil platyrrhines with respect to extant ones is not clear yet. Two
21	main hypotheses have been proposed: the layered or successive radiations hypothesis suggests
22	that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants,
23	whereas the long lineages hypothesis argues for an evolutionary continuity of all platyrrhine
24	lineages. Despite dental morphology may reflect a certain degree of homoplasia, a significant
25	genetic signal has been detected, reflecting phylogenetic relationships among extant taxa. A
26	geometric morphometric analysis of a 15 landmark-based configuration was applied to a sample
27	of 802 platyrrhines' first and second lower molars representing all living families and subfamilies
28	(62 species). A Linea Discriminant Analysis was applied to derive the <i>post-hoc</i> probability of
29	classification of 11 fossil Platyrhins and 1 fossil anthrpoid from El Fayum within the extant
30	comparative collection. The phenipic affinities within the fossil specimens and with the extant
31	groups were used to test hypotheses of Platyrhine diversification and evolution. The reduced
32	geometric morphometric molar shape variation observed within both the fossil and living taxa
33	suggest that morphological stasis, a slow rate of phenotypic change, may explain the great
34	similarities between both groups. Platyrrhine lower molar shape might be a primitive retention of
35	the ancestral state affected by strong ecological constraints thoughout the radiation the main
36	platyrrhine families. The Patagonian fossil specimens showed two distinct morphological
37	patterns of lower molars, Callicebus-like and Saguinus-like, which might be the precursors of the
38	extant forms, whereas the Middle Miocene specimens, though showing morphological
39	resemblances with the Patagonian fossils, also diplayed new, derived molar patternss, Alouatta-
40	like and <i>Pitheciinae</i> -like. Phenotypic diversification of molar shaped was already settled during
41	the Middle Miocene, which may reflect either that platyrrhines share a retention of a primitive

PeerJ

- 42 molar shape or that an early divergence between two parallels shapes, Callicebus-like and
- 43 Saguinus-like, would be the ancestral precursors to all other forms, with Callicebus-like and
- 44 Saguinus-like morphologies already present in the early stem platyrrhines.

46 INTRODUCTION

47	Platyrrhine evolution is controversial. Despite they most likely constitute a monophyletic
48	clade derived from African ancestors (Fleagle and Kay, 1997; Takai et al., 2000; Kay et al.,
49	2004; Oliveira et al., 2009; Bond et al., 2015), the phylogenetic position of some living taxa and
50	the affinities of fossil specimens are still uncertain. Currently, two different viewpoints have
51	been proposed about the evolutionary history of the earliest platyrrhines and their overall
52	relationships with extant forms. The "long lineages" hypothesis argues that the oldest known
53	Patagonian fossils (16–20 Ma) are to be included within the extant Platyrrhines (Rosenberger,
54	1979, 1980, 1981, 1984; Rosenberger et al., 2009; Tejedor, 2013), whereas the "layered or
55	successive radiations" hypothesis suggests that these fossils constitute a geographically isolated
56	stem, phylogenetically unrelated to the crown platyrrhines, that went extinct (along with some
57	Antillean species) lacking modern descendants (Kay, 2010; 2014; Kay and Fleagle, 2010; Kay et
58	al., 2008). According to Kay (2014), the divergence of modern lineages occurred in the tropics.
59	The Late Oligocene and Early Miocene platyrrhines would have branched off from the ancestral
60	lineage when climatic conditions in Patagonia became unfavorable and the Andean uplift was a
61	potential barrier to their dispersal. However, Tejedor (2013) has suggested that Chilecebus (20
62	Ma), a fossil specimen (Tejedor, 2003) from the western Andean cordillera, south of Santiago de
63	Chile, is indicative that the Andean mountains did not constitute a biogeographic barrier. Tejedor
64	(2013) argued that a paleobiogeographic corridor throughout western South America would have
65	allowed for a continental connectivity between the north and the southernmost fossil
66	platyrrhines. Unfortunately, the datings of the fossil specimens and the fossil-based approaches
67	for calibrating the molecular phylogeny support both models. Perez et al. (2013) have estimated
68	a crown platyrrhine origin at around 29 Ma (27-31), which allows for the inclusion of the fossil

69	Patagonian primates into a crown Platyrrhini lineage showing evolutionary continuity with the			
70	Middle Miocene lineages. In contrast, Hodgson et al. (2009) have dated their origin between 16.8			
71	and 23.4 Ma, suggesting an unlikely relationship of the early Miocene fossils with the crown			
72	platyrrhine clade (but see different temporal models in Goodman et al., 1998; Opazo et al., 2006;			
73	Chatterjee et al. 2009; Perelman et al. 2011; Wilkinson et al. 2011; Jameson Kiesling et al.			
74	2014).			
75	Molar morphology analyses of both extinct and extant forms may be a useful tool to gain			
76	further insight into this debate on evolutionary continuity (Cardini and Elton, 2008; Klingenberg			
77	and Gidaszewski, 2010), since tooth development is under strong genetic control (Jernvall and			
78	Jung, 2000). Indeed, dental morphology has been widely used to determine the phylogenetic			
79	positions of extinct specimens with respect to living forms (e.g., Kay, 1990; Rosenberger et al.,			
80	1991a, b; Benefit, 1993; Meldrum and Kay, 1997; Miller and Simons, 1997; Horovitz and			
81	MacPhee, 1999; Kay and Cozzuol, 2006; Kay et al., 2008). We have recently reported a			
82	significant phylogenetic signal of molar morphology in some Platyrrine taxa (Nova Delgado et			
83	al., 2015), with closely related species exhibiting common phenotypic traits.			
84				
85	Affinities of the fossil platyrrhine primates			
86	A total of 31 Early Miocene Platyrrhini fossil genera have been so far reported in the South			
87	American continent and the Caribean: 11 in La Venta (Colombia), 8 in the Argentinian			
88	Patagonia, 4 in the Greater Antilles, 5 in Brazil, and 1 each in Chile, Bolivia and Peru (Tejedor,			
89	2013; Bond et al., 2015). Neosaimiri, Laventiana (La Venta, Colombia) and Dolichochebus			
90	(Chubut Province, Argentina) have been included within the Cebinae (Rosenberger, 2011),			
91	whereas Neosaimiri has been considered a direct ancestor of the extant Saimiri, with which			

shares a symmetric molar shape pattern (Rosenberger et al., 1990a; 1991a). Its molars exhibit
sharp cusps, well-developed distal cusps, buccal cingulum, a strong buccal flare, and a distinct
post-entoconid notch on molars only found in Saimiri and Laventiana (Rosenberger et al., 1991a,
1991b; Takai, 1994; Tejedor, 2008). Laventiana is a synonym of Neosaimiri (Takai, 1994;
Meldrum and Kay, 1997), although it has been suggested to be more primitive than Neosaimiri
(Rosenberger et al., 1991b). Laventiana's teeth closely resemble those of Saimiri and Cebus-
Sapajus; it shows thick-enamel, bunodont molars exhibiting a small buccal cingulum and an
angular cristid obliqua, lacking buccal flare (Rosenberger et al., 1991b). Dolichocebus has been
suggested to be a member of the Saimiri lineage, mainly for its interorbital fenestra considered a
derived feature in squirrel monkeys (Tejedor, 2008; Rosenberger et al., 2009; Rosenberger,
2010). However, Kay and colleagues (Kay et al., 2008; Kay and Fleagle, 2010) argued that
Dolichocebus is a stem platyrrhine and that the description of the orbital region was probably
affected by postmortem damage. Aotus dindensis was first described as a sister taxon of Aotus
(Setoguchi and Rosenberger, 1987), although Kay (1990) has suggested that it is probably
conspecific with Mohanamico hershkovitzi, which may be closely related to the callitrichines,
especially <i>Callimico</i> , due to their morphological similarities in the canine and the seconf
premolar. Aotus dindensis is included into the Pitheciidae (Rosenberger et al., 1990a) and
Callicebus has been classified within the Homunculinae, along with Aotus and some Argentinian
and Caribbean fossil primates (Rosenberg, 1981, 2002, 2011). Tejedor and Rosenberger (2008)
proposed that <i>Homunculus</i> is likely the ancestral pitheciine because although it shows a primitive
dental morphology, it notably resembles that of Callicebus. The two taxa show rectangular-
shaped molars, small incisors and non-projecting canines, a trait shared with Carlocebus
(Fleagle, 1990). Nonetheless, unlike <i>Callicebus</i> , the molars of <i>Homunculus</i> exhibit well-marked

(also found in *Dolichocebus*; Kay et al., 2008). 116 Soriacebus, another fossil included in the same monophyletic clade, would represent the 117 earliest Pitheciinae taxon (Perez et al 2013), which it shares anatomical traits on the anterior 118 dentition and the mandibular shape (Fleagle et al., 1987; Fleagle, 1990; Fleagle and Tejedor, 119 120 2002; Tejedor, 2005). Some dental traits of Soriacebus (premolars-molars size, lower molar trigonid, and reduction hypocone) may suggest a link with the Callitrhichines, but Kay (1990) 121 has considered them to be homoplasies and has placed *Soriacebus* as stem platyrrhine. *Xenothrix* 122 123 is a Late Pleistocene Caribbean fossil from Jamaica that shows a callitrichine-like dental formula (2132; MacPhee and Horovitz, 2004), low relief molars and a narrowing of intercuspal distance 124 and augmentation of the mesial and distal crown breadths (Cooke et al., 2011), a feature also 125 seen in *Insulacebus toussaintiana*, a Caribbean primate. Rosenberger (2002) argued that 126 Xenothrix is closely related to Aotus and Tremacebus by the enlargement of the orbits and the 127 central incisors enlargment, while MacPhee and Horovitz (2004) suggested a possible 128 Pitheciidae affinity, due to its low relief molar pattern. Nonetheless, the puffed cusps and the 129 lack of crenulation on the molar crown discriminate the Jamaican fossil from the Pitheciidae 130 131 (Kay, 1990; Kinzey, 1992). 132 Cebupithecia and Nuciruptor, two Colombian Middle Miocene genera, also share some traits 133 with the extant Pitheciidae family, mostly in the anterior dentition but also in their low molar 134 cusps and poorly developed crests (Kay, 1990; Meldrum and Kay, 1997). *Nuciruptor* does not exhibit several of the shared traits among Pitheciines (projecting canine and small or absent 135 136 diastema). Cebupithecia, although considered to be more derived than Nuciruptor, it was 137 interpreted by Meldrum and Kay (1997) as convergent evolution and, thus, not a direct ancestor

crests and prominent cusps (Tejedor, 2013), and an unusual paraconid on the lower first molar

138	of extant pitheciines. Finally, Stirtonia (originally from Colombia but also recovered from Acre
139	State, Brazil) exhibits similar dental size and morphology to extant <i>Alouatta</i> ; both showing molar
140	teeth with sharp and well-formed crests, a long cristid oblique, small trigonid, and spacious
141	talonid basin (Hershkovitz 1970; Kay et al., 1987; Kay and Frailey, 1993; Kay and Cozzuol,
142	2006; Kay, 2014).
143	Numerous studies have examined landmark-based geometric morphometrics (GM) of molar
144	shape for studying patterns of inter-specific variation and their implication in phylogeny and
145	ecological adaptations (e.g., Bailey 2004; Cook 2011; Gómez-Robles et al., 2007, 2008, 2011;
146	Martinón-Torres et al., 2006; Nova Delgado et al., 2015; Singleton et al. 2011; White 2009).
147	However, in Platyrrhini primates GM of molar shape has mainly focused on dietary adaptations
148	(Cooke, 2011), rather than to predict the phylogenetic attribution of unclassified specimens
149	(Nova Delgado et al., 2014). The aim of the present study was to use the two-dimensional (2D)
150	GM variability of occlusal shapes of lower molars (M ₁ and M ₂) of extant Platyrrhini primates to
151	asesses the affinities of the Patagonian, Colombian and Antillanean fossil taxa with the extant
152	forms and to estimating the efficiency of molar shape for discriminating fossil specimens.
153	
154	MATERIAL AND METHODS
155	Images of the dental crowns, in occlusal view and including a scale line, of 12 holotype fossil
156	platyrrhine specimens and one fossil from Fayum (Proteopithecus sylviae), used as an outgroup,
157	were obtained from the literature. The platyrrhine fossil specimens included 12 genera
158	(Soriacebus, Dolichocebus, Homunculus, Carlocebus, Neosaimiri, Laventiana, Mohanamico,
159	Aotus, Stirtonia, Nuciruptor, Cebupithecia, and Xenothrix), discovered in Argentina, Colombia
160	and Jamaica, and dated to between Holocene and 35 Ma (Table 1).

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

The extant comparative samples (Table 2) consisted in 802 adult individuals representing all recognized platyrrhine groups (3 families, 18 genera, 61 species, one subspecies), whose 2D and 3D morphometric variability of lower molars has partially been analysed (Nova Delgado et al., 2015). Dental casts were obtained from original specimens housed at various institutions: Museu de Zoologia Universidade de São Paulo (MZPS), Museu Nacional do Rio de Janeiro (MNRJ) in Brazil, and from Hacienda La Pacífica (HLP) in Costa Rica. Only unworn teeth were studied. The casts were made following published protocols (see Galbany et al., 2004, 2006). 2D images of molar occlusal surfaces of the extant specimens were taken with a Nikon D70 digital camera fitted with a 60 mm optical lens held horizontally on the stand base, at a minimum distance of 50 cm. The dental crown was imaged with a 0° of tilt with the cervical line perpendicular to the camera focus (Nova Delgado et al., 2014). The images of the dental crowns of the fossil specimens, obtained from the literature, were imported into Adobe Photoshop and scaled to the same resolution (400 dpi) than those of the extant specimens. In both cases, the images were standardized to right side, with the mesial border facing to the right, the distal border to the left, and the lingual and buccal sides facing upward and downward, respectively. All images were saved at high resolution (1600 × 1200 pixel) in JPEG format.

177

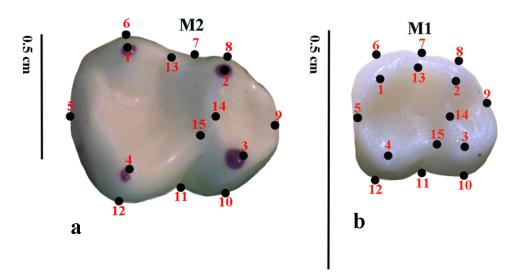
178

179

180

181

182


183

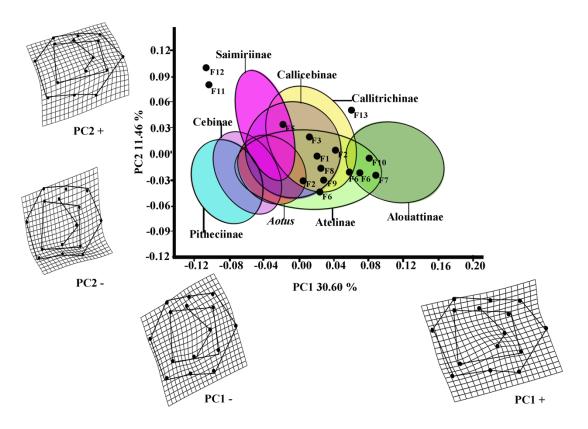
Geometric morphometric analysis

Geometric Morphometrics (GM) quantifies shape differences between biological structures using a set of digitized homologous points (landmarks) in two-dimensional or three-dimensional spaces (Bookstein 1991; Adams et al. 2004; Slice 2005). Landmarks are numerical values (coordinates) that reflect the location and orientation of each specimen in the morphospace (Slice, 2007). The two-dimensional (2D) landmark protocol used in this study was adapted from

Cooke (2011) and consisted of 15 landmarks (Table 3). The tips of the four main cusps (protoconid, metaconid, hypoconid and entoconid) defined the molar occlusal polygon. The crown outline was represented by eight landmarks, which included two landmarks on fissure intersections, four corresponding to maximum crown curvatures, and two in the mid mesio-distal line on the crown perimeter. Further, three landmarks were used to represent the positions of the crests (Fig. 1). Landmark recording was performed with TPSDig v 1.40 (Rohlf, 2004) and landmark coordinates were then imported into MorphoJ (Klingenberg, 2011). The most commonly employed method to remove the information unrelated to shape variation is the generalized procrustes analysis (GPA) (Rohlf, 1999, 2005). GPA is based on a least squares superimposition approach that involves scaling, translation and rotation effects so that the distances between the corresponding landmarks are minimized (Rohlf, 1999; Rohlf and Slice, 1990; Rohlf and Marcus 1993; Goodall, 1991; Adams et al., 2004). After the procrustes superimposition, the covariance matrix of all the compared shapes is used to derive a Principal Components Analysis (PCA) (Zelditch et al., 2004).

Figure 1. Set of landmarks used in the geometric morphometrics analyses. a) M₂; *Alouatta guariba* 23177 MNRJ; b) M₁: *Sapajus libidinosus* 23246 MNRJ.

20	1
20	1

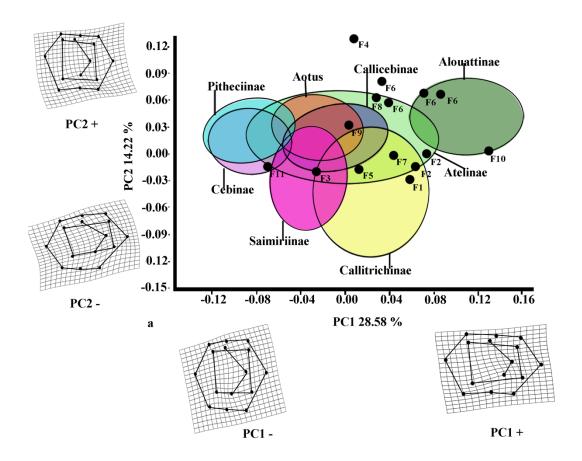

The PCAs of M ₁ and M ₂ morphometric variability of the extant species was used to explore
dental affinities of the fossil specimens with the extant comparative platyrrhine sample. One-way
ANOVA comparison was carried out to evaluate statistically significant between subfamilies.
The procrustes coordinates of the extant samples were used to make a Linear Discriminant
Function analyses (LDA) to classify the ungrouped fossil specimens (Zelditch et al., 2004). LDA
maximizes differences between groups but allows classifying isolated cases based on their
distances to the group centroids of the extant taxa. The probability that a case belongs to a
particular group is proportional to the distance to the group centroid (Kovarovic et al., 2011).
The reliability of the classification was estimated from the <i>post-hoc</i> correct classification
probability after cross-validation (pcc), and the a posteriori probability score was used as the
probability that a fossil belongs to a particular group. Several LDAs were made considering
different discriminant factors: 1) family (Cebidae, Atelidae, Pitheciidae), 2) the subfamily-level
classification proposed by Groves (2005) (Subfamily G) (Cebinae, Saimiriinae, Callitrichinae,
Pitheciinae, Callicebinae, Aotinae, Atelinae, Alouattinae), 3) the subfamily classification by
Rosenberger (2011) (Subfamily R) (Cebinae, Callitrichinae, Pitheciinae, Homunculinae,
Atelinae), and 4) a genus level (Cebus, Sapajus, Saimiri, Callithrix, Mico, Cebuella, Callimico,
Leontopithecus, Saguinus, Aotus, Callicebus, Cacajao, Chiropotes, Pithecis, Lagothrix,
Brchyteles, Atelles, Allouatta). The LDF and One-way ANOVA analyses were carried out with
SPSS v.15 (SPSS, Inc. 2006).

RESULTS

Principal components analyses

The first two PCs of the PCA analysis of M₁ for all platyrrhines (Fig. 2) explained 42.06 % of total shape variance (PC1 30.60%; PC2 11.46%). Positive scores on PC1 corresponded to molars with a broad occlusal polygons and a mesiodistally rectangular outline; whereas a negative PC1 score was indicative of a relatively quadrangular outline and slight buccolingually rectangular occlusal polygon, characterized by a mesio-lingual displacement of the distal cusps (entoconid and hypoconid) and a disto-lingual one of the mesial cusps (metaconid and protoconid). Positive scores on PC2 indicateed a rectangular occlusal polygon and a mesiodistally rectangular outline, whereas negative score on PC2 reflected molars with relatively quadrangular outline and a slightly rectangular occlusal polygon, wider on the buccal side.

Figure 2. Scatterplot of the first two principal components (PCs) derived from the PCA of M₁ shape variability of Platyrrhini. Grids indicate the deformations associated with the extreme values of each principal component.


PeerJ

237	
238	In the PC1 versus PC2 plot (Fig. 2) the 95% confidence ellipses of the subfamily groups
239	greatly overlapped. However, the One-way ANOVA analyses detected statistically significant
240	differences between the groups (PC1: $F=361.0 P < 0.0001$; PC2: $F=39.7 P < 0.0001$).
241	Alouattinae clearly clustered on the positive scores of PC1, whereas Pithecinae and Cebinae
242	greatly overlapped on the most negative scores of PC1. The rest of the groups (Saimirinae,
243	Callicebinae, Callitrichidae, Atellidae and Aotinae) showed intermediate values for PC1. For the
244	function (PC2), all groups greatly overlapped, though Saimirinae, Callitrichinae and Callicebinae
245	showed somewhat hiegher PC2 scores than the rest. Most of the fossil specimens showed
246	positive PC1 scores, except Carlocebus (F5) and especially Nuciruptor (F11) and Cebupithecia
247	(F12) that had negative PC1 and positive PC2 scores. Most extinct forms overlapped with the
248	extant platyrrhines, within Callicebinae, Callitrichinae and Atellinae, except Xenothrix (F13) and

Nuciruptor and Cebupithecia.

249

Figure 3. Scatterplot of the first two principal components (PCs) derived from the PCA of M₂ shape variability of Platyrrhini. Grids indicate the deformations associated with the extreme values of each principal component.

The first two PCs for M₂ (Fig. 3) accounted for 42.80% of the total variance (PC1: 28.58%; PC2: 14.22%). The molar shape changes for positive and negative PC1 scores for M₂ were similar to those observed for M₁, whereas positive PC2 scores for M₂ corresponded to the negative ones on PC2 for M₁, and negative ones on PC2 for M₂ were equivalent to the positive score of PC2 for M₁. The PC1 *versus* PC2 plot (Fig. 3) showed similar distributions of the subfamilies to those for M₁, although greater separations between groups were observed. Further, a *One-Way* ANOVA of the two first PC scores showed that dental shapes among subfamilies

were statistically distinct (M_2 ; PC1: F= 455.8 P < 0.0001; PC2: F= 102.6 P < 0.0001). 262 Alouattinae showed the largest positive scores for PC1 and Pitheciinae and Cebinae the most 263 negative scores, with the other groups showing again intermediate values. Callitrichinae and 264 Saimiriiane were placed mainly on the negative score of the PC2 axis, although overlapped 265 somewhat with the other groups. Most fossil specimens again clustered on positive scores for 266 267 PC1 and PC2, mainly within the dispersion of Atellinae, Callitrichinae and Atellinae, although Stirtonia (F10), Dolichocebus (F3) and Nuciruptor (F11) clearly fell within the Alouattinae 268 269 clade, and *Nuciruptor* (F11) was closer to Cebinae and Pitheciinae on the negative scores of 270 PC1. Homunculus (F4) did not fall at all within any extant taxa, showing highly possitive PC2 271 scores. Discriminant analyses of the fossil speciomens 272 273 The post-hoc percentages of correct classification after cross-validation (pcc) were high both for M_1 (Table 4a, range = [85.7–88.0%]) and M_2 (Table 4b, range = [84.7–90.6%]). In both 274 275 cases the highest pcc value was obtained when Groves' subfamily factor was discriminated. The range of differences between pcc values before and after cross-validation was [1.3–4.7%] and in 276 both teeth the genus discrimiant factor showed the highest decrease in pcc. The difference in pcc 277 278 values between Grooves' (Cebinae, Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae, 279 Aotinae, Atelinae, Alouattinae) and Rosenberger's (Cebinae, Callitrichinae, Pitheciinae, 280 Homunculinae, Atelinae) pcc values were 2.3% for M₁ and 1.6% for M₂ (Table 4). The 281 percentage of total variance explaine by the first two discriminant functions (DF1, DF2; Table 4) for all discriminat factors ranged from 63.3% (genus) to 100% (family) for M₁, and from 66.1% 282 283 (genus) to 100% (family) for M₂. The highest percentage of total variance explained by DF1 was

284	56.0% (family) for M_1 and 68.3% (family) for M_2 , and the highest one for DF2 was 44.0%
285	(family) for M_1 adn 32.8% (subfamily R) for M_2 .
286	Regarding the classification of the fossils specimens, the ranges of the a priori classification
287	probabilities varied depending on the discriminant factor used (Table 4; Fig. 4, showing the
288	landmark configurations of the fossil specimes analysed). Mohanamico showed a high
289	probability of belonging to the callitrichines clade, as well as Carlocebus, although the
290	probability was smaller for M ₂ . Both <i>Neosaimiri</i> and <i>Soriacebus</i> showed high probabilities of
291	belonging to the callitrichines for M_1 , though to Callicebinae/Homonculinae for M_2 .
292	Cebupithecia (M ₂ not available) and Nuciruptor neotypes showed a high probability of
293	belonging to the pitheciid clade. In contrast, <i>Xenothrix</i> (M ₂ not available) likely belonged to
294	Callithrix, despite in the PCA this fossil specimen did not fall within the Callitrichinae range.
295	Stirtonia was assigned to the Atelidae clade, and to Alouatta at the genus level (except for
296	Rosenberger' subfamily factor for M_2). Laventiana was also classified into the atelids for M_1 , but
297	was more closely related to the callitrichids for M2. Aotus dindensis showed a high probability of
298	belonging to <i>Aotus</i> taxa for M_1 , but <i>Callicebus</i> was the group with the greatest affinity for M_2 .
299	Finally, <i>Proteopithecus</i> showed a high resemblance to <i>Saimiri</i> for M_1 , but to <i>Callimico</i> for M_2 .

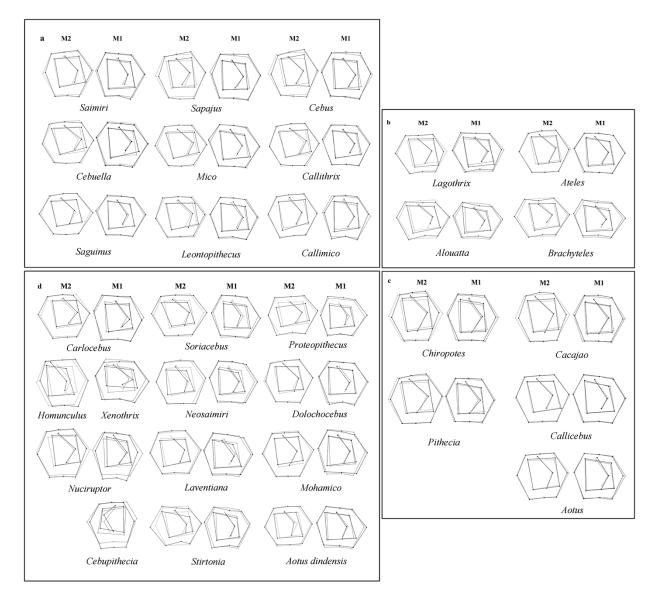


Figure 4. Firts and second molar shapes of the extinct fossil platyrhines used in this study.

302

303

301

DISCUSSION

- 304 Proteopithecus sylviae (F1) showed molar shape resemblances with the platyrrhines.
- 305 Although many dental and postcranial features of *P. sylviae* are considered to be
- symplesiomorphic traits of all anthropoids, it is considered a stem anthropoid (Kay, 1990, 2014).
- 307 However, the recently discovered *Perupithecus ucayaliensis*, from the Late Eocene, exhibits

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

similarities with *Proteopithecus*, as well as with *Talahpithecus* and *Oligopithecidae* (Bond et al., 2015). The upper molars of *Perupithecus* are similar to those of the calitrichines, but their morphology more closely resemble that of *Proteopithecus* and *Talahpithecus* (Bond et al., 2015). Proteopithecus sylviae differes from extant and extinct platyrrhines in having a distomesially expanded molar and a rectangular occlusal polygon (especially M₂) (also described in *Xenothrix*). If the Fayum fossil is a sister taxon to platirrhines, the interspecific variation of molar shape would have shown relatively little change through time molars shapes in platyrrhines would represent a retention of the primitive ancestral form. The LDA showed a high probability of *P. sylviae* belonging to the Cebidae clade, suggesting that the molar of the earliest ancestors of platyrrhines might have exhibited close similarities to Saimiri-Callimico. This resemblance matches with the description of Branisella – a South American Oligocene fossil primate (Rosenberger, 2002; Rosenberger et al., 2009) – that shows a *Saimiri*-like M₂ morphology and a Callimico-like upper P² (Rosenberger, 1980). However, the shapes of both molars of P. sylviae more closely resembled those of Callimico than of Saimiri. In addition, its subtriangular upper molars also show similarities with Callimico (Bond et al., 2015). If P. sylviae was a sister taxon to platirrhines, it is likely that the ancestral molar shape of pre-platyrrhines would have been similar to the molar shape of *Callimico*. By contrast, if *P. sylviae* was a stem species, Callimico dental anatomy would represent a retention of the primitive pre-anthropoid molar shape.

Early Miocene platyrrhines from Patagonia

The Early Miocene fossils were mainly assigned to either *Callicebus* or *Sagunus* in the LDA. *Dolichocebus* (F3) was classified as a pitheciid, mainly by having a square occlusal polygon, but while the PCA for M₁ placed this specimen in the callicebinae range, a morphological similarity

with saimirinae was seen for M_2 (Fig. 3a). In contrast, <i>Soriacebus</i> (F2) was related mainly to the
callitrichid clade, but for M_2 the probability of belonging to this group was small (Table 4).
Soriacebus showed a rectangular occlusal polygon on M ₂ , and its ectoconid was inclined
distolingually. Regarding callitricids, although Soriacebus also showed differences in cusp
configuration, the callitricids and Soriacebu share a C-shaped distal side and a somewhat straight
lingual-side contour (mostly seen in Saguinus). Kay (1990) reported that many dental features of
marmosets and Soriacebus were convergent; in contrast, Rosenberger et al. (1990b) suggested
that there are some similarities with callitrichines (development of hypoconids and entoconids in
the talonid). However, based on the anterior teeth, <i>Soriacebus</i> rmay epresent the first branching
of pitheciids. Although marmosets are considered a derived clade (e.g. Chatterjee et., 2009;
Perelman et al., 2009; Jameson Kiesling et al., 2014), it is likely that their relationship with
Soriacebus may be due to the fact that callitrichines exhibit primitive traits on their molars,
which might indicate that both taxa share the retention of a rectangular contour of the occlusal
polygon. Carlocebus (F5) was classified as a callitrichinae by the LDA but it more closely
resemble Callicebus than marmosets in the shape contour and square alignment of cusps in both
molars. Homunculus (F4) was placed outside the range of Patagonian forms (Fig. 2a), but the
LDA indicated a high probability of belonging to Pitheciidae (ca. 91-99%; Table 4), and
especially to Calliecebus. Nonetheless, Homunculus molar showed an asymmetrical shape
compared to the pitheciids and, unlike pitheciids, Homunculus cusps were more distally place
and the trigonid was almost as broad as the basin-like talonid, which indicates that although
sharing some traits with pitheciids, its position is still highly uncertain. It is likely that some
Patagonian lineages became extinct without direct descendants, but other taxa could have
significantly diversified after migrating north in South American.

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

Middle Miocene platyrrhines from Colombia and the Caribbean

Most Miocene fossils were catalogued as callitrichines, specifically into the Saguinus clade, except Nuciruptor, Cebupithecia, Aotus dindensis, and Stirtonia. The fossil specimens mainly differred from the extant forms (excepting *Alouatta* and *Brachyteles*) in their rectangular-shaped molar, which indicates that a rectangular-shaped molar may represents a plesiomorphy retention in the Patagonian fossils. Thus, the trend toward ovoid molar shape might be a derived feature in many living forms. Laventania (F7) exhibits distally oriented cusps on M₁, showing considerable resemblances with some atelia groups, which results in a confusing classification between atelias and Callicebus in the LDA (Table 4). The trend to rectangular shape for M₁ in Laventania differs notably from the phylogenetic relationship between Cebinae and Saimiriinae. Nonetheless, when M₂ was analyzed, the fossil was classified as a member of the Callitrichinae clade. As with Laventania, some neotypes of Neosaimiri (F6) were classified in distinct taxonomic groups (Table 4). Despite this, *Neosaimiri* was associated to the Cebidae family, although the molar shape was found to have more affinities with callitrichines than Saimiri. Mohanamico (F8) and Aotus dindensis (F9) have been considered by Kay and collaborators (Meldrum and Kay, 1997; Kay 2014) to belong to the same genus, despite Takai et al. (2009) suggested that A. dindensis should be assigned to a distinct genus. According to their molar shape, *Mohanamico* and A. dindensis may be classified into different species. Both fossils showed a relatively rectangular molar outline, although M₂ in both species were slightly square shaped. In fact, the LDA for M₁ (Fig. 2a) placed the two forms close to each other, likely because the two forms might have shared ecological niches; Mohanamico and A. dindensis were found in the same locality and at the same stratigraphic level (Kay, 1990). However, the LDA classification probabilitis different in the two taxa: Aotus dindensis was mainly related to Aotus/Callicebus, whereas Mohanamico

377	was assigned to Callitrichinae (Table 4). In the case of Nuciruptor (F11) and Cebupithecia (F12)				
378	the occlusal views in both species were relatively rounded, with a slightly rectangular alignment				
379	of the cusps that were buccally oriented, which resembles the condition in most extant				
380	pitheciinae. Cebupithecia and Nuciruptor had close affinities with the Pitheciidae clade (Table				
381	4), although they were not placed within the extant species range (except <i>Nuciruptor</i> on M ₂)				
382	(Fig. 2a). Several studies have suggested that, although there are important characteristics that				
383	have been associated with the living taxa, both fossils should be considered stem pitheciids				
384	(Meldrum and Kay, 1997; Kay et al., 2013; Kay, 2014).				
385	The sister relationship between Stirtonia and Alouatta was classified was shown both LDA				
386	analyses (99.9% probability for M_1 and 94.0% for $M_{2)}$. Likewise, the PCA showed that <i>Stirtonia</i>				
387	was placed close to the howler monkeys (Figs. 2a and 3a). However, differences between				
388	Stirtonia and Alouatta were mainly seen in the occlusal polygon of M2. The metaconid of				
389	Stirtonia was located near the protoconid and the ectoconid was distolingually inclined, similar				
390	to the Cebuella configuration.				
391	Finally, Xenothrix (F13), the Caribbean platyrrhine form, has been allied with pitheciids				
392	(Rosenberger, 2002; Horovitz and MacPhee, 1999). In the LDA Xenothrix was assigned to the				
393	pitheciids, but at the genus level it was classified as Callithrix (Table 4). Resemblances with the				
394	marmosets could be interpreted as convergent evolution but the relationship between <i>Xenothrix</i>				
395	and the pitheciids is highly uncertain because its molar morphology (especially the occlusal				
396	configuration) differs from that of the pitheciids. It is likely that <i>Xenothrix</i> could be a distinct				
397	branch that evolved independent from crown platyrrhines: an early Antillen arrival (Iturralde-				
398	Vinent and MacPhee, 1999; MacPhee and Iturralde-Vinent, 1995; MacPhee and Horovitz, 2004;				
399	Kay et al., 2011; Kay, 2014).				

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

As a whole, the reduced morphological variability observed in platyrhin molars shape suggests a slow rate of phenotypic change. A morphological stasis (a different concept to the long lineages hypothesis) would explain the low interspecific variation seen between extinct and extant linages and between Early Miocene platyrrhines (including P. sylviae) and forms from La Venta. This small phenotypic variation – as well as the reduced dietary diversification in platyrrhines compared to carnivores – could be due to developmental and functional constraints, given the significant role of dental occlusion during masticarion (Gómez-Robles and Polly 2012).). This ecological constraint might derive from a phenotypic adaptation of the main platyrrhine families in the Amazon rainforest (Jameson Kiesling et al. 2014). Following an African origin scenario, and taking into account the oldest fossil found in Peru, Perupithecus (Bond et al., 2015), it is likely that the ancestor of the extant platyrrhines could have exhibited a Callimico-like molar shape. Saguinus and Callicebus were the main assigned groups for the Patagonian fossils in the LDA and, thus, both *Callicebus*-like and *Saguinus*-like morphologies might have beeb presented in the stem platyrrhines. At present both *Callicebus* and *Saguinus* show a high species diversity and geographic dispersion (Rylands and Mittermeier 2009), which might have diversifyed in the Amazon basin during platyrrhine evolution (Ayres and Clutton-Brock, 1992; Boubli et al., 2015). It is feasible that *Callicebus* and *Saguinus* molar shape would be an ancestral precursor for all extant forms and, thus, Middle Miocene platyrrhines molar shape would represent evolutionary continuity in molar shape pattern from earlier fossils along with new molar pattern, such as *Alouatta*-like and the Pitheciinae-like forms.

CONCLUSIONS

This study develops a dental model based on molar shapes of M_1 and M_2 to explore phenotypic variation in extinct platyrrhine specimens. The results show that morphological stasis

explains the low phenotypic changes in both extinct and exetant platyrrhines, probably due to the ecological constraint, causing by phenotypic adaptation of platyrrhine in a relative narrow ecological niche. Early and Middle Miocene platyrrhines show similar molar shape pattern, while *Alouatta*-like and Pitheciinae-like molar patterns were incorpored in the Colombian fossils. The similarities among all the fossil samples studied could be due to: 1) all platyrrhine molar shapes share a primitive retention of the ancestral state; 2) an early divergence between two parallels shapes, *Callicebus*-like and *Saguinus*-like, would be the ancestral precursors to all other forms; and 3) *Callicebus*-like and *Saguinus*-like morphologies could have been present in the early stem platyrrhines.

ACKNOWLEDGEMENTS

This work was funded by the Spanish Ministerio de Ciencia e Innovación via projects CGL2011-22999 and SGR2009-884 to APP. We thank the curators and institutions for allowing access to specimens and resources: Mario de Vivo and Juliana Gualda Barros (Museu de Zoologia Universidade de São Paulo), Leandro de Oliveira Salles, and we are especially grateful to Sergio Maia Vaz, who supported us with data acquisition (Museu Nacional do Rio de Janeiro). We also thank Mark Teaford and Kenneth Glander for allowing us access to howler monkeys tooth molds from Hacienda La Pacífica (Costa Rica). We thank Katarzyna Górka for helping in the molding of the data presented in this study.

442 **REFERENCES**

- Adams DC, Rohlf FJ, Slice D. 2004. Geometric morphometrics: ten years of progress following
- the 'revolution'. Italian Journal of Zoology 71: 5-16.
- Adams DC, Berns CM, Kozak KH, Wiens JJ. 2009. Are rates of species diversification
- correlated with rates of morphological evolution? Proceedings of the Royal Society B: Biological
- 447 Sciences 276: 2729-2738.
- 448 Ayres JM, Clutton-Brock TH. 1992. River boundaries and species range size in Amazonian
- primates. The American Naturalist 140: 531-537.
- Bailey SE. 2004. A morphometric analysis of maxillary molar crowns of Middle-Late
- 451 Pleistocene hominins. *Journal of Human Evolution* 47: 183-198.
- Benefit BR. 1993. The permanent dentition and phylogenetic position of Victoriapithecus from
- 453 Maboko Island, Kenya. *Journal of Human Evolution* 25: 83-172.
- Bond M, Tejedor MF, Campbell KE, Chornogubsky L, Novo N, Goin F. 2015. Eocene primates
- of South America and the African origins of New World monkeys. *Nature*
- 456 doi:10.1038/nature14120
- 457 Bookstein FL. 1991. Morphometric tools for landmark data. Cambridge: Cambridge University
- 458 Press.
- 459 Boubli JP, Ribas C, Lynch Alfaro J, da Silva MNF, Pinho GM, Farias IP. 2015. Spatial and
- 460 temporal patterns of diversification in the Amazon: a test of the riverine hypothesis for all
- diurnal primates of Rio Negro and Rio Branco in Brazil. *Molecular Phylogenetics and Evolution*
- 462 82 (PB): 400-412.
- 463 Cardini A, Elton S. 2008. Does the skull carry a phylogenetic signal? Evolution and modularity
- in the guenons. *Biological Journal of the Linnean Society* 93: 813-834.
- Chatterjee HJ, Ho S, Barnes I, Groves C. 2009. Estimating the phylogeny and divergence times
- of primates using a supermatrix approach. Evolutionary Biology 9: 259.
- 467 Collard M, Wood B. 2000. How reliable are human phylogenetic hypotheses? *Proceedings of the*
- 468 National Academy of Sciences 97: 5003-5006.

- Cooke SB. 2011. Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-
- 470 dimensional geometric morphometrics of mandibular second molars. The Anatomical Record
- 471 294(12): 2073-91.
- 472 Cooke SB, Rosenberger AL, Turvey S. 2011. An extinct monkey from Haiti and the origins of
- 473 the Greater Antillean primates. Proceedings of the National Academy of Sciences 108(7): 2699–
- 474 704.
- Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell Groves
- 476 CP. 1998. Toward a phylogenetic classification of primates based on DNA evidence
- complemented by fossil evidence. *Molecular Phylogenetics and Evolution* 9: 585–598.
- 478 Fleagle JG. 1990. New fossil platyrrhines from the Pinturas Formation, southern Argentina.
- 479 Journal of Human Evolution 19: 61-85.
- Fleagle JG, Kay RF. 1997. Platyrrhines, catarrhines and the fossil record. In: Kinzey WG, ed.
- New World Primates: Ecology, Evolution and Behaviour. New York: Aldine, 3-24.
- Fleagle JG, Tejedor MF. 2002. Early platyrrhines of southern South America. In: Hartwig WC,
- ed. *The primate fossil record*. Cambridge: Cambridge University Press, 161-173.
- 484 Fleagle JG, Powers DW, Conroy GC, Watters JP. 1987. New fossil platyrrhines from Santa Cruz
- 485 Province, Argentina. Folia Primatologica 48: 65-77.
- 486 Flynn JJ, Guerrero J, Swisher III CC.1997. Geochronology of the Honda Group. In: Kay RF,
- 487 Madden RH, Cifelli RL, Flynn JJ, ed. Vertebrate Paleontology in the Neotropics. Washington,
- 488 D.C: Smithsonian Institution Press, 44-60.
- 489 Galbany J, Martínez LM, Pérez-Pérez A. 2004. Tooth replication techniques, SEM imaging and
- 490 microwear analysis in Primates: methodological obstacles. *Anthropologie* XLII/. 1: 5-12.
- 491 Galbany J, Estebaranz F, Martínez LM, Romero A, De Juan J, Turbón D, Pérez-Pérez A. 2006.
- 492 Comparative analysis of dental enamel polyvinylsiloxane impression and polyurethane casting
- 493 methods for SEM research. *Microscopy Research and Technique* 69(4): 246-252.
- 494 Gómez-Robles A, Polly PD. 2012. Morphological integration in the hominin dentition:
- evolutionary, developmental, and functional factors. *Evolution* 66: 1024-1043.
- 496 Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Margvelashvili A, Bastir M,
- 497 Arsuaga A., Pérez-Pérez A, Estebaranz F, Martínez LM. 2007. A geometric morphometric
- 498 analysis of hominin upper first molar shape. *Journal of Human Evolution* 53: 272-285.

- 499 Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Prado L, Sarmiento S, Arsuaga
- 500 JL. 2008. Geometric morphometric analysis of the crown morphology of the lower first premolar
- of hominins, with special attention to Pleistocene *Homo. Journal of Human Evolution* 55: 627-
- 502 638.
- 503 Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Prado L, Arsuaga JL. 2011. A
- 504 geometric morphometric analysis of hominin upper premolars: shape variation and
- morphological integration. *Journal of Human Evolution* 61: 688-702.
- Goodall C. 1991. Procrustes methods in the statistical analysis of shape. J. R. *Proceedings of the*
- 507 Royal Society B: Biological Sciences 53: 285-339.
- 508 Groves CP. 2005. Order primates. In: Wilson DE, Reeder DM, ed. Mammal Species of the
- 509 World: a Taxonomic and Geographic Reference. Johns Hopkins University Press, 111-184.
- Hershkovitz P. 1970 Notes on Tertiary platyrrhine monkeys and description of a new genus from
- 511 the late Miocene of Colombia. Folia Primatologica 12: 1-37.
- Hodgson JA, Sterner KN, Matthews LJ, Burrel IAS, Rachana AJ, Raaum RL, Stewart CB,
- 513 Disotell TR. 2009. Successive radiations, not stasis, in the South American primate fauna.
- 514 Proceedings of the National Academy of Sciences 106: 5534-5539
- Horovitz I, MacPhee RD.1999. The quaternary cuban platyrrhine Paralouatta varonai and the
- origin of Antillean monkeys. *Journal of Human Evolution* 36(1): 33–68.
- 517 Iturralde-Vinent M, MacPhee RD. 1999. Paleogeography of the Caribbean region: Implications
- for Cenozoic biogeography. Bulletin of the American Museum of Natural History 238: 1-95.
- Jameson Kiesling NM, Yi SV, Sperone G, Wildman DE. 2014. The tempo and mode of New
- World monkey evolution and biogeography in the context of phylogenomic analysis. *Molecular*
- *Phylogenetics and Evolution* http://dx.doi.org/10.1016/j.ympev.2014.03.027
- 522 Jernvall J, Jung HS. 2000. Genotype, phenotype, and developmental biology of molar tooth
- 523 characters. Yearbook of Physical Anthropology 43: 171-190.
- Kay RF. 1990. The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini,
- 525 Anthropoidea). *Journal of Human Evolution* 19: 175-208.
- Kay RF. 2010. A new primate from the Early Miocene of Gran Barranca, Chubut Province,
- 527 Argentina: paleoecological implications. In: Madden RH, Vucetich G, Carlini AA, Kay RF, ed.

- 528 The paleontology of Gran Barranca: evolution and environmental change through the Middle
- 529 Cenozoic of Patagonia. Cambridge: Cambridge University Press, 220-239.
- Kay RF. 2014. Biogeography in deep time: What do phylogenetics, geology, and paleoclimate
- tell us about early platyrrhine evolution? *Molecular Phylogenetics and Evolution*
- 532 http://dx.doi.org/10.1016/j.ympev.2013.12.002
- Kay RF, Frailey CD. 1993. Large fossil platyrrhines from the Río Acre fauna, Late Miocene,
- western Amazonia. *Journal of Human Evolution* 25: 319-327.
- Kay RF, Cozzuol MA. 2006. New platyrrhine monkeys from the Solimoes Formation (late
- 536 Miocene, Acre State, Brazil). *Journal of Human Evolution* 50: 673-686.
- Kay RF, Fleagle JG. 2010. Stem taxa, homoplasy, long lineages and the phylogenetic position of
- 538 Dolichocebus. *Journal of Human Evolution* 59: 218-222.
- Kay RF, Madden RH, Plavcan JM, Cifelli RL, Guerrero-Diaz J. 1987. Stirtonia victoriae, a new
- species of Miocene Colombian primate. *Journal of Human Evolution* 16: 173-196.
- Kay RF, Williams BA, Ross CF, Takai M, Shigehara N. 2004. Anthropoid origins: a
- 542 phylogenetic analysis. In: Ross CF, Kay RF, ed. Anthropoid Origins: New Visions. New York:
- 543 Kluwer/Plenum, 91-136.
- Kay RF, Fleage JG, Mitchell TRT, Colbert MW, Bown TM, Powers DW. 2008. The anatomy of
- Dolichocebus gaimanensis, a primitive platyrrhine monkey from Argentina. *Journal of Human*
- 546 Evolution 54, 323-382.
- Kay RF, Hunt KD, Beeker CD, Conrad GW, Johnson CC, Keller J. 2011. Priliminary notes on a
- 548 newly discovered skull of the extinct monkey Antillothrix from Hispaniola and the origin of the
- 549 Greater Antillean monkeys. *Journal of Human Evolution* 60: 124–128.
- Kay RF, Meldrum DJ, Takai M. 2013. Pitheciidae and other platyrrhine seed predators. In:
- Veiga L, Barnett A, Ferrari S, Norconk M. ed. Evolutionary biology and conservation of titis,
- *sakis and uacaris.* Cambridge: Cambridge University Press, 3-12.
- Kinzey WG. 1992. Dietary and dental adaptations in the Pitheciinae. *American Journal of*
- 554 Physical Anthropology 88: 499-514.
- Klingenberg CP. 2011. MorphoJ. Faculty of Life Sciences. Manchester, UK: University of
- 556 Manchester.

- Klingenberg CP, Gidaszewski NA, 2010. Testing and quantifying phylogenetic signals and
- homoplasy in morphometric data. Systematic Biology 59: 245-261.
- Kovarovic K, Aiello LC, Cardini A, Lockwood CA. 2011. Discriminant functions analyses in
- archaeology: Are classification rates too good to be true?. Journal of Archaeological Science 38:
- 561 3006-3018.
- MacPhee RDE, Iturralde-Vinent M. 1995. Origin of the Greater Antillean land mammal fauna:
- New Tertiary fossils from Cuba and Puerto Rico. American Museum Novitates 3141: 1-31
- MacPhee RDE, Horovitz I. 2004. New craniodental remains of the Quaternary Jamaican monkey
- *Xenothrix mcgregori* (Xenotrichini, Callicebinae, Pitheciidae), with a reconsideration of the
- 566 Aotus hypothesis. American Museum Novitates 3434: 1-51.
- Martinón-Torres M, Bastir M, Bermudez de Castro JM, Gómez-Robles A, Sarmiento S, Muela
- A, Arsuaga JL. 2006. Hominin lower second premolar morphology: evolutionary inferences
- through geometric morphometric analysis. *Journal of Human Evolution* 50, 523-533.
- 570 Meldrum DJ, Kay RF. 1997. *Nuciruptor rubricae*, a new pitheciin seed predator from the
- 571 Miocene of Colombia. *American Journal of Physical Anthropology* 102: 407-427.
- 572 Miller ER, Simons EL. 1997. Dentition of *Proteopithecus sylviae*, an archaic anthropoid from
- 573 the Fayum, Egypt. *Proceedings of the National Academy of Sciences* 94: 13760–13764.
- Nova Delgado M, Gamarra B, Nadal J, Mercadal O, Olesti O, Guàrdia J, Pérez-Pérez A, Galbany
- J. 2015a. Dental shape variability in cercopithecoid primates: A model for the taxonomic
- attribution of macaques from roman archaeological contexts. *Folia Primatologica* 85: 361-378.
- Nova Delgado M, Galbany J, Górka K, Pérez-Pérez A. 2015b. Taxonomic Implications of Molar
- 578 Morphology Variability in Capuchins. *International Journal of Primatology*
- 579 doi:10.1007/s10764-015-9850-4
- 580 Oliveira FB, Molina ECE, Marroig G. 2009. Paleogeography of the South Atlantic: a route for
- primates and rodents into the New World? In: Garber PA, Estrada A, Bicca-Marques JC,
- Heymann EW, Strier K, ed. South American Primates: Comparative Perspectives in the Study of
- 583 Behavior Ecology and Conservation. New York: Springer, 55–68.
- 584 Opazo JC, Wildman DE, Prychitko T, Johnson RM, Goodman M. 2006. Phylogenetic
- relationships and divergence times among New World monkeys (Platyrrhini, Primates).
- 586 *Molecular Phylogenetics and Evolution* 40: 274–280.

- Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J,
- Roelke M, Rumpler Y, Schneider MP, Silva A, O'Brien SJ, Pecon-Slattery J. 2011. A molecular
- 589 phylogeny of living primates. *PLOS Genetics* 3, e1001342.
- 590 Perez SI, Tejedor MF, Novo NM, Aristide L. 2013. Divergence times and the evolutionary
- radiation of New World monkeys (Platyrrhini, Primates): an analysis of fossil and molecular
- 592 data. *PLoS One* 8(6), e68029. doi:10.1371/journal.pone.0068029
- Rohlf FJ. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. *Journal of*
- 594 *Classification*16: 197-223.
- Rohlf FJ. 2004. TpsDig, version 1.40. TpsSeries. Department of Ecology and Evolution, SUNY,
- 596 Stony Brook, New York.
- 897 Rohlf FJ. 2005. Geometric morphometrics simplified: review of "Geometric Morphometrics for
- 598 Biologists: A Primer." *Trends in Ecology and Evolution* 20: 13-14.
- 8: Rohlf FJ, Marcus LE. 1993. A revolution in morphometrics. *Trends in Ecology and Evolution* 8:
- 600 129-132.
- Rohlf FJ, Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of
- 602 landmarks. Systematic Zoology 39: 40-59.
- Rosenberger AL. 1979. Cranial anatomy and implications of *Dolichocebus gaimanensis*, a late
- 604 Oligocene ceboid primate. *Nature* 279: 416-418.
- Rosenberger AL. 1980. Gradistic views and adaptive radiation of platyrrhine primates.
- 606 Zeitschrift für Morphologie und Anthropologie 71: 157-163.
- Rosenberger AL. 1981. Systematics: the higher taxa. In: Coimbra-Filho AF, Mittermeier RA, ed.
- 608 Ecology and behavior of neotropical primates. Rio de Janeiro: Academia Brasileira de Ciencias,
- 609 9-28.
- Rosenberger AL. 1984. Fossil New World monkeys dispute the molecular clock. *Journal of*
- 611 *Human Evolution* 13: 737-742.
- Rosenberger AL. 2002. Platyrrhine paleontology and systematics: the paradigm shifts. In:
- Hartwig WC, ed. *The primate fossil record*. Cambridge: Cambridge University Press, 151-159.
- Rosenberger AL. 2010. Platyrrhines, PAUP, parallelism, and the Long Lineage Hypothesis: A
- replay to Kay et al. (2008). *Journal of Human Evolution* 59: 214-217.

- Rosenberger AL. 2011. Evolutionary morphology, platyrrhine evolution, and systematics. *The*
- 617 Anatomical Record 294: 1955–1974.
- Rosenberger AL, Setoguchi T, Shigehara N. 1990a. The fossil record of callitrichine primates.
- 619 Journal of Human Evolution 19: 209-236.
- Rosenberger AL, Setoguchi T, Shigehara N. 1990b. Towards a paleontology of the New World
- 621 callitrichine primates. *Journal of Human Evolution* 19: 209-236.
- Rosenberger AL, Hartwig WC, Takai M, Setoguchi T, Shigehara N. 1991a. Dental variability in
- Saimiri and the taxonomic status of Neosaimiri fieldsi, an early squirrel monkey from La Venta,
- 624 Colombia. *International Journal of Primatology* 12: 291-302.
- Rosenberger AL, Setoguchi T, Hartwig WC. 1991b. Laventiana annectens, new genus and
- species: fossil evidence for the origins of callitrichine New World monkeys. *Proceedings of the*
- National Academy of Sciences 88: 2137-2140.
- Rosenberger AL. Tejedor MF, Cooke SB, Halenar L, Pekkar S. 2009. Platyrrhine
- ecophylogenetics, past and present. In: Garber P, Estrada A, Bicca-Marques JC, Heymann EW,
- 630 Strier KB, ed. South American primates: comparative perspectives in the study of behavior,
- 631 ecology and conservation. New York: Springer, 69-113.
- Rylands AB, Mittermeier RA. 2009. The diversity of the New World primates (Platyrrhini). In:
- 633 Garber P, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB, ed. South American primates:
- 634 *comparative perspectives in the study of behavior, ecology and conservation.* New York:
- 635 Springer, 23-54.
- 636 Setoguchi T, Rosenberger AL. 1987. A fossil owl monkey from La Venta, Colombia. *Nature*
- 637 326: 692-694.
- 638 Singleton M, Rosenberger AL, Robinson C, O'Neill R. 2011. Allometric and metameric shape
- ovariation in *Pan* mandibular molars: a digital morphometric analysis. *The Anatomical Record*
- 640 294: 322-334.
- 641 Slice DE. (Ed.), 2005. Modern Morphometrics in Physical Anthropology. Kluwer
- 642 Academic/Plenum Publishers, New York.
- 643 Slice DE. 2007. Geometric morphometrics. *Annual Review of Anthropology* 36: 261-281.
- 644 SPSS, Inc., 2006. SPSS 15.0 Command Syntax Reference. SPSS Inc., Chicago IL.

- 645 Swindler DR. 2002. Primate dentition: An introduction to the teeth of non-human primates.
- 646 Cambridge University Press, Cambridge
- Takai M. 1994. New specimens of *Neosaimiri fieldsi* from La Venta, Colombia: a Middle
- 648 Miocene ancestor of the living squirrel monkeys. *Journal of Human Evolution* 27: 329-360.
- Takai M. Anaya F, Shigehara N, Setoguchi T. 2000. New fossil materials of the earliest New
- World monkey, Branisella boliviana, and the problem of platyrrhine origins. *American Journal*
- 651 of Physical Anthropology 111: 263-281.
- Takai M. Nishimura T, Shigehara N, Setoguchi T. 2009. Meaning of the canine sexual
- dimorphism in fossil owl monkey Aotus dindensis, from the middle Miocene of La Venta,
- 654 Colombia. In: Koppe T, Meyer G, Alt KW, ed. Comparative Dental Morphology. Front Oral
- 655 *Biology*. Karger, Basel 13, 55-59.
- Tejedor MF. 2003. New fossil primate from Chile. *Journal of Human Evolution* 44: 515-520.
- 657 Tejedor MF. 2005. New fossil platyrrhine from Argentina. Folia Primatologica 76: 146-150.
- Tejedor MF. 2008. The origin and evolution of Neotropical primates. Arguivos do Museu
- 659 *Nacional do Rio de Janeiro* 66(1): 251-269.
- Tejedor MF. 2013. Sistemática, evolución y paleobiogeografía de los primates Platyrrhini.
- Revista del Museo de La Plata. Sección Zoología 20: 20-39.
- Tejedor MF, Rosenberger AL. 2008. A neotype for *Homunculus patagonicus* Ameghino, 1891,
- and a new interpretation of the taxon. *Paleoanthropology* 2008: 68–82.
- Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S. 2011. Dating primate
- divergences through an integrated analysis of palaeontological and molecular data. Systematic
- 666 Zoology 60: 16-31.
- 2004. Geometric morphometrics for Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for
- 668 biologists: San Diego, California: Elsevier Academic Press.

669 **Table 1:** List of fossils used in the study.

670	Fossils	Location	Age (Ma)	Phylogenetic position	Specimen number and
671	reference				
672	F1 Proteopithecus sylviae	Fayum, Egypt	33.9 -28.4a	stem anthropoid ^b	CGM 42209; Miller and Simons
673	(1997)				
674 675 676 677	F2 Soriacebus spp.	Pinturas Formation, Santa Cruz Province, Argentina	17°	stem platyrrhine ^d / Pitheciidae ^e	MACN-SC 2 ¹ , MACN-SC 5 ² MPM-PV 36 ³ ; Tejedor (2005)
678 679 680 681	F3 Dolichocebus gaimanesis	Gaiman, Chubut Province, Argentina	$20^{\rm f}$	stem platyrhine/ sister to Saimiri ^g	MPEF 5146; Kay et al. (2008)
682 683	F4 <i>Homunculus</i> spp. Rosemberger	Santa Cruz Formation	i, 16.5 ^h	stem platyrrhine/	MACN-A5969; Tejedor and
684 685 686	Rosemberger	Santa Cruz Province, Argentina		Pitheciidae	(2008)
687 688 689 690	F5 Carlocebus spp.	Pinturas Formation, Santa Cruz Province, Argentina	18-19 ⁱ	stem platyrrhine/ Pitheciidae	MACN-SC 266; Fleagle (1990)
691 692 693 694	F6 Neosaimiri fieldsi	La Venta, Huila, Colombia	13.5 -11.8	^j sister to <i>Saimiri</i> ^k	IGM-KU 89029 ⁴ , IGM-KU 89019 ⁵ , UCMP 39205 ⁶ , IGM-KU 89002 ⁷ , IGM-KU 39034 ⁸ , IGM-KU 89053 ⁹ , IGM-KU 89130 ¹⁰ ; Takai (1994)
695 696	F7 Laventiana annectens	La Venta, Huila,	13.5 -11.8	sister to Saimiri/	IGM-KU 880; Rosemberger et al.,

697 698 699		Colombia		synonymy with Neosaimiri ^l	(1991b)
700 701 702	F8 Mohanamico hershkouitzi	La Venta, Huila, Colombia	13.5 -11.8	sister to Callimico ^m	IGM 181500; Kay (1990)
703 704 705 706 707	F9 Aotus dindensis	La Venta, Huila, Colombia	13.5 -11.8	sister to <i>Aotus</i> ⁿ / coespecific with <i>Mohanamico</i> ^o	IGM-KU 8601; Kay (1990)
708 709 710	F10 Stirtonia spp.	La Venta, Huila, Colombia	13.5 -11.8	sister to Alouatta ^p	UCPM 38989; Kay et al. (1987)
711 712	F11 Nuciruptor rubricae (1997)	La Venta, Huila,	13.5 -11.8	Pitheciidae ^q /	IGM 251074; Meldrum and Kay
713 714		Colombia		stem Pitheciinae ^r	
715 716	F12 Cebupithecia sarmientoni (1997)	La Venta, Huila,	13.5 -11.8	Pitheciidae/	UCMP 38762; Meldrum and Kay
717		Colombia		stem Pitheciinae	
718 719 720	F13 Xenothrix macgregori	Jamaica Horovitz	Holocenes	stem platyrhine/ retaded to Callice	AMNHM 148198; MacPhee and ebus ^t (2004)
721 722	Deferences used in the table: Mi	llor and Simons 1007a. Var	, 1000b, Ela	angle at al. 1097¢ (Vay 2	010: 2014: Voy and Floogle, 2010:
122	References used in the table. Wil	Her and Simons 1997", Kay	/ 1990°, FIE	agie et al., 1987, (Kay, 2	010; 2014 ^r ; Kay and Fleagle, 2010;
723	Kay et al., 2008f)d; (Rosenberger	r, 1979 ^g ; Tejedor 2000 ^g ; Te	ejedor and F	Rosenberger, 2008h)e; Rose	enberger, 1979 ^g ; Fleagle 1990 ⁱ ; Flynn
724	et al., 1997 ^j ; Rosenberger et al.,	1991b ^k ; (Takai, 1994; Mel	drum y Kay	1997) ¹ ; Rosenberger et al	., 1990b ^m ; (Setoguchi and

American Museum of Natural History.

732

Rosenberger, 1987; Takai et al., 2009)ⁿ; Meldrum y Kay, 1997^{o,q}; (e g., Hershkovitz P 1970; Kay et al., 1987)^p; Cooke et al., 2011^s;
MacPhee and Horovitz 2004^t

Institutional abbreviations: CGM: Cairo Geological Museum; MPM-PV: Museo Regional Provincial Padre Manuel Jesús Molina, Río
Gallegos, Argentina; MPEF: Museo Paleontológico E. Feruglio, Trelew, Chubut Province, Argentina; MACN, MACN-SC/A: Museo
Argentino de Ciencias Naturales "Bernardino Rivadavia," Buenos Aires, Argentina; SC/A denotes locality; IGM, IGM-KU: Museo
Geologico del Instituto Nacional de Investigaciones Geológico-Mineras, Bogota, Colombia; KU denotes Kyoto University; UCPM:
University of California Museum of Paleontology, Berkeley, California; AMNHM: Division of Vertebrate Zoology Mammalogy,

733 **Table 2.** Comparative sample of extant Platyrhini specimens included in the analysis of the 734 fossils specimens. The total number of M₁ and M₂ teeth studied (N) and the provenance (Collection) are indicated. 735 Collection^a Genus / species N 736 737 **Subfamily: Cebinae** Cebus (gracile capuchins) 738 C. albifrons 9 MZUSP, MNRJ 739 C. olivaceus 6 **MNRJ** 740 **Sapajus** (robust capuchins) 741 14 742 S. apella **MZUSP** S. libidinosus 15 **MNRJ** 743 S. nigritus 744 15 **MNRJ** 745 S. robustus 15 **MNRJ** S. xanthosternos 7 **MNRJ** 746 **Subfamily: Samiriinae** 747 **Saimiri** (squirrel monkeys) 748 S. boliviensis 17 MZUSP, MNRJ 749 750 S. sciureus 25 MZUSP, MNRJ 18 MZUSP, MNRJ 751 S. ustus 752 Saimiri vanzolinii 8 **MNRJ** 753 **Subfamily: Callitrichinae** *Callithrix* (marmosets from Atlantic Forest) 754 755 C. aurita 11 **MNRJ**

C. geoffroyi	15	MNRJ
C. jacchus	21	MZUSP
C. kuhli	20	MNRJ
C. penicillata	14	MNRJ
<i>Mico</i> (marmosets from A	Amazon)	
M. argentata	21	MZUSP, MNRJ
M. chrysoleuca	16	MZUSP, MNRJ
M. emiliae	6	MZUSP
M. humeralifer	16	MZUSP
M. melanura	8	MZUSP, MNRJ
Cebuella (pygmy marme	oset)	
C. pygmaea	7	MZUSP
Callimico (goeldi's mar	moset)	
C. goeldi	4	MZUSP
Leontopithecus (lion tar	marins)	
L. chrysomelas	5	MZUSP, MNRJ
L. rosalia	17	MZUSP, MNRJ
Saguinus (tamarins)		
S. fuscicollis	13	MZUSP
S. imperator	10	MZUSP
S. labiatus	9	MZUSP, MNRJ
S. midas	22	MZUSP, MNRJ
S. mystax	13	MZUSP, MNRJ
	C. jacchus C. kuhli C. penicillata Mico (marmosets from A M. argentata M. chrysoleuca M. emiliae M. humeralifer M. melanura Cebuella (pygmy marmoset) C. pygmaea Callimico (goeldi's martoset) C. goeldi Leontopithecus (lion tantoset) L. chrysomelas L. rosalia Saguinus (tamarins) S. fuscicollis S. imperator S. labiatus S. midas	C. jacchus 21 C. kuhli 20 C. penicillata 14 Mico (marmosets from Amazon) M. argentata 21 M. chrysoleuca 16 M. emiliae 6 M. humeralifer 16 M. melanura 8 Cebuella (pygmy marmoset) C. pygmaea 7 Callimico (goeldi's marmoset) C. goeldi 4 Leontopithecus (lion tamarins) L. chrysomelas 5 L. rosalia 17 Saguinus (tamarins) 5 S. fiuscicollis 13 S. imperator 10 S. labiatus 9 S. midas 22

S. niger	14	M ₂ NRJ
Subfamily: Aotinae		
Aotus (owl or night monkeys)		
A. azarae	4	MZUSP, MNRJ
A. nigriceps	9	MZUSP, MNRJ
A. trivirgatus	21	MZUSP
Subfamily: Callicebinae		
Callicebus (titi monkeys)		
C. bernhardi	5	MNRJ
C. cupreus	14	MZUSP, MNRJ
C. hoffmanni	12	MNRJ
C. moloch	16	MZUSP, MNRJ
C. nigrifrons	8	MNRJ
C. personatus	16	MZUSP, MNRJ
Subfamily: Pitheciinae		
Cacajao (uakaris)		
C. calvus	14	MZUSP, MNRJ
C. melanocephalus	9	MZUSP, MNRJ
Chiropotes (bearded sakis)		
C. albinasus	18	MZUSP, MNRJ
C. satanas	15	MZUSP, MNRJ
Pithecia (sakis)		
P. irrorata	17	MZUSP, MNRJ
	Subfamily: Aotinae Aotus (owl or night monkeys) A. azarae A. nigriceps A. trivirgatus Subfamily: Callicebinae Callicebus (titi monkeys) C. bernhardi C. cupreus C. hoffmanni C. moloch C. nigrifrons C. personatus Subfamily: Pitheciinae Cacajao (uakaris) C. calvus C. melanocephalus Chiropotes (bearded sakis) C. albinasus C. satanas Pithecia (sakis)	Subfamily: Aotinae Aotus (owl or night monkeys) A. azarae A. nigriceps A. trivirgatus Subfamily: Callicebinae Callicebus (titi monkeys) C. bernhardi 5 C. cupreus 14 C. hoffmanni 12 C. moloch C. nigrifrons 8 C. personatus 16 Subfamily: Pitheciinae Cacajao (uakaris) C. calvus 14 C. melanocephalus 9 Chiropotes (bearded sakis) C. albinasus 18 C. satanas 15 Pithecia (sakis)

802	P. monachus	7	MZUSP, MNRJ
803	P. pithecia	16	MZUSP, MNRJ
804	Subfamily: Atelinae		
805	Lagothrix (woolly monkeys)		
806	L. cana	7	MNRJ
807	L. lagotricha	8	MZUSP
808	Brachyteles (muriquis)		
809	B. arachoides	16	MZUSP, MNRJ
810	B. hypoxanthus	5	MNRJ
811	Ateles (spider monkeys)		
812	A. belzebuth	2	RBINS
813	A. chamek	15	MNRJ
814	A. marginatus	20	MZUSP
815	Subfamily: Alouatinae		
816	Alouatta (howler monkeys)		
817	A. belzebul	15	MZUSP
818	A. caraya	15	MZUSP, MNRJ
819	A. discolor	10	MNRJ
820	A. guariba	5	MZUSP, MNRJ
821	A. g. clamitas†	15	MNRJ
822	A. nigerrima	10	MNRJ
823	A. paliatta	15	HLP
824	A. seniculus	15	MZUSP

825	A. ululata	7	MNRJ

- 826 † Subspecies of Alouatta guariba
- ^a Institutional abbreviations: MZUSP: Museu de Zoologia Universidade de São Paulo (Brazil);
- 828 MNRJ: Museu Nacional do Rio de Janeiro (Brazil); HLP: Hacienda La Pacífica.

Table 3. Landmarks considered for the geometric morphometrics analysis of dental crown shape.

831	Landmark	Type	Definition
832	1	2	Tip of the distolingual cusp (entoconid)
833	2	2	Tip of the mesiolingual cusp (metaconid)
834	3	2	Tip of the mesiobuccal cusp (protoconid)
835	4	2	Tip of the distobuccal cusp (hypoconid)
836	5	3	Most distal point of the mid mesiodistal line on the crown outline
837	6	2	Point of maximum curvature directly below the entoconid*
838	7	3	Point on the dental crown outline at the lingual groove
839	8	2	Point of maximum curvature directly below the metaconid*
840	9	3	Most mesial point of the mid mesiodistal line on the crown outline
841	10	2	Point of maximum curvature directly below the protoconid*
842	11	3	Point on the dental crown outline at the mesial groove
843	12	2	Point of maximum curvature directly below the hypoconid*
844	13	2	Midpoint between the preentocristid and postmetacristid*
845	14	2	Lowest point on the protocristid*
846	15	2	Lowest point on the crista oblique*

^{*} Landmarks follow definitions by Cooke (2011)

Table 4. Summary of the DFA, including the percentage of variance for the two discriminant function (DF1 and DF2), the percentage of original grouped cases correctly classified and the percentage of cross-validated. Further, the percentage of probability that each case (fossil) belongs to the predicted group. *Soriacebus*^{1, 2,3} and *Neosaimiri*^{4, 5, 6, 7, 8, 9, 10} corresponding to the holotypes numbered on Table 1b.

852 **a)** M₁

848

849

850

851

853			Famil	y%	Subfa	mily by G %	Subfa	mily by R %	Genus %
854	DF1		56.0		50.5		42.4		49.0
855	DF2		44.0		19.1		29.1		14.2
856	Classification		88.7		91.3		88.2		91.0
857	Cross-validation		87.4		88.0		85.7		86.3
858	(\mathbf{M}_1)	Family	%	Subfamily by C	5%	Subfamily by F	R %	Genus	%
859	Proteopithecus	Cebidae	99.6	Saimiriinae	99.2	Cebinae	99.9	Saimiri	99.3
860	Soriacebus 1	Cebidae	99.9	Callitrichinae	99.9	Callitrichinae	99.8	Saguinus	89.6
861	Soriacebus ²	Cebidae	99.1	Callitrichinae	76.6	Callitrichinae	94.0	Callithrix	69.1
862	Dolichocebus	Cebidae	86.5	Callicebinae	77.9	Homunculinae	67.4	Callicebus	86.4
863	Carlocebus	Cebidae	97.0	Callitrichinae	94.2	Callitrichinae	83.7	Callithrix	87.1
864	Neosaimiri ⁴	Pitheciidae	48.5	Atelinae	48.8	Callitrichinae	52.2	Saguinus	78.7

865	Neosaimiri ⁵	Cebidae	98.4	Callitrichinae	97.5	Callitrichinae	97.3	Saguinus	99.6
866	Neosaimiri ⁶	Cebidae	97.0	Callitrichinae	76.5	Callitrichinae	94.6	Saguinus	72.2
867	Laventiana	Atelidae	94.6	Atelinae	44.5	Atelinae	94.9	Callicebus	53.0
868	Mohanamico	Cebidae	96.2	Callitrichinae	87.3	Callitrichinae	70.3	Leontopithecu	es 65.4
869	Aotus dindensis	Pitheciidae	59.0	Aotinae	99.7	Homunculinae	97.4	Aotus	98.7
870	Stirtonia	Atelidae	98.9	Alouattinae	99.9	Atelinae	98.2	Alouatta	99.9
871	Nuciruptor	Pitheciidae	99.7	Callicebinae	99.5	Homunculinae	83.6	Callicebus	63.3
872	Cebupithecia	Pitheciidae	96.5	Pitheciinae	92.1	Pitheciinae	65.3	Chiropotes	59.2
873	Xenothrix	Pitheciidae	75.8	Callicebinae	30.5	Homunculinae	61.9	Callithrix	90.7
874	b) M ₂								
875			Famil	y%	Subfa	mily by G %	Subfa	mily by R %	Genus %
876	DF1		68.3		45.6		47.6		43.5
877	DF2		31.7		29.0		32.8		22.6
878									
	Classification		89.5		93.3		90.3		88.7
879	Classification Cross-validation		89.5 88.2		93.3 90.6		90.3 89.0		88.7 84.7
		Family %	88.2	bfamily by G %	90.6	bfamily by R%	89.0	enus %	

882	Soriacebus 1	Cebidae	65.6	Callicebinae	81.6	Homunculinae	58.4	Saguinus	74.6
883	Soriacebus ³	Atelidae	77.1	Callitrichinae	96.7	Callitrichinae	98.0	Saguinus	65.6
884	Dolichocebus	Cebidae	50.7	Callicebinae	92.6	Homunculinae	90.1	Callicebus	92.6
885	Homunculus	Pitheciidae	e91.4	Callicebinae	93.7	Homunculinae	97.3	Callicebus	99.9
886	Carlocebus	Cebidae	55.6	Callitrichinae	58.8	Callitrichinae	50.4	Mico	72.5
887	Neosaimiri ⁷	Cebidae	98.3	Callicebinae	92.9	Cebinae	35.8	Callicebus	67.2
888	Neosaimiri ⁸	Cebidae	64.9	Callicebinae	61.2	Homunculinae	93.7	Saguinus	65.1
889	Neosaimiri ⁹	Cebidae	99.5	Callitrichinae	61.3	Callitrichinae	51.7	Saguinus	92.3
890	Neosaimiri 10	Cebidae	98.9	Callicebinae	84.6	Callitrichinae	71.9	Saguinus	98.3
891	Laventiana	Cebidae	99.9	Callitrichinae	99.8	Callitrichinae	99.7	Saguinus	40.8
892	Mohanamico	Cebidae	97.7	Callitrichinae	94.9	Callitrichinae	94.6	Saguinus	99.9
893	Aotus dindensis	Cebidae	84.4	Callicebinae	88.9	Homunculinae	76.1	Callicebus	96.5
894	Nuciruptor	Pithecidae	89.7	Pitheciinae	89.7	Pitheciinae	73.0	Pithecia	49.4
895	Stirtonia	Atelidae	81.8	Alouattinae	86.0	Callitrichinae	92.1	Alouatta	94.

