

Morphometric variation of extant platyrhine molars: taxonomic implications for fossil platyrhines (#7938)

1

First revision

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready [submit online](#). The manuscript starts on page 3.

Important notes

Editor and deadline

Philip Reno / 11 Mar 2016

Files

1 Tracked changes manuscript(s)

1 Rebuttal letter(s)

4 Figure file(s)

5 Table file(s)

2 Raw data file(s)

Please visit the overview page to [download and review](#) the files not included in this review pdf.

Declarations

No notable declarations are present

Please in full read before you begin

How to review

When ready [submit your review online](#). The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standard](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.

- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit <https://peerj.com/about/editorial-criteria/>

Morphometric variation of extant platyrhine molars: taxonomic implications for fossil platyrhines

Mónica Nova Delgado, Jordi Galbany, Alejandro Pérez-Pérez

The phylogenetic position of many fossil platyrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the *layered* or *successive radiations* hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrhines lacking modern descendants, whereas the *long lineage* hypothesis argues for an evolutionary continuity of all fossil platyrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrhines' first and second lower molars suggest that morphological stasis, may explain the reduced molar shape variation observed. Platyrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation the main platyrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, *Callicebus* -like and *Saguinus* -like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, *Alouatta*- like and *Pitheciinae* -like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene.

1 **Morphometric variation of extant platyrhine molars: taxonomic implications for fossil**
2 **platyrhines**

3 Mónica Nova Delgado,^a Jordi Galbany,^{a,b} and Alejandro Pérez-Pérez^a

4

5 ^a Secció de Zoologia i Antropologia, Departament de Biologia Evolutiva, Ecologia i Ciències
6 Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.

7 ^b Center for the Advanced Study of Human Paleobiology, Department of Anthropology, George
8 Washington University, 800 22nd Street NW, Ste 6000, Washington DC 20052, USA.

9

10 ***Corresponding author:**

11 Dr. Alejandro Pérez-Pérez

12 martinez.perez.perez@ub.edu

13 Tf. +34-934021460

14 Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona.

15 Av. Diagonal 645, 08028 Barcelona – Spain.

17 **ABSTRACT**

18 The phylogenetic position of many fossil platyrhines with respect to extant ones is not yet
19 clear. Two main hypotheses have been proposed: the *layered* or *successive radiations* hypothesis
20 suggests that Patagonian fossils are Middle Miocene stem platyrhines lacking modern
21 descendants, whereas the *long lineage* hypothesis argues for an evolutionary continuity of all
22 fossil platyrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-
23 based configuration of platyrhines' first and second lower molars suggest that morphological
24 stasis, may explain the reduced molar shape variation observed. Platyrhine lower molar shape
25 might be a primitive retention of the ancestral state affected by strong ecological constraints
26 throughout the radiation the main platyrhine families. The Patagonian fossil specimens showed
27 two distinct morphological patterns of lower molars, *Callicebus*-like and *Saguinus*-like, which
28 might be the precursors of the extant forms, whereas the Middle Miocene specimens, though
29 showing morphological resemblances with the Patagonian fossils, also displayed new, derived
30 molar patterns, *Alouatta*-like and *Pitheciinae*-like, thereby suggesting that despite the overall
31 morphological stasis of molars, phenotypic diversification of molar shape was already settled
32 during the Middle Miocene.

34 **INTRODUCTION**

35 Platyrrhine evolution is controversial. However, most researchers agree that they most
36 likely constitute a monophyletic clade derived from African ancestors (Fleagle and Kay, 1997;
37 Takai et al., 2000; Kay et al., 2004; Oliveira et al., 2009; Bond et al., 2015), although the
38 phylogenetic position of some living taxa and the affinities of some fossil specimens are still
39 uncertain. Currently, two different viewpoints have been proposed regarding the evolutionary
40 history of the earliest platyrrhines and their overall relationships with extant forms. The “long
41 lineages” hypothesis argues that the oldest known Patagonian fossils (16–20 Ma) are to be
42 included within the extant Platyrhines (Rosenberger, 1979, 1980, 1981, 1984; Rosenberger et
43 al., 2009; Tejedor, 2013), whereas the “layered or successive radiations” hypothesis suggests that
44 these fossils constitute a geographically isolated stem group-, phylogenetically unrelated to the
45 crown platyrrhines, that went extinct (along with some Antillean species) (Kay, 2010; 2014; Kay
46 and Fleagle, 2010; Kay et al., 2008). According to Kay (2014), the divergence of modern
47 lineages occurred in the tropics. The Late Oligocene and Early Miocene platyrrhines would have
48 branched off from the ancestral lineage when climatic conditions in Patagonia became
49 unfavorable and the Andean uplift was a potential barrier to their dispersal. However, Tejedor
50 (2013) has suggested that *Chilecebus* (20 Ma), a fossil specimen (Tejedor, 2003) from the
51 western Andean cordillera, south of Santiago de Chile, indicates that the Andean mountains did
52 not constitute a biogeographic barrier. Tejedor (2013) argued that a paleobiogeographic corridor
53 throughout western South America would have allowed for a continental connectivity between
54 the north and the southernmost fossil platyrrhines. Unfortunately, dating of the fossil specimens
55 and fossil-based approaches for calibrating the molecular phylogeny support both models. Perez
56 et al. (2013) have estimated a crown platyrrhine origin at around 29 Ma (27- 31), which allows

57 for the inclusion of the fossil Patagonian primates into a crown Platyrhini lineage showing
58 evolutionary continuity with the Middle Miocene lineages. In contrast, Hodgson et al. (2009)
59 have dated their origin between 16.8 and 23.4 Ma, suggesting an unlikely relationship of the
60 early Miocene fossils with the crown platyrhine clade (but see different temporal models in
61 Goodman et al., 1998; Opazo et al., 2006; Chatterjee et al. 2009; Perelman et al. 2011; Wilkinson
62 et al. 2011; Jameson Kiesling et al. 2014).

63 Molar morphology has been widely used to determine the phylogenetic positions of extinct
64 specimens with respect to living forms (e.g., Kay, 1990; Rosenberger et al., 1991a, b; Benefit,
65 1993; Meldrum and Kay, 1997; Miller and Simons, 1997; Horovitz and MacPhee, 1999; Kay and
66 Cozzuol, 2006; Kay et al., 2008), since tooth development is under strong genetic control
67 (Jernvall and Jung, 2000). Recent studies have reported that molar shapes carries strong
68 phylogenetic signals, and can be useful tool for establishing taxonomic affinities between extant
69 and extinct catarrhine primates (Nova Delgado et al., 2015a; Gamarra et al., 2016), and also in
70 some Platyrhine taxa (Nova Delgado et al., 2015b), with closely related species exhibiting
71 common phenotypic traits.

72

73 **Affinities of the fossil platyrhine primates based on dental morphology**

74 Until now, a total of 31 Early Miocene Platyrhini fossil genera have been so far reported in
75 the South American continent and the Caribbean: 11 in La Venta (Colombia), 8 in the Argentinian
76 Patagonia, 4 in the Greater Antilles, 5 in Brazil, and 1 each in Chile, Bolivia and Peru (Tejedor,
77 2013; Bond et al., 2015). *Neosaimiri*, *Laventiana* (La Venta, Colombia) and *Dolichocebus*
78 (Chubut Province, Argentina) have been included in Cebinae (Rosenberger, 2011). *Neosaimiri* is
79 considered a direct ancestor of the extant *Saimiri* due to its similar molar shape (Rosenberger et

80 al., 1990a; 1991a). Its molars exhibit sharp cusps, well-developed distal cusps, buccal cingulum,
81 a strong buccal flare, and a distinct post-entoconid notch on molars only found in *Saimiri* and
82 *Laventiana* (Rosenberger et al., 1991a, 1991b; Takai, 1994; Tejedor, 2008). *Laventiana* is
83 sometimes considered a synonym of *Neosaimiri* (Takai, 1994; Meldrum and Kay, 1997),
84 although it has been suggested to be more primitive than *Neosaimiri* (Rosenberger et al., 1991b).
85 *Laventiana*'s teeth closely resemble those of *Saimiri* and *Cebus-Sapajus*; it shows thick-enamel
86 bunodont molars exhibiting a small buccal cingulum and an angular cristid obliqua, lacking
87 buccal flare (Rosenberger et al., 1991b). *Dolichocebus* has been suggested to be a member of the
88 *Saimiri* lineage, mainly for its interorbital fenestra considered a derived feature in squirrel
89 monkeys (Tejedor, 2008; Rosenberger et al., 2009; Rosenberger, 2010). However, Kay and
90 colleagues (Kay et al., 2008; Kay and Fleagle, 2010) argued that *Dolichocebus* is a stem
91 platyrhine and that the description of the orbital region was probably affected by postmortem
92 damage.

93 On the other hand, *Aotus dindensis* was first described as a sister taxon of extant *Aotus*
94 (Setoguchi and Rosenberger, 1987), although Kay (1990) has suggested that it is probably
95 conspecific with *Mohynamico hershkovitzi*, which may be closely related to the callitrichines,
96 especially *Callimico*, due to their morphological similarities in the canine and the second
97 premolar. *Aotus dindensis* is included into the Pitheciidae (Rosenberger et al., 1990a) within the
98 Homunculinae subfamily, along with *Aotus*, *Callicebus* and some Argentinian and Caribbean
99 fossil primates (Rosenberger, 1981, 2002, 2011). However, molecular phylogenetic analyses
100 have repeatedly rejected a link between *Aotus* and Pitheciids (.e.g Hodgson et al., 2009;
101 Osterholz et al., 2009; Wildman et al., 2009), placing it as a basal cebid. Tejedor and
102 Rosenberger (2008) proposed that *Homunculus* is likely an ancestral pitheciid because although

103 it shows a primitive dental morphology, it notably resembles that of *Callicebus*. The two taxa
104 show rectangular-shaped molars, small incisors and non-projecting canines, a trait shared with
105 *Carlocebus* (Fleagle, 1990). Nonetheless, unlike *Callicebus*, the molars of *Homunculus* exhibit
106 well-marked crests and prominent cusps (Tejedor, 2013), and an unusual paraconid on the lower
107 first molar (also found in *Dolichocebus*; Kay et al., 2008). Another fossil from the early Miocene
108 known as *Soriacebus* was initially included by Rosenberger (1990) as an early pitheciinae, due to
109 its resemblance on the anterior dentition (Fleagle et al., 1987; Fleagle, 1990; Fleagle and
110 Tejedor, 2002; Tejedor, 2005). However, some dental traits of *Soriacebus* (premolars-molars
111 size, lower molar trigonid, and reduction hypocone) bear resemblance also with the
112 callitrichines. Indeed, Kay (1990) argues that such similarities traits found between *Soriacebus*
113 and pitheciins or with callitrichines are due to homoplasy, rather than phylogenetic relationships
114 among such lineages (Kay, 1990). According to Kay (1990) *Soriacebus*, *Carlocebus*,
115 *Homunculus* as all Patagonian fossils should be considered stem platyrhines.

116 *Xenothrix* is a Late Pleistocene Caribbean fossil from Jamaica that shows a callitrichine-like
117 dental formula (2132; MacPhee and Horovitz, 2004), low relief molars and a narrowing of
118 intercuspal distance and augmentation of the mesial and distal crown breadths (Cooke et al.,
119 2011), a feature also seen in *Insulacebus toussaintiana*, another Caribbean primate. Rosenberger
120 (2002) argued that *Xenothrix* is closely related to *Aotus* and *Tremacebus* by the enlargement of
121 the orbits and the central incisors, while MacPhee and Horovitz (2004) suggested a possible
122 Pitheciidae affinity, due to its low relief molar pattern. Nonetheless, the puffed cusps and the
123 lack of crenulation on the molar crown discriminate the Jamaican fossil from the Pitheciidae,
124 suggesting that is likely that *Xenothrix* does not belong to crown platyrhine group (Kay, 1990;
125 Kinzey, 1992).

126 *Cebupithecia* and *Nuciruptor*, two Colombian Middle Miocene genera, also share some traits
127 with the extant Pitheciidae family, mostly in the anterior dentition but also in their low molar
128 cusps and poorly developed crests (Kay, 1990; Meldrum and Kay, 1997). *Nuciruptor* does not
129 exhibit several of the shared traits among Pitheciines (projecting canine and small or absent
130 diastema). *Cebupithecia*, although considered to be more derived than *Nuciruptor* (Meldrum and
131 Kay 1997), was interpreted by Meldrum and Kay (1997) as an example of convergent evolution
132 and, thus, not a direct ancestor of extant pitheciines. Finally, *Stirtonia* (originally from Colombia
133 but also recovered from Acre State, Brazil) exhibits similar dental size and morphology to extant
134 *Alouatta*; showing molar teeth with sharp and well-formed crests, a long cristid oblique, small
135 trigonid, and spacious talonid basin (Hershkovitz 1970; Kay et al., 1987; Kay and Frailey, 1993;
136 Kay and Cozzuol, 2006; Kay, 2014).

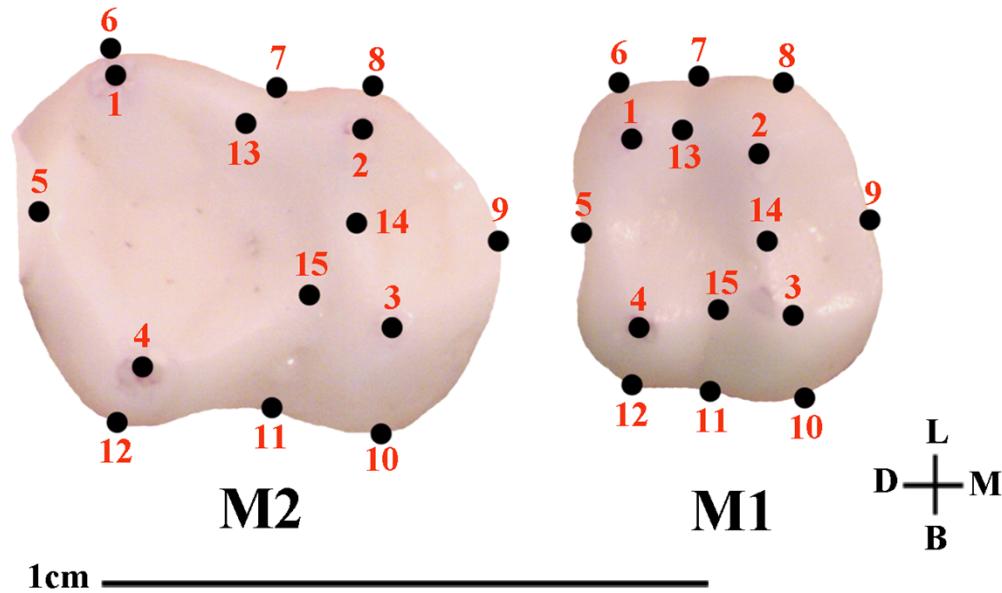
137 Numerous studies have examined landmark-based geometric morphometrics (GM) of molar
138 shape for studying patterns of inter-specific variation and their implication in phylogeny and
139 ecological adaptations (e.g., Bailey 2004; Cook 2011; Gómez-Robles et al., 2007, 2008, 2011;
140 Martinón-Torres et al., 2006; Singleton et al., 2011; White 2009 Nova Delgado et al., 2015a,b;
141 Gamarra et al., 2016). However, in Platyrhine primates, GM of molar shape has mainly focused
142 on dietary adaptations (Cooke, 2011), rather than to predict the phylogenetic attribution of
143 unclassified specimens (Nova Delgado et al., 2015a).

144 The aim of the present study is to use two-dimensional (2D) GM to quantify and analyze
145 occlusal shape variation of lower molars (M_1 and M_2) of extant Platyrhini primates to assesses
146 the affinities of the Patagonian, Colombian and Antillanean fossil taxa with the extant forms and
147 to estimating the efficiency of molar shape for discriminating fossil specimens.

148

149 **MATERIAL AND METHODS**

150 Images of the dental crowns, in occlusal view and including a scale line, of 12 holotypes
151 fossil platyrhine specimens and one fossil from Fayum (*Proteopithecus sylviae*), were obtained
152 from the literature (Table 2). The platyrhine fossil specimens included 12 genera (*Soricebus*,
153 *Dolichocebus*, *Homunculus*, *Carlocebus*, *Neosaimiri*, *Laventiana*, *Mohanamico*, *Aotus*, *Stirtonia*,
154 *Nuciruptor*, *Cebupithecia*, and *Xenothrix*), discovered in Argentina, Colombia and Jamaica, and
155 dated to between Holocene and early Miocene (Table 1).


156 The extant comparative samples consisted in 802 adult individuals representing all
157 recognized platyrhine groups (3 families, 18 genera, 61 species,; Table 2), whose 2D and 3D
158 morphometric variability of lower molars has already been analysed in some platyrhine species
159 (Nova Delgado et al., 2015b) Dental casts were obtained from original specimens housed at
160 Museu de Zoologia Universidade de São Paulo (MZPS), Museu Nacional do Rio de Janeiro
161 (MNRJ) in Brazil, and from Hacienda La Pacífica (HLP) in Costa Rica. The casts were made
162 following published protocols (see Galbany et al., 2004, 2006). 2D images of molar occlusal
163 surfaces of the extant specimens were taken with a Nikon D70 digital camera fitted with a 60-
164 mm optical lens held horizontally on the stand base, at a minimum distance of 50 cm. The dental
165 crown was imaged with a 0° of tilt with the cervical line perpendicular to the camera focus
166 (Nova Delgado et al., 2015a). Images of fossil dental crowns were obtained from the literature
167 and imported to Adobe Photoshop, where they were scaled to the same resolution (400 dpi). The
168 images both for the extant and the fossil specimens were scaled to 5mm and standardized to right
169 side, with the mesial border facing to the right, the distal border to the left, and the lingual and
170 buccal sides facing upward and downward, respectively. All images were saved at high
171 resolution (1600 × 1200 pixel) in JPEG format.

172

173 **Geometric morphometric analysis**

174 Geometric Morphometrics (GM) quantifies shape differences between biological
175 structures using a set of digitized homologous points (landmarks) in two-dimensional or three-
176 dimensional spaces (Bookstein 1991; Adams et al. 2004; Slice 2005). Landmarks are numerical
177 values (coordinates) that reflect the location and orientation of each specimen in the
178 morphospace (Slice, 2007). The two-dimensional (2D) landmark protocol used in this study has
179 been previously used in different research performed in molars of catarrhines and platyrhines
180 (Nova Delgado et al., 2015a, b; Gamarra et al., 2016), which included the same standardized
181 definitions scaled and orientation. The configuration consisted of 15 landmarks: molar occlusal
182 polygon was defined by the four tips of the cusps (protoconid, metaconid, hypoconid, and
183 entoconid). The crown outline was represented by eight landmarks, which included two
184 landmarks on fissure intersections; four corresponding to maximum crown curvatures; and two
185 in the mid mesio-distal line on the crown perimeter. Further, three landmarks were used to
186 represent the positions of crests (Table 3 and Fig. 1) (Cooke, 2011). Landmark recording was
187 performed with TPSDig v 1.40 (Rohlf, 2004) and landmark coordinates were then imported into
188 MorphoJ (Klingenberg, 2011). The most commonly employed method to remove the information
189 unrelated to shape variation is the generalized procrustes analysis (GPA) (Rohlf, 1999, 2005).
190 GPA is based on a least squares superimposition approach that involves scaling, translation and
191 rotation effects so that the distances between the corresponding landmarks are minimized (Rohlf
192 and Slice, 1990; Goodall, 1991; Rohlf and Marcus 1993; Rohlf, 1999; Adams et al., 2004). After
193 the procrustes superimposition, the covariance matrix of all the compared shapes is used to
194 derive a Principal Components Analysis (PCA) (Zelditch et al., 2004).

195

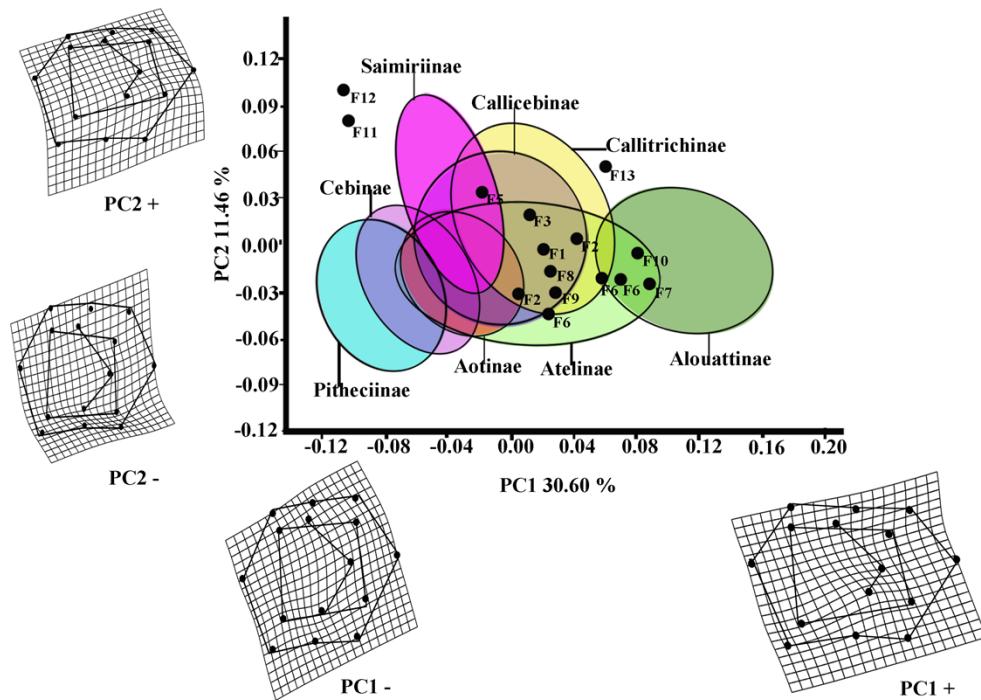
196

197 **Figure 1.** Set of landmarks used in the geometric morphometrics analyses. a) M_2 ; *Alouatta*
198 *guariba* 23177 MNRJ; b) M_1 : *Sapajus libidinosus* 23246 MNRJ.

199

200 The PCA of M_1 and M_2 morphometric variability of the extant species were used to explore
201 dental affinities of fossil specimens within the extant comparative platyrhine sample. The
202 resulting PCs were used to conduct Linear Discriminant Function analysis (LDA). ~~Because~~ PCA
203 transforms original high-dimensional data, and removes the irrelevant and redundant dimensions
204 (Zelditch et al., 2004). LDA maximizes differences between groups but allows classifying
205 isolated cases based on their distances to the group centroids of the extant taxa. The probability
206 that a case belongs to a particular group is proportional to the distance to the group centroid
207 (Kovarovic et al., 2011). The reliability of the classification was estimated from the *post-hoc*
208 correct classification probability after cross-validation (*pcc*), and the *a posteriori* probability
209 score was used as the probability that a fossil belongs to a particular group. Several LDAs were

210 made considering different discriminant factors: 1) family (Cebidae, Atelidae, Pitheciidae), 2)
211 the subfamily-level classification proposed by Groves (2005) (Subfamily G) (Cebinae,
212 Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae, Aotinae, Atelinae, Alouattinae), 3) the
213 subfamily classification by Rosenberger (2011) (Subfamily R) (Cebinae, Callitrichinae,
214 Pitheciinae, Homunculinae, Atelinae) (Table 4), and 4) a genus level (*Cebus*, *Sapajus*, *Saimiri*,
215 *Callithrix*, *Mico*, *Cebuella*, *Callimico*, *Leontopithecus*, *Saguinus*, *Aotus*, *Callicebus*, *Cacajao*,
216 *Chiropotes*, *Pitheciis*, *Lagothrix*, *Brachyteles*, *Atelles*, *Allouatta*). The LDA analyses were carried
217 out with SPSS v.15 (SPSS, Inc. 2006).


218

219 RESULTS

220 Principal components analyses

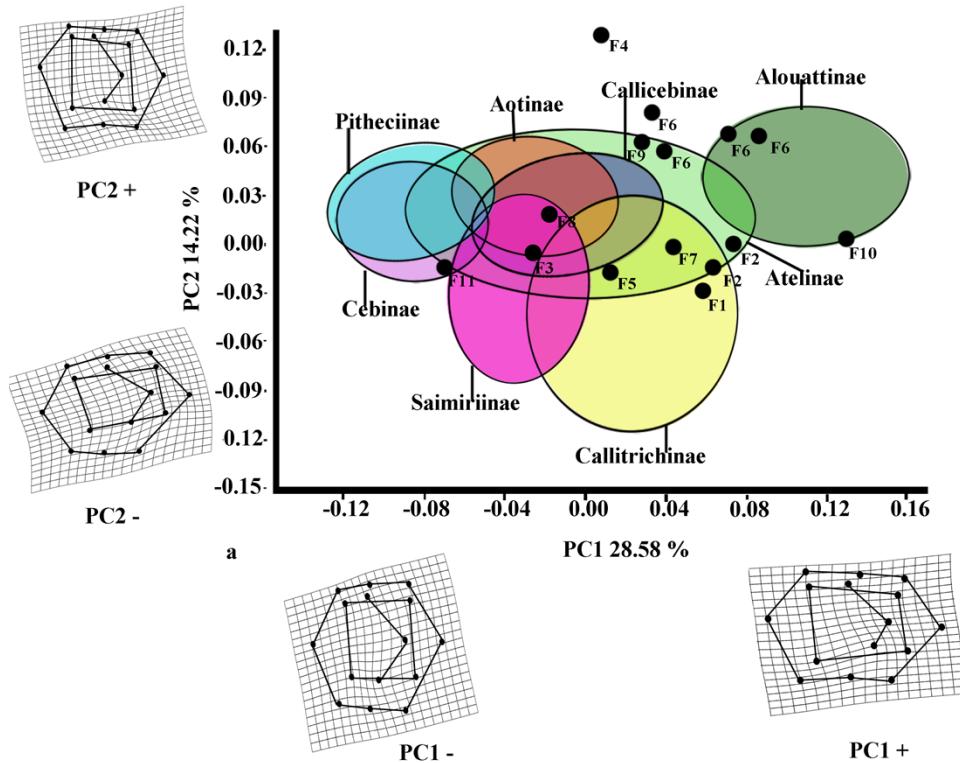
221 The first two PCs of the PCA analysis of M₁ for all platyrhines (Fig. 2) explain 42.06 % of
222 total shape variance (PC1 30.60%; PC2 11.46%). Positive scores on PC1 correspond to molars
223 with a broad occlusal polygons and a mesiodistally rectangular outline; whereas a negative PC1
224 score are characterized by a relatively quadrangular outline and slight buccolingually rectangular
225 occlusal polygon resulted by displacement of distal cusps (entoconid and hypoconid) to mesio-
226 lingually and mesial cusps (metaconid and protoconid) to distal-lingually side respectively.
227 Positive scores on PC2 molar indicate a rectangular occlusal polygon and a mesiodistally
228 rectangular outline, whereas negative score on PC2 reflect molars with relatively quadrangular
229 outline and slight rectangular occlusal polygon more widely displaced to buccally side.

230

231

232

233 **Figure 2.** Scatterplot of the first two principal components (PCs) derived from the PCA of M_1
234 shape variability of Platyrhini. Grids indicate the deformations associated with the extreme
235 values of each principal component. Ellipses represent the subfamily-level classification
236 proposed by Groves (2005). The letters F and numbers in figure represent the fossils listed in
237 Table 1.


238

239 Despite the PCA does not discriminate groups, the plot of PC1 *versus* PC2 (Fig. 2,
240 including 95% confidence ellipses of the subfamily groups) shows differences between
241 subfamilies. Alouattinae clearly cluster on the positive scores of PC1, whereas contrast Pitheciinae
242 and Cebinae greatly overlap on the most negative score of PC1. The rest of the groups
243 (Saimirinae, Callicebinae, Callitrichidae, Atellidae and Aotinae) show intermediate values for
244 PC1 and greatly overlap. For the second PC function (PC2), all groups greatly overlap, though

245 Saimirinae, Callitrichinae and Callicebinae show somewhat higher PC2 scores than the rest.
246 Most of the fossil specimens showed positive PC1 scores, except *Carlocebus* (F5) and especially
247 *Nuciruptor* (F11) and *Cebupithecia* (F12) that had negative PC1 and positive PC2 scores. Most
248 extinct forms overlapped with the extant platyrhines, within Callicebinae, Callitrichinae and
249 Atellinae, except *Xenothrix* (F13), *Nuciruptor* and *Cebupithecia*.

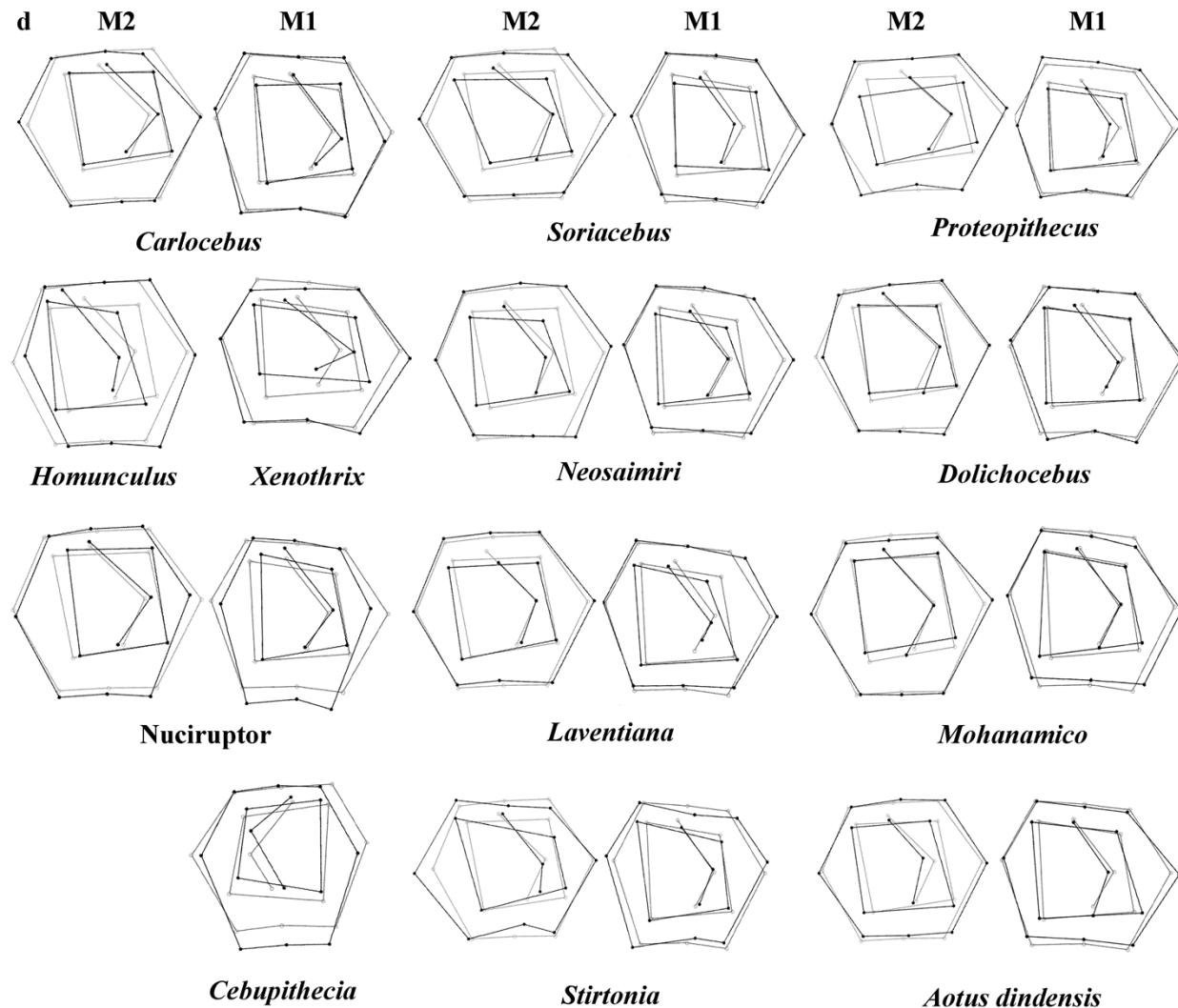
250 The first two PCs for M₂ (Fig. 3) accounted for 42.80% of the total variance (PC1: 28.58%;
251 PC2: 14.22%). The molar shape changes for positive and negative PC1 scores for M₂ were
252 relatively similar to those observed for M₁, whereas positive PC2 scores for M₂ corresponded to
253 the negative ones on PC2 for M₁, and negative ones on PC2 for M₂ were equivalent to the
254 positive score of PC2 for M₁. The PC1 *versus* PC2 plot (Fig. 3) showed similar distributions of
255 the subfamilies to those for M₁, although greater separations between groups were observed.
256 Alouattinae showed the largest, positive scores for PC1, and Pitheciinae and Cebinae the most
257 negative scores, with the other groups showing again intermediate values. Callitrichinae and
258 Saimiriinae were placed mainly on the negative score of the PC2 axis, although overlapped
259 somewhat with the other groups. Most fossil specimens again clustered on positive scores for
260 PC1 and PC2, mainly within the dispersion of Callitrichinae, although *Stirtonia* (F10), and some
261 specimens of *Neosaimiri* clearly fell within the Alouattinae clade, *Dolichocebus* (F3) within
262 Saimiriinae, and *Nuciruptor* (F11) was closer to Cebinae and Pitheciinae on the negative scores
263 of PC1. *Homunculus* (F4) did not fall at all within any extant taxa, showing highly positive PC2
264 scores.

265

266

267 **Figure 3.** Scatterplot of the first two principal components (PCs) derived from the PCA of M_2
268 shape variability of Platyrhini. Grids indicate the deformations associated with the extreme
269 values of each principal component. Ellipses represent the subfamily-level classification
270 proposed by Groves (2005). The letters F and numbers in figure represent the fossils listed in
271 Table 1.

272 **Discriminant analyses of the fossil specimens**


273 The *post-hoc* percentages of correct classification after cross-validation (*pcc*) were high both
274 for M_1 (Table 4a, range = [85.7–88.0%]) and M_2 (Table 4b, range = [84.7–90.6%]). In both
275 cases the highest *pcc* value was obtained when Groves' *subfamily* factor was discriminated. The
276 range of differences between *pcc* values before and after cross-validation was [1.3–4.7] and in
277 both teeth the *genus* discriminant factor showed the highest decrease in *pcc*. The difference in *pcc*
278 values between Groves' (Cebinae, Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae, Aotinae,

279 Atelinae, Alouattinae) and Rosenberger's (Cebinae, Callitrichinae, Pitheciinae, Homunculinae,
280 Atelinae) *pcc* values were 2.3% for M₁ and 1.6% for M₂ (Table 5). The percentage of total
281 variance explained by the first two discriminant functions (DF1, DF2; Table 4) for all discriminant
282 factors ranged from 63.3% (*genus*) to 100% (*family*) for M₁, and from 66.1% (*genus*) to 100%
283 (*family*) for M₂. The highest percentage of total variance explained by DF1 was 56.0% (*family*)
284 for M₁ and 68.3% (*family*) for M₂, and the highest one for DF2 was 44.0% (*family*) for M₁ and
285 32.8% (*subfamily R*) for M₂.

286 Regarding the classification of the fossils specimens, the ranges of the *a priori* classification
287 probabilities varied depending on the discriminant factor used (Table 5; Fig. 4 shows the
288 landmark configurations of the fossil specimens analysed). *Mohanamico* showed a high
289 probability of belonging to the callitrichines clade, as well as *Carlocebus*, although the
290 probability was smaller for M₂. Both *Neosaimiri* and *Soriacebus* showed high probabilities of
291 belonging to the callitrichines for M₁, though to Callicebinae/ Homunculinae for M₂.
292 *Cebupithecia* (M₂ not available) and *Nuciruptor* neotypes showed a high probability of
293 belonging to the pitheciid clade in LDAs. In contrast, *Xenothrix* (M₂ not available) likely
294 belonged to *Callithrix*, despite in the PCA this fossil specimen did not fall within Callitrichinae
295 range. *Stirtonia* was assigned to the Atelidae clade, and to *Alouatta* at the genus level, except for
296 Rosenberger's *subfamily* factor for M₂. *Laventiana* was also classified into the atelids for M₁, but
297 was more closely related to callitrichines for M₂. *Aotus dindensis* showed a high probability of
298 belonging to *Aotus* taxa for M₁, but *Callicebus* was the group with the greatest affinity for M₂.
299 Finally, *Proteopithecus* showed a high resemblance with *Saimiri* for M₁, but with *Callimico* for
300 M₂.

301

302

303

304

305 **Figure 4.** First and second molar shapes of the extinct fossil platyrhines used in this study.

306

307

308 **DISCUSSION**

309 The positions of the anthropoid form *Proteopithecus sylviae* (F1) in the morphospace and its
310 molar shapes showed pattern resemblance to that of platyrhines. However, because many dental

311 and postcranial features of *P. sylviae* are considered to be symplesiomorphic characters of all
312 anthropoids, ~~so~~ it is placed as the stem anthropoid (Kay, 1990, 2014). The recent discovery of
313 *Perupithecus ucayaliensis*, probably from the Late Eocene, suggests that this fossil exhibits
314 similarities with *Proteopithecus*, also with *Talahpithecus* and Oligopithecidae (Bond et al.,
315 2015). The upper molars of *Perupithecus* ~~are~~ slightly resembled ~~to~~ the callitrichines, but its
316 morphology is more similar ~~with~~ *Proteopithecus* and *Talahpithecus* (Bond et al., 2015).
317 *Proteopithecus sylviae* differed from the extant and extinct platyrhines in having a molar
318 distomesially expanded, marked by a rectangular shape of the occlusal polygon (especially on
319 M_2) (also seen in *Xenothrix*). Thus, if the Fayum form likely was a sister taxon to platyrhines,
320 the interspecific variation of shape would have shown relatively little change. This could mean
321 that the main traits of molars shapes in platyrhines represent retention of a primitive ancestral
322 form. Moreover, the LDA showed a high probability of *P. sylviae* belonging to the Cebidae
323 clade, suggesting that the molar of the earliest ancestors of platyrhines must have exhibited
324 close similarity to *Saimiri-Callimico*. This resemblance matches with the description of an
325 Oligocene primate fossil found in South America, *Branisella* (Rosenberger, 2002; Rosenberger
326 et al., 2009), whose morphology indicates that the structural characteristics of M_2 may have been
327 *Saimiri*-like, and the upper P^2 a *Callimico*-like (Rosenberger, 1980). However, both molar shapes
328 of *P. sylviae* ~~were~~ more closely resembles ~~to~~ *Callimico* than *Saimiri*. Furthermore, the
329 subtriangular upper molars of *Perupithecus*, show relative similarity with *Callimico* (Bond et al.,
330 2015). Thus, if *P. sylviae* was a sister taxon of platyrhines, is likely that the hypothetical
331 ancestral molar shape of pre-platyrhine would have been similar to a molar of *Callimico*. By
332 contrast, if *P. sylviae* ~~was~~ a stem species, *Callimico* would show retention of primitive pre-
333 anthropoid platyrhine molar shape.

334

335 ***Early Miocene platyrhines from Patagonia***

336 The fossils recovered from Early Miocene strata have been highly debated by Kay (1990,
337 2010, 2014), who argued that most of the traits used to identify phylogenetic affinities show high
338 levels of homoplasy. The present work alone cannot reject the successive radiations or the long
339 lineages hypotheses, nor can confirm which ~~of both~~ is correct. However, studying phenotypic
340 similarities and differences of molar shapes, allowed us to explore morphological patterns
341 between extinct and extant taxa. For example, the PCA indicated that the two PCs did not have a
342 large variance, however can observe differences to subfamily levels (Fig. 2 and 3). Also,
343 although fossils were not very spread out in the morphospace, many of them were located mainly
344 into Callicebinae and Callitrichinae range (except to *Homunculus* for M₂). This means that the
345 main traits observed in fossil platyrhines are related to affinities for both subfamilies.

346 The Early Miocene fossils were mainly assigned to two taxa by the LDA; ~~a~~ *Callicebus*-
347 shaped and ~~a~~ *Saguinus*- shaped. For example, *Dolichocebus* (F3) were classified as a pitheciid,
348 mainly by having a square occlusal polygon (Table 4). However, although the PCA for M₁
349 placed this specimen in the Callicebinae range, a morphological similarity with Saimiriinae was
350 seen for M₂ (Fig. 3a). In contrast, *Soriacebus* (F2) was related mainly to the callitrichine clade,
351 but for M₂ the probability of belonging to this group was small (Table 4). Because, *Soriacebus*
352 showed a rectangular occlusal polygon on M₂ and the ectoconid was inclined distolingually.
353 Regarding callitrichines, although *Soriacebus* also showed differences in cusp configuration, the
354 callitrichines and *Soriacebus* share a C-shaped distal side and a somewhat straight lingual-side
355 contour (mostly seen in *Saguinus*). Kay (1990) reported that many dental features of marmosets
356 and *Soriacebus* were convergent. In contrast, Rosenberger et al. (1990b) suggested that there are

357 some similarities with callitrichines (development of hypoconids and entoconids in the talonid).
358 However, based on the anterior teeth, they concluded that *Soriacebus* represents the first branch
359 of pitheciines. Although marmosets are considered derived lineages (e.g. Chatterjee et al., 2009;
360 Perelman et al., 2009; Jameson Kiesling et al., 2014), it is likely that the relation with *Soriacebus*
361 may be due to the fact that callitrichines exhibit primitive traits on their molars, which means
362 that both taxa share a retention of rectangular contour and occlusal polygon shape. In the case of
363 *Carlocebus* (F5), it was classified as a Callitrichinae in the DFA. However, it has been shown to
364 be more similar with *Callicebus* than marmosets, such as the shape contour and quadrate
365 alignment of cusps in both molars. *Homunculus* (F4), was placed outside the range of Patagonian
366 forms in the PCA (Fig. 2a), whereas the LDA indicated a high probability of belonging to
367 Pitheciidae (ca. 91–99%; Table 4), and especially to *Calliecebus*. Nonetheless, *Homunculus*
368 molar showed an asymmetrical shape compared to pitheciid forms. Furthermore, unlike
369 pitheciids, *Homunculus* cusps were predominantly inclined toward the distal side and the
370 trigonid was almost as broad as the basin-like talonid, which means that although sharing some
371 traits with pitheciids, its position is highly uncertain.

372

373 ***Middle Miocene platyrhines from Colombia and the Caribbean Xenothrix***

374 Many of these fossils were mostly catalogued as callitrichines, specifically into the *Saguinus*
375 clade, except *Nuciruptor*, *Cebupithecia*, *Aotus dindensis*, and *Stirtonia*. One of the major
376 differences between these primates and the extant forms (excluding *Alouatta* and *Brachyteles*)
377 was the rectangular-shaped molar (see *Xenothrix* below). This phenetic similarity among
378 phyletically distinct groups of extinct primates indicates that a rectangular-shaped molar almost
379 certainly represents a plesiomorphy in the Patagonian fossils. Thus, the trend toward ovoid molar

380 shape might be a derived feature in many living forms. *Laventania* (F7) exhibited distally
381 oriented cusps on M_1 , showing considerable resemblance with some atelid groups, which
382 provided a confusing classification between atelids and *Callicebus* in the LDA (Table 5). Thus,
383 the trend to rectangular shape for M_1 in *Laventania* differs notably from the phylogenetic
384 relationship with Cebinae and Saimiriinae. Nonetheless, when M_2 was analyzed, the fossil was
385 classified as member of the Callitrichinae clade. As with *Laventania*, some neotypes of
386 *Neosaimiri* (F6) were classified in completely distant taxonomic groups (Table 4). However,
387 despite these results, *Neosaimiri* was principally associated to the Cebidae family, although the
388 molar shape was found to have more affinities with callitrichines than *Saimiri*. On the other
389 hand, *Mohanamico* (F8) and *Aotus dindensis* (F9) have been considered by Kay and
390 collaborators (Meldrum and Kay, 1997; Kay 2014) to belong to the same genus, despite Takai et
391 al. (2009) suggested that *A. dindensis* should be assigned to distinct genus. According to their
392 molar shape, *Mohanamico* and *A. dindensis* may be classified into different species. Both fossils
393 showed a relative rectangular shape of the outline, as well as in the occlusal polygon, although
394 M_2 in both species were slightly square shaped. In fact, PCA for M_1 (Fig. 2a) showed that the
395 two forms were placed closer to each other. Thus, similar molar shape might be due to the fact
396 that the two forms must have shared relatively similar ecological niches, likely because
397 *Mohanamico* and *A. dindensis* were found in the same locality and at the same stratigraphic level
398 (Kay, 1990). However, the LDA indicated that the probability of classification was different for
399 both groups. *Aotus dindensis* was mainly related to *Aotus/Callicebus*, whereas *Mohanamico* was
400 assigned to Callitrichinae (Table 4). In the case of *Nuciruptor* (F11) and *Cebupithecia* (F12), the
401 occlusal views in both species were relatively rounded, with a slightly rectangular alignment of
402 cusps, and buccally oriented, which resembles the condition in most extant Pitheciinae.

403 Moreover, the LDA indicated that *Cebupithecia* and *Nuciruptor* had a close affinity with the
404 Pitheciidae clade (Table 4). However, despite the two neotypes clustered close to the pitheciids,
405 they were not placed into the extant species range (except *Nuciruptor* on M₂) (Fig. 2a). Several
406 studies have suggested that, although there are important characteristics that have been
407 associated with the living taxa, both fossils should be considered stem pitheciines (Meldrum and
408 Kay, 1997; Kay et al., 2013; Kay, 2014).

409 The sister relationship between *Stirtonia* and *Alouatta* was classified in the LDA with a
410 99.9% probability for M₁ and 94.0% for M₂. Likewise, the PCA showed that *Stirtonia* was placed
411 close to howler monkeys (Figs. 2a and 3a). However, differences between *Stirtonia* and *Alouatta*
412 were mainly seen in the occlusal polygon of M₂. The metaconid of *Stirtonia* was located near the
413 protoconid and the ectoconid was distolingually inclined, somewhat similar to the *Cebuella*
414 configuration. This relationship was reflected in the high percentage of probability at the
415 subfamily level, Callitrichinae (Table 5).

416 Finally, *Xenothrix* (F13), the Caribbean platyrhine form, has been allied with pitheciids
417 (Rosenberger, 2002; Horovitz and MacPhee, 1999). In the LDA, *Xenothrix* was mainly attributed
418 to pitheciids, but at the genus level, it was assigned to *Callithrix* (Table 4). Thus, some
419 resemblance with marmosets could be interpreted as convergent evolution. However, the
420 relationship between *Xenothrix* and pitheciids was highly uncertain, given that its molar
421 morphology (especially the occlusal configuration) differs from that of the pitheciids. It is likely
422 that *Xenothrix* could be a single branch that evolved independent of crown platyrhines, as was
423 suggested by some investigations that proposed an early Antillen arrival (Iturralde-Vinent and
424 MacPhee, 1999; MacPhee and Iturralde-Vinent, 1995; MacPhee and Horovitz, 2004; Kay et al.,
425 2011; Kay, 2014).

426 The slow rate of phenotypic changes on molar shapes suggests that morphological stasis
427 (different concept to long lineages hypothesis) explains the low interspecific variation between
428 extinct and extant lineages and between Early Miocene platyrhines (including *P. sylviae*) and
429 forms from La Venta, **in comparison to extinct and extant catarrhines** (Nova Delgado et al.,
430 2015a; Gamarra et al., 2016). This small phenotypic variation could be due to development and
431 functional constraints, given the role in occlusion and **mastication** (Gómez-Robles and Polly
432 2012). **Further, due to the relative low diversification in diet of platyrhines (for example**
433 **compared with carnivores**). This ecological constraint may be related to the fact that the
434 phenotypic adaptation of main platyrhine families could have happened in Amazon rainforest
435 (Jameson Kiesling et al. 2014). Following an African origin scenario, and taking into account
436 the phenotypic similarity of the most recent discovered and oldest fossil found in Peru,
437 *Perupithecus* (Bond et al., 2015), it is likely that the ancestor of extant platyrhines could have
438 exhibited a *Callimico*-like molar shape. We also observed that *Saguinus* and *Callicebus* were the
439 main assigned groups for Patagonian fossils by LDA, also in the PCA. It could mean that: there
440 were a *Callicebus*-like and *Saguinus*-like morphology in early stem platyrhines, **or that both**
441 **taxa represent the earliest offshoot Patagonian molar shapes**. Currently, *Callicebus* and *Saguinus*
442 present relatively high diversity of species and geographic range (Rylands and Mittermeier
443 2009). The *Callicebus* and *Saguinus* species richness probably are related to expansion and
444 diversification of both clades in the Amazon basin, during the period of platyrhine evolution
445 (Ayres and Clutton-Brock, 1992; Boubli et al., 2015). Thus, it is feasible that *Callicebus*, as well
446 as *Saguinus*, molar shape would be an ancestral precursor for the existing forms. Moreover, the
447 Middle Miocene platyrhines indicate continuity in molar shape pattern with the early fossils,

448 incorporating also new molar shapes not observed in the Patagonian forms: the *Alouatta*-like and
449 the Pitheciinae-like forms.

450

451

452 CONCLUSIONS

453 This study develops a dental model based on molar shapes of M_1 and M_2 to explore
454 phenotypic variation in extinct and extant platyrhines. Our results showed that morphological
455 stasis explains the low phenotypic changes in extinct and extant platyrhine, probably due to the
456 ecological constraint, causing by phenotypic adaptation of platyrhine in a relative narrow
457 ecological niche. Early and Middle Miocene platyrhines shared a relative similar shape pattern,
458 while other patterns as *Alouatta*-like and Pitheciinae-like were incorporated in the Colombian
459 fossils. The relation between both fossil samples could be due to: 1. All platyrhine molar shapes
460 share a primitive retention of the ancestral state. 2. An early divergence between two parallel
461 shapes; a *Callicebus*-like and a *Saguinus*-like, which would be the ancestral precursors to all
462 other forms. 3. A *Callicebus*-like and *Saguinus*-like morphology have also been seen in the early
463 stem platyrhines.

464

465 ACKNOWLEDGEMENTS

466 We thank the curators and institutions for allowing us access to specimens and resources:
467 Mario de Vivo and Juliana Gualda Barros (Museu de Zoologia Universidade de São Paulo),
468 Leandro de Oliveira Salles, and we are especially grateful to Sergio Maia Vaz, who supported us
469 with data acquisition (Museu Nacional do Rio de Janeiro). We also thank Mark Teaford and

470 Kenneth Glander for allowing us access to howler monkeys tooth molds from Hacienda La
471 Pacífica (Costa Rica). We also thank Katarzyna Górká for helping in the teeth molding.

472 REFERENCES

473 Adams DC, Rohlf FJ, Slice D. 2004. Geometric morphometrics: ten years of progress following
474 the 'revolution'. *Italian Journal of Zoology* 71: 5-16.

475 Adams DC, Berns CM, Kozak KH, Wiens JJ. 2009. Are rates of species diversification
476 correlated with rates of morphological evolution? *Proceedings of the Royal Society B: Biological*
477 *Sciences* 276: 2729-2738.

478 Ayres JM, Clutton-Brock TH. 1992. River boundaries and species range size in Amazonian
479 primates. *The American Naturalist* 140: 531-537.

480 Bailey SE. 2004. A morphometric analysis of maxillary molar crowns of Middle-Late
481 Pleistocene hominins. *Journal of Human Evolution* 47: 183-198.

482 Benefit BR. 1993. The permanent dentition and phylogenetic position of *Victoriapithecus* from
483 Maboko Island, Kenya. *Journal of Human Evolution* 25: 83-172.

484 Bond M, Tejedor MF, Campbell KE, Chornogubsky L, Novo N, Goin F. 2015. Eocene primates
485 of South America and the African origins of New World monkeys. *Nature*
486 doi:10.1038/nature14120

487 Bookstein FL. 1991. Morphometric tools for landmark data. Cambridge: Cambridge University
488 Press.

489 Boubli JP, Ribas C, Lynch Alfaro J, da Silva MNF, Pinho GM, Farias IP. 2015. Spatial and
490 temporal patterns of diversification in the Amazon: a test of the riverine hypothesis for all
491 diurnal primates of Rio Negro and Rio Branco in Brazil. *Molecular Phylogenetics and Evolution*
492 82 (PB): 400-412.

493 Cardini A, Elton S. 2008. Does the skull carry a phylogenetic signal? Evolution and modularity
494 in the guenons. *Biological Journal of the Linnean Society* 93: 813-834.

495 Chatterjee HJ, Ho S, Barnes I, Groves C. 2009. Estimating the phylogeny and divergence times
496 of primates using a supermatrix approach. *Evolutionary Biology* 9: 259.

497 Collard M, Wood B. 2000. How reliable are human phylogenetic hypotheses? *Proceedings of the*
498 *National Academy of Sciences* 97: 5003-5006.

499 Cooke SB. 2011. Paleodiet of extinct platyrhines with emphasis on the Caribbean forms: three-
500 dimensional geometric morphometrics of mandibular second molars. *The Anatomical Record*
501 294(12): 2073-91.

502 Cooke SB, Rosenberger AL, Turvey S. 2011. An extinct monkey from Haiti and the origins of
503 the Greater Antillean primates. *Proceedings of the National Academy of Sciences* 108(7): 2699–
504 704.

505 Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves
506 CP. 1998. Toward a phylogenetic classification of primates based on DNA evidence
507 complemented by fossil evidence. *Molecular Phylogenetics and Evolution* 9: 585–598.

508 Fleagle JG. 1990. New fossil platyrhines from the Pinturas Formation, southern Argentina.
509 *Journal of Human Evolution* 19: 61-85.

510 Fleagle JG, Kay RF. 1997. Platyrhines, catarrhines and the fossil record. In: Kinzey WG, ed.
511 *New World Primates: Ecology, Evolution and Behaviour*. New York: Aldine, 3-24.

512 Fleagle JG, Tejedor MF. 2002. Early platyrhines of southern South America. In: Hartwig WC,
513 ed. *The primate fossil record*. Cambridge: Cambridge University Press, 161-173.

514 Fleagle JG, Powers DW, Conroy GC, Watters JP. 1987. New fossil platyrhines from Santa Cruz
515 Province, Argentina. *Folia Primatologica* 48: 65-77.

516 Flynn JJ, Guerrero J, Swisher III CC. 1997. Geochronology of the Honda Group. In: Kay RF,
517 Madden RH, Cifelli RL, Flynn JJ, ed. *Vertebrate Paleontology in the Neotropics*. Washington,
518 D.C: Smithsonian Institution Press, 44-60.

519 Galbany J, Martínez LM, Pérez-Pérez A. 2004. Tooth replication techniques, SEM imaging and
520 microwear analysis in Primates: methodological obstacles. *Anthropologie* XLII/. 1: 5-12.

521 Galbany J, Estebaranz F, Martínez LM, Romero A, De Juan J, Turbón D, Pérez-Pérez A. 2006.
522 Comparative analysis of dental enamel polyvinylsiloxane impression and polyurethane casting
523 methods for SEM research. *Microscopy Research and Technique* 69(4): 246-252.

524 Gamarra B, Nova Delgado M, Romero A, Galbany J & Pérez-Pérez A (2016, accepted)
525 Phylogenetic signal in molar dental shape of extant and fossil catarrhine primates. *Journal of*
526 *Human Evolution*

527 Gómez-Robles A, Polly PD. 2012. Morphological integration in the hominin dentition:
528 evolutionary, developmental, and functional factors. *Evolution* 66: 1024-1043.

529 Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Margvelashvili A, Bastir M,
530 Arsuaga A., Pérez-Pérez A, Estebaranz F, Martínez LM. 2007. A geometric morphometric
531 analysis of hominin upper first molar shape. *Journal of Human Evolution* 53: 272-285.

532 Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Prado L, Sarmiento S, Arsuaga
533 JL. 2008. Geometric morphometric analysis of the crown morphology of the lower first premolar
534 of hominins, with special attention to Pleistocene *Homo*. *Journal of Human Evolution* 55: 627-
535 638.

536 Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Prado L, Arsuaga JL. 2011. A
537 geometric morphometric analysis of hominin upper premolars: shape variation and
538 morphological integration. *Journal of Human Evolution* 61: 688-702.

539 Goodall C. 1991. Procrustes methods in the statistical analysis of shape. *J. R. Proceedings of the*
540 *Royal Society B: Biological Sciences* 53: 285-339.

541 Groves CP. 2005. Order primates. In: Wilson DE, Reeder DM, ed. *Mammal Species of the*
542 *World: a Taxonomic and Geographic Reference*. Johns Hopkins University Press, 111-184.

543 Hershkovitz P. 1970 Notes on Tertiary platyrhine monkeys and description of a new genus from
544 the late Miocene of Colombia. *Folia Primatologica* 12: 1-37.

545 Hodgson JA, Sterner KN, Matthews LJ, Burrel IAS, Rachana AJ, Raaum RL, Stewart CB,
546 Disotell TR. 2009. Successive radiations, not stasis, in the South American primate fauna.
547 *Proceedings of the National Academy of Sciences* 106: 5534-5539

548 Horovitz I, MacPhee RD. 1999. The quaternary cuban platyrhine Paralouatta varonai and the
549 origin of Antillean monkeys. *Journal of Human Evolution* 36(1): 33–68.

550 Iturrealde-Vinent M, MacPhee RD. 1999. Paleogeography of the Caribbean region: Implications
551 for Cenozoic biogeography. *Bulletin of the American Museum of Natural History* 238: 1-95.

552 Jameson Kiesling NM, Yi SV, Sperone G, Wildman DE. 2014. The tempo and mode of New
553 World monkey evolution and biogeography in the context of phylogenomic analysis. *Molecular
554 Phylogenetics and Evolution* <http://dx.doi.org/10.1016/j.ympev.2014.03.027>

555 Jernvall J, Jung HS. 2000. Genotype, phenotype, and developmental biology of molar tooth
556 characters. *Yearbook of Physical Anthropology* 43: 171-190.

557 Kay RF. 1990. The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini,
558 Anthropoidea). *Journal of Human Evolution* 19: 175-208.

559 Kay RF. 2010. A new primate from the Early Miocene of Gran Barranca, Chubut Province,
560 Argentina: paleoecological implications. In: Madden RH, Vucetich G, Carlini AA, Kay RF, ed.
561 *The paleontology of Gran Barranca: evolution and environmental change through the Middle
562 Cenozoic of Patagonia*. Cambridge: Cambridge University Press, 220-239.

563 Kay RF. 2014. Biogeography in deep time: What do phylogenetics, geology, and paleoclimate
564 tell us about early platyrhine evolution? *Molecular Phylogenetics and Evolution*
565 <http://dx.doi.org/10.1016/j.ympev.2013.12.002>

566 Kay RF, Frailey CD. 1993. Large fossil platyrhines from the Río Acre fauna, Late Miocene,
567 western Amazonia. *Journal of Human Evolution* 25: 319-327.

568 Kay RF, Cozzuol MA. 2006. New platyrhine monkeys from the Solimoes Formation (late
569 Miocene, Acre State, Brazil). *Journal of Human Evolution* 50: 673-686.

570 Kay RF, Fleagle JG. 2010. Stem taxa, homoplasy, long lineages and the phylogenetic position of
571 Dolichocebus. *Journal of Human Evolution* 59: 218-222.

572 Kay RF, Madden RH, Plavcan JM, Cifelli RL, Guerrero-Diaz J. 1987. *Stirtonia victoriae*, a new
573 species of Miocene Colombian primate. *Journal of Human Evolution* 16: 173-196.

574 Kay RF, Williams BA, Ross CF, Takai M, Shigehara N. 2004. Anthropoid origins: a
575 phylogenetic analysis. In: Ross CF, Kay RF, ed. *Anthropoid Origins: New Visions*. New York:
576 Kluwer/Plenum, 91-136.

577 Kay RF, Fleage JG, Mitchell TRT, Colbert MW, Bown TM, Powers DW. 2008. The anatomy of
578 *Dolichocebus gaimanensis*, a primitive platyrhine monkey from Argentina. *Journal of Human*
579 *Evolution* 54, 323-382.

580 Kay RF, Hunt KD, Beeker CD, Conrad GW, Johnson CC, Keller J. 2011. Priliminary notes on a
581 newly discovered skull of the extinct monkey *Antillothrix* from Hispaniola and the origin of the
582 Greater Antillean monkeys. *Journal of Human Evolution* 60: 124–128.

583 Kay RF, Meldrum DJ, Takai M. 2013. Pitheciidae and other platyrhine seed predators. In:
584 Veiga L, Barnett A, Ferrari S, Norconk M. ed. *Evolutionary biology and conservation of titis,*
585 *sakis and uacaris*. Cambridge: Cambridge University Press, 3-12.

586 Hodgson JA, Sterner KN, Matthews LJ, Burrel IAS, Rachana AJ, Raaum RL, Stewart CB, Disotell TR,
587 2009. Successive radiations, not stasis, in the South American primate fauna. *Proceedings of the National*
588 *Academy of Sciences* 106: 5534-5539

589 Kinzey WG. 1992. Dietary and dental adaptations in the Pitheciinae. *American Journal of*
590 *Physical Anthropology* 88: 499-514.

591 Klingenberg CP. 2011. MorphoJ. Faculty of Life Sciences. Manchester, UK: University of
592 Manchester.

593 Klingenberg CP, Gidaszewski NA, 2010. Testing and quantifying phylogenetic signals and
594 homoplasy in morphometric data. *Systematic Biology* 59: 245-261.

595 Kovarovic K, Aiello LC, Cardini A, Lockwood CA. 2011. Discriminant functions analyses in
596 archaeology: Are classification rates too good to be true?. *Journal of Archaeological Science* 38:
597 3006-3018.

598 MacPhee RDE, Iturrealde-Vinent M. 1995. Origin of the Greater Antillean land mammal fauna:
599 New Tertiary fossils from Cuba and Puerto Rico. *American Museum Novitates* 3141: 1-31

600 MacPhee RDE, Horovitz I. 2004. New craniodental remains of the Quaternary Jamaican monkey
601 *Xenothrix mcgregori* (Xenotrichini, Callicebinae, Pitheciidae), with a reconsideration of the
602 *Aotus* hypothesis. *American Museum Novitates* 3434: 1-51.

603 Martinón-Torres M, Bastir M, Bermudez de Castro JM, Gómez-Robles A, Sarmiento S, Muela
604 A, Arsuaga JL. 2006. Hominin lower second premolar morphology: evolutionary inferences
605 through geometric morphometric analysis. *Journal of Human Evolution* 50, 523-533.

606 Meldrum DJ, Kay RF. 1997. *Nuciruptor rubricae*, a new pitheciin seed predator from the
607 Miocene of Colombia. *American Journal of Physical Anthropology* 102: 407-427.

608 Miller ER, Simons EL. 1997. Dentition of *Proteopithecus sylviae*, an archaic anthropoid from
609 the Fayum, Egypt. *Proceedings of the National Academy of Sciences* 94: 13760–13764.

610 Nova Delgado M, Gamarra B, Nadal J, Mercadal O, Olesti O, Guàrdia J, Pérez-Pérez A, Galbany
611 J. 2015a. Dental shape variability in cercopithecoid primates: A model for the taxonomic
612 attribution of macaques from roman archaeological contexts. *Folia Primatologica* 85: 361-378.

613 Nova Delgado M, Galbany J, Górká K, Pérez-Pérez A. 2015b. Taxonomic Implications of Molar
614 Morphology Variability in Capuchins. *International Journal of Primatology*
615 doi:10.1007/s10764-015-9850-4

616 Oliveira FB, Molina ECE, Marroig G. 2009. Paleogeography of the South Atlantic: a route for
617 primates and rodents into the New World? In: Garber PA, Estrada A, Bicca-Marques JC,
618 Heymann EW, Strier K, ed. *South American Primates: Comparative Perspectives in the Study of*
619 *Behavior Ecology and Conservation*. New York: Springer, 55–68.

620 Opazo JC, Wildman DE, Prychitko T, Johnson RM, Goodman M. 2006. Phylogenetic
621 relationships and divergence times among New World monkeys (Platyrrhini, Primates).
622 *Molecular Phylogenetics and Evolution* 40: 274–280.

623 Osterholz M, Walter L, Roos C. 2009. Retropositional events consolidate the branching order among
624 New World monkey genera. *Molecular Phylogenetics and Evolution*: 507-513.

625

626 Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J,
627 Roelke M, Rumpler Y, Schneider MP, Silva A, O'Brien SJ, Pecon-Slattery J. 2011. A molecular
628 phylogeny of living primates. *PLOS Genetics* 3, e1001342.

629 Perez SI, Tejedor MF, Novo NM, Aristide L. 2013. Divergence times and the evolutionary
630 radiation of New World monkeys (Platyrrhini, Primates): an analysis of fossil and molecular
631 data. *PLoS One* 8(6), e68029. doi:10.1371/journal.pone.0068029

632 Rohlf FJ. 1999. Shape statistics: Procrustes superimpositions and tangent spaces. *Journal of
633 Classification* 16: 197-223.

634 Rohlf FJ. 2004. TpsDig, version 1.40. TpsSeries. Department of Ecology and Evolution, SUNY,
635 Stony Brook, New York.

636 Rohlf FJ. 2005. Geometric morphometrics simplified: review of “Geometric Morphometrics for
637 Biologists: A Primer.” *Trends in Ecology and Evolution* 20: 13-14.

638 Rohlf FJ, Marcus LE. 1993. A revolution in morphometrics. *Trends in Ecology and Evolution* 8:
639 129-132.

640 Rohlf FJ, Slice D. 1990. Extensions of the Procrustes method for the optimal superimposition of
641 landmarks. *Systematic Zoology* 39: 40-59.

642 Rosenberger AL. 1979. Cranial anatomy and implications of *Dolichocebus gaimanensis*, a late
643 Oligocene ceboid primate. *Nature* 279: 416-418.

644 Rosenberger AL. 1980. Gradistic views and adaptive radiation of platyrhine primates.
645 *Zeitschrift für Morphologie und Anthropologie* 71: 157-163.

646 Rosenberger AL. 1981. Systematics: the higher taxa. In: Coimbra-Filho AF, Mittermeier RA, ed.
647 *Ecology and behavior of neotropical primates*. Rio de Janeiro: Academia Brasileira de Ciencias,
648 9-28.

649 Rosenberger AL. 1984. Fossil New World monkeys dispute the molecular clock. *Journal of
650 Human Evolution* 13: 737-742.

651 Rosenberger AL. 2002. Platyrhine paleontology and systematics: the paradigm shifts. In:
652 Hartwig WC, ed. *The primate fossil record*. Cambridge: Cambridge University Press, 151-159.

653 Rosenberger AL. 2010. Platyrhines, PAUP, parallelism, and the Long Lineage Hypothesis: A
654 replay to Kay et al. (2008). *Journal of Human Evolution* 59: 214-217.

655 Rosenberger AL. 2011. Evolutionary morphology, platyrhine evolution, and systematics. *The*
656 *Anatomical Record* 294: 1955–1974.

657 Rosenberger AL, Setoguchi T, Shigehara N. 1990a. The fossil record of callitrichine primates.
658 *Journal of Human Evolution* 19: 209-236.

659 Rosenberger AL, Setoguchi T, Shigehara N. 1990b. Towards a paleontology of the New World
660 callitrichine primates. *Journal of Human Evolution* 19: 209-236.

661 Rosenberger AL, Hartwig WC, Takai M, Setoguchi T, Shigehara N. 1991a. Dental variability in
662 Saimiri and the taxonomic status of Neosaimiri fieldsi, an early squirrel monkey from La Venta,
663 Colombia. *International Journal of Primatology* 12: 291-302.

664 Rosenberger AL, Setoguchi T, Hartwig WC. 1991b. Laventiana annectens, new genus and
665 species: fossil evidence for the origins of callitrichine New World monkeys. *Proceedings of the*
666 *National Academy of Sciences* 88: 2137-2140.

667 Rosenberger AL. Tejedor MF, Cooke SB, Halenar L, Pekkar S. 2009. Platyrhine
668 ecophylogenetics, past and present. In: Garber P, Estrada A, Bicca-Marques JC, Heymann EW,
669 Strier KB, ed. *South American primates: comparative perspectives in the study of behavior,*
670 *ecology and conservation*. New York: Springer, 69-113.

671 Rylands AB, Mittermeier RA. 2009. The diversity of the New World primates (Platyrhini). In:
672 Garber P, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB, ed. *South American primates:*
673 *comparative perspectives in the study of behavior, ecology and conservation*. New York:
674 Springer, 23-54.

675 Setoguchi T, Rosenberger AL. 1987. A fossil owl monkey from La Venta, Colombia. *Nature*
676 326: 692-694.

677 Singleton M, Rosenberger AL, Robinson C, O'Neill R. 2011. Allometric and metameric shape
678 variation in *Pan* mandibular molars: a digital morphometric analysis. *The Anatomical Record*
679 294: 322-334.

680 Slice DE. (Ed.), 2005. Modern Morphometrics in Physical Anthropology. Kluwer
681 Academic/Plenum Publishers, New York.

682 Slice DE. 2007. Geometric morphometrics. *Annual Review of Anthropology* 36: 261-281.

683 SPSS, Inc., 2006. SPSS 15.0 Command Syntax Reference. SPSS Inc., Chicago IL.

684 Swindler DR. 2002. Primate dentition: An introduction to the teeth of non-human primates.
685 Cambridge University Press, Cambridge

686 Takai M. 1994. New specimens of *Neosaimiri fieldsi* from La Venta, Colombia: a Middle
687 Miocene ancestor of the living squirrel monkeys. *Journal of Human Evolution* 27: 329-360.

688 Takai M, Anaya F, Shigehara N, Setoguchi T. 2000. New fossil materials of the earliest New
689 World monkey, *Branisella boliviensis*, and the problem of platyrhine origins. *American Journal*
690 *of Physical Anthropology* 111: 263-281.

691 Takai M, Nishimura T, Shigehara N, Setoguchi T. 2009. Meaning of the canine sexual
692 dimorphism in fossil owl monkey *Aotus dindensis*, from the middle Miocene of La Venta,
693 Colombia. In: Koppe T, Meyer G, Alt KW, ed. *Comparative Dental Morphology. Front Oral*
694 *Biology*. Karger, Basel 13, 55-59.

695 Tejedor MF. 2003. New fossil primate from Chile. *Journal of Human Evolution* 44: 515-520.

696 Tejedor MF. 2005. New fossil platyrhine from Argentina. *Folia Primatologica* 76: 146-150.

697 Tejedor MF. 2008. The origin and evolution of Neotropical primates. *Arquivos do Museu*
698 *Nacional do Rio de Janeiro* 66(1): 251-269.

699 Tejedor MF. 2013. Sistemática, evolución y paleobiogeografía de los primates Platyrhini.
700 *Revista del Museo de La Plata. Sección Zoología* 20: 20-39.

701 Tejedor MF, Rosenberger AL. 2008. A neotype for *Homunculus patagonicus* Ameghino, 1891,
702 and a new interpretation of the taxon. *Paleoanthropology* 2008: 68–82.

703 Wildman, D.E., Jameson, N.M., Opazo, J.C., Yi, S.V., 2009. A fully resolved genus level phylogeny of
704 Neotropical primates (Platyrrhini). *Molecular Phylogenetics and Evolution* 53: 694-702

705 Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S. 2011. Dating primate
706 divergences through an integrated analysis of palaeontological and molecular data. *Systematic*
707 *Zoology* 60: 16-31.

708 Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004. Geometric morphometrics for
709 biologists: San Diego, California: Elsevier Academic Press.

710

711 **Table 1:** List of fossils used in the study.

712 Fossils	713 Location	714 Age (Ma)	715 Phylogenetic position	716 Specimen number and
717 F1 <i>Proteopithecus sylviae</i>	718 Fayum, Egypt	719 33.9 -28.4 ^a	720 stem anthropoid ^b	721 CGM 42209; Miller and Simons
722 (1997)				
723 F2 <i>Soriacebus</i> spp.	724 Pinturas Formation, 725 Santa Cruz Province, 726 Argentina	727 17 ^c	728 stem platyrhine ^d / 729 Pitheciidae ^e	730 MACN-SC 2 ¹ , MACN-SC 5 ² 731 MPM-PV 36 ³ ; Tejedor (2005)
732 F3 <i>Dolichocebus gaimanensis</i>	733 Gaiman, 734 Chubut Province, 735 Argentina	736 20 ^f	737 stem platyrhine/ 738 sister to <i>Saimiri</i> ^g	739 MPEF 5146; Kay et al. (2008)
740 F4 <i>Homunculus</i> spp.	741 Santa Cruz Formation, 742 Rosemberger	743 16.5 ^h	744 stem platyrhine/ 745 Pitheciidae	746 MACN-A5969; Tejedor and 747 (2008)
748 F5 <i>Carlocebus</i> spp.	749 Pinturas Formation, 750 Santa Cruz Province, 751 Argentina	752 18-19 ⁱ	753 stem platyrhine/ 754 Pitheciidae	755 MACN-SC 266; Fleagle (1990)
756 F6 <i>Neosaimiri fieldsi</i>	757 La Venta, Huila, 758 Colombia	759 13.5 -11.8 ^j	760 sister to <i>Saimiri</i> ^k	761 IGM-KU 89029 ⁴ , IGM-KU 89019 ⁵ , 762 UCMP 39205 ⁶ , IGM-KU 89002 ⁷ , 763 IGM-KU 39034 ⁸ , IGM-KU 89053 ⁹ , 764 IGM-KU 89130 ¹⁰ ; Takai (1994)
766 F7 <i>Laventiana annectens</i>	767 La Venta, Huila,	768 13.5 -11.8	769 sister to <i>Saimiri</i> /	770 IGM-KU 880; Rosemberger et al.,

739		Colombia	synonymy with <i>Neosaimiri</i> ^l	(1991b)
740				
741				
742	F8 <i>Mohanamico hershkouitzi</i>	La Venta, Huila, Colombia	13.5 -11.8 sister to <i>Callimico</i> ^m	IGM 181500; Kay (1990)
743				
744				
745	F9 <i>Aotus dindensis</i>	La Venta, Huila, Colombia	13.5 -11.8 sister to <i>Aotus</i> ⁿ / coespecific with <i>Mohanamico</i> ^o	IGM-KU 8601; Kay (1990)
746				
747				
748				
749				
750	F10 <i>Stirtonia</i> spp.	La Venta, Huila, Colombia	13.5 -11.8 sister to <i>Alouatta</i> ^p	UCPM 38989; Kay et al. (1987)
751				
752				
753	F11 <i>Nuciruptor rubricae</i> (1997)	La Venta, Huila, Colombia	13.5 -11.8 Pitheciidae ^q / stem Pitheciinae ^r	IGM 251074; Meldrum and Kay
754				
755				
756				
757	F12 <i>Cebupithecia sarmientoni</i> (1997)	La Venta, Huila, Colombia	13.5 -11.8 Pitheciidae/ stem Pitheciinae	UCMP 38762; Meldrum and Kay
758				
759				
760				
761	F13 <i>Xenothrix macgregori</i>	Jamaica	Holocene ^s stem platyrhine/ retaded to <i>Callicebus</i> ^t	AMNHM 148198; MacPhee and Horovitz (2004)
762				
763				
764	References used in the table: Miller and Simons 1997 ^a ; Kay 1990 ^b ; Fleagle et al., 1987 ^c ; (Kay, 2010; 2014 ^r ; Kay and Fleagle, 2010; Kay et al., 2008 ^f); (Rosenberger, 1979 ^g ; Tejedor 2000 ^g ; Tejedor and Rosenberger, 2008 ^h); Rosenberger, 1979 ^g ; Fleagle 1990 ⁱ ; Flynn et al., 1997 ^j ; Rosenberger et al., 1991b ^k ; (Takai, 1994; Meldrum y Kay 1997) ^l ; Rosenberger et al., 1990b ^m ; (Setoguchi and			
765				
766				

767 Rosenberger, 1987; Takai et al., 2009)ⁿ; Meldrum y Kay, 1997^{o,q}; (e.g., Hershkovitz P 1970; Kay et al., 1987)^p; Cooke et al., 2011^s;
768 MacPhee and Horovitz 2004^t

769 Institutional abbreviations: CGM: Cairo Geological Museum; MPM-PV: Museo Regional Provincial Padre Manuel Jesús Molina, Río
770 Gallegos, Argentina; MPEF: Museo Paleontológico E. Feruglio, Trelew, Chubut Province, Argentina; MACN, MACN-SC/A: Museo
771 Argentino de Ciencias Naturales “Bernardino Rivadavia,” Buenos Aires, Argentina; SC/A denotes locality; IGM, IGM-KU: Museo
772 Geológico del Instituto Nacional de Investigaciones Geológico-Mineras, Bogota, Colombia; KU denotes Kyoto University; UCPM:
773 University of California Museum of Paleontology, Berkeley, California; AMNHM: Division of Vertebrate Zoology Mammalogy,
774 American Museum of Natural History.

775 **Table 2** List of the specimens included in this analysis of M_1 and M_2 . The Subfamily-level
776 classification was proposed by Groves (2005).

777	Genus / species	M_{1-2}	Collection ^a
778 Subfamily: Cebinae			
779 <i>Cebus</i> (gracile capuchins)			
780	1 <i>C. albifrons</i>	9	MZUSP, MNRJ
781	2 <i>C. olivaceus</i>	6	MNRJ
782 <i>Sapajus</i> (robust capuchins)			
783	3 <i>S. apella</i>	14	MZUSP
784	4 <i>S. libidinosus</i>	15	MNRJ
785	5 <i>S. nigritus</i>	15	MNRJ
786	6 <i>S. robustus</i>	15	MNRJ
787	7 <i>S. xanthosternos</i>	7	MNRJ
788 Subfamily: Samiriinae			
789 <i>Saimiri</i> (squirrel monkeys)			
790	8 <i>S. boliviensis</i>	17	MZUSP, MNRJ
791	9 <i>S. sciureus</i>	25	MZUSP, MNRJ
792	10 <i>S. ustus</i>	18	MZUSP, MNRJ
793	11 <i>S. vanzolinii</i>	8	MNRJ
794 Subfamily: Callitrichinae			
795 <i>Callithrix</i> (marmosets from Atlantic Forest)			
796	12 <i>C. aurita</i>	11	MNRJ
797	13 <i>C. geoffroyi</i>	15	MNRJ

798	14 <i>C. jacchus</i>	21	MZUSP
799	15 <i>C. kuhlii</i>	20	MNRJ
800	16 <i>C. penicillata</i>	14	MNRJ
801	<i>Mico</i> (marmosets from Amazon)		
802	17 <i>M. argentata</i>	21	MZUSP, MNRJ
803	18 <i>M. chrysoleuca</i>	16	MZUSP, MNRJ
804	19 <i>M. emiliae</i>	6	MZUSP
805	20 <i>M. humeralifer</i>	16	MZUSP
806	21 <i>M. melanurus</i>	8	MZUSP, MNRJ
807	<i>Cebuella</i> (pygmy marmoset)		
808	22 <i>C. pygmaea</i>	7	MZUSP
809	<i>Callimico</i> (goeldi's marmoset)		
810	23 <i>C. goeldii</i>	4	MZUSP
811	<i>Leontopithecus</i> (lion tamarins)		
812	24 <i>L. chrysomelas</i>	5	MZUSP, MNRJ
813	25 <i>L. rosalia</i>	17	MZUSP, MNRJ
814	<i>Saguinus</i> (tamarins)		
815	26 <i>S. fuscicollis</i>	13	MZUSP
816	27 <i>S. imperator</i>	10	MZUSP
817	28 <i>S. labiatus</i>	9	MZUSP, MNRJ
818	29 <i>S. midas</i>	22	MZUSP, MNRJ
819	30 <i>S. mystax</i>	13	MZUSP, MNRJ
820	31 <i>S. niger</i>	14	M ₂ NRJ

821 **Subfamily: Aotinae**822 ***Aotus*** (owl or night monkeys)823 **31** *A. azarae* 4 MZUSP, MNRJ824 **32** *A. nigriceps* 9 MZUSP, MNRJ825 **33** *A. trivirgatus* 21 MZUSP826 **Subfamily: Callicebinae**827 ***Callicebus*** (titi monkeys)828 **34** *C. bernhardi* 5 MNRJ829 **35** *C. cupreus* 14 MZUSP, MNRJ830 **36** *C. hoffmannsi* 12 MNRJ831 **37** *C. moloch* 16 MZUSP, MNRJ832 **38** *C. nigrifrons* 8 MNRJ833 **39** *C. personatus* 16 MZUSP, MNRJ834 **Subfamily: Pitheciinae**835 ***Cacajao*** (uakaris)836 **40** *C. calvus* 14 MZUSP, MNRJ837 **41** *C. melanocephalus* 9 MZUSP, MNRJ838 ***Chiropotes*** (bearded sakis)839 **42** *C. albinasus* 18 MZUSP, MNRJ840 **43** *C. satanas* 15 MZUSP, MNRJ841 ***Pithecia*** (sakis)842 **44** *P. irrorata* 17 MZUSP, MNRJ843 **45** *P. monachus* 7 MZUSP, MNRJ

844	46 <i>P. pithecia</i>	16	MZUSP, MNRJ
845			
846	Subfamily: Atelinae		
847	<i>Lagothrix</i> (woolly monkeys)		
848	47 <i>L. cana</i>	7	MNRJ
849	48 <i>L. lagotricha</i>	8	MZUSP
850	<i>Brachyteles</i> (muriquis)		
851	49 <i>B. arachoides</i>	16	MZUSP, MNRJ
852	50 <i>B. hypoxanthus</i>	5	MNRJ
853	<i>Ateles</i> (spider monkeys)		
854	51 <i>A. belzebuth</i>	2	RBINS
855	52 <i>A. chamek</i>	15	MNRJ
856	53 <i>A. marginatus</i>	20	MZUSP
857	Subfamily: Alouatinæ		
858	<i>Alouatta</i> (howler monkeys)		
859	54 <i>A. belzebul</i>	15	MZUSP
860	55 <i>A. caraya</i>	15	MZUSP, MNRJ
861	56 <i>A. discolor</i>	10	MNRJ
862	57 <i>A. guariba</i>	5	MZUSP, MNRJ
863	58 <i>A. g. clamitas</i> †	15	MNRJ
864	59 <i>A. nigerrima</i>	10	MNRJ
865	60 <i>A. palliata</i>	15	HLP
866	61 <i>A. seniculus</i>	15	MZUSP

867 **62** *A. ululata* 7 MNRJ

868 † Subspecies of *Alouatta guariba*

869 ^a Institutional abbreviations: MZUSP: Museu de Zoologia Universidade de São Paulo (Brazil);

870 MNRJ: Museu Nacional do Rio de Janeiro (Brazil); HLP: Hacienda La Pacífica.

871 **Table 3.** Landmarks considered for the geometric morphometrics analysis of dental crown shape.

872

873	Landmark	Type	Definition
874	1	2	Tip of the distolingual cusp (entoconid)
875	2	2	Tip of the mesiolingual cusp (metaconid)
876	3	2	Tip of the mesiobuccal cusp (protoconid)
877	4	2	Tip of the distobuccal cusp (hypoconid)
878	5	3	Most distal point of the mid mesiodistal line on the crown outline
879	6	2	Point of maximum curvature directly below the entoconid*
880	7	3	Point on the dental crown outline at the lingual groove
881	8	2	Point of maximum curvature directly below the metaconid*
882	9	3	Most mesial point of the mid mesiodistal line on the crown outline
883	10	2	Point of maximum curvature directly below the protoconid*
884	11	3	Point on the dental crown outline at the mesial groove
885	12	2	Point of maximum curvature directly below the hypoconid*
886	13	2	Midpoint between the preentocristid and postmetacristid*
887	14	2	Lowest point on the protocristid*
888	15	2	Lowest point on the crista oblique*

889 * Landmarks follow definitions by Cooke (2011)

890 **Table 4.** A comparison of platyrhines at the subfamily level classifications

891

Genus	Subfamily by Groves (2005)	Subfamily by Rosenberger (2011)
<i>Cebus</i>	Cebinae	Cebinae
<i>Sapajus</i>		
<i>Saimiri</i>	Saimiriinae	
<i>Callithrix</i>		
<i>Mico</i>		
<i>Cebuella</i>		
<i>Callimico</i>	Callitrichinae	Callitrichinae
<i>Leontopithecus</i>		
<i>Saguinus</i>		
<i>Aotus</i>	Aotinae	
<i>Callicebus</i>	Callicebinae	Homunculinae
<i>Cacajao</i>		
<i>Chiropotes</i>	Pitheciinae	Pitheciinae
<i>Pithecia</i>		
<i>Lagothrix</i>		
<i>Brachyteles</i>	Atelinae	Atelinae
<i>Ateles</i>		
<i>Alouatta</i>	Alouattinae	

892

893

894 **Table 5.** Summary of the LDA, including the percentage of variance for the two discriminant function (DF1 and DF2), the percentage
895 of original grouped cases correctly classified and the percentage of cross-validated. Further, the percentage of probability that each
896 case (fossil) belongs to the predicted group. Family: Pitheciidae, Cebidae, Atelidae; subfamily by Groves (2005) (Subfamily by G):
897 Aotinae, Cebinae, Saimiriinae, Callitrichinae, Pitheciinae, Callicebinae, Atelinae, Alouattinae; subfamily by Rosenberger (2011)
898 (Subfamily by R): Cebinae, Callitrichinae, Pitheciinae, Homunculinae, Atelinae; Genus: The names are listed in Table 2. *Soriacebus*^{1, 2, 3}
899 and *Neosaimiri*^{4, 5, 6, 7, 8, 9, 10} corresponding to the holotypes numbered on Table 1.

900 **a) M₁**

		Family%	Subfamily by G %	Subfamily by R %	Genus %				
901	DF1	56.0	50.5	42.4	49.0				
902	DF2	44.0	19.1	29.1	14.2				
903	Classification	88.7	91.3	88.2	91.0				
904	Cross-validation	87.4	88.0	85.7	86.3				
905	(M₁)	Family	%	Subfamily by G%	Subfamily by R %				
906	<i>Proteopithecus</i>	Cebidae	99.6	Saimiriinae	99.2	Cebinae	99.9	<i>Saimiri</i>	99.3
907	<i>Soriacebus</i> ¹	Cebidae	99.9	Callitrichinae	99.9	Callitrichinae	99.8	<i>Saguinus</i>	89.6
908	<i>Soriacebus</i> ²	Cebidae	99.1	Callitrichinae	76.6	Callitrichinae	94.0	<i>Callithrix</i>	69.1
909	<i>Dolichocebus</i>	Cebidae	86.5	Callicebinae	77.9	Homunculinae	67.4	<i>Callicebus</i>	86.4

911	<i>Carlocebus</i>	Cebidae	97.0	Callitrichinae	94.2	Callitrichinae	83.7	<i>Callithrix</i>	87.1
912	<i>Neosaimiri</i> ⁴	Pitheciidae	48.5	Atelinae	48.8	Callitrichinae	52.2	<i>Saguinus</i>	78.7
913	<i>Neosaimiri</i> ⁵	Cebidae	98.4	Callitrichinae	97.5	Callitrichinae	97.3	<i>Saguinus</i>	99.6
914	<i>Neosaimiri</i> ⁶	Cebidae	97.0	Callitrichinae	76.5	Callitrichinae	94.6	<i>Saguinus</i>	72.2
915	<i>Laventiana</i>	Atelidae	94.6	Atelinae	44.5	Atelinae	94.9	<i>Callicebus</i>	53.0
916	<i>Mohanamico</i>	Cebidae	96.2	Callitrichinae	87.3	Callitrichinae	70.3	<i>Leontopithecus</i>	65.4
917	<i>Aotus dindensis</i>	Pitheciidae	59.0	Aotinae	99.7	Homunculinae	97.4	<i>Aotus</i>	98.7
918	<i>Stirtonia</i>	Atelidae	98.9	Alouattinae	99.9	Atelinae	98.2	<i>Alouatta</i>	99.9
919	<i>Nuciruptor</i>	Pitheciidae	99.7	Callicebinae	99.5	Homunculinae	83.6	<i>Callicebus</i>	63.3
920	<i>Cebupithecia</i>	Pitheciidae	96.5	Pitheciinae	92.1	Pitheciinae	65.3	<i>Chiropotes</i>	59.2
921	<i>Xenothrix</i>	Pitheciidae	75.8	Callicebinae	30.5	Homunculinae	61.9	<i>Callithrix</i>	90.7
922									
923									
924									
925									
926	b) M₂								

927		Family%	Subfamily by G %	Subfamily by R %	Genus %
928	DF1	68.3	45.6	47.6	43.5
929	DF2	31.7	29.0	32.8	22.6
930	Classification	89.5	93.3	90.3	88.7
931	Cross-validation	88.2	90.6	89.0	84.7
932	(M ₂)	Family %	Subfamily by G %	Subfamily by R %	Genus %
933	<i>Proteopithecus</i>	Cebidae 99.4	Callitrichinae 82.3	Callitrichinae 80.3	<i>Callimico</i> 86.7
934	<i>Soriacebus</i> ¹	Cebidae 65.6	Callicebinae 81.6	Homunculinae 58.4	<i>Saguinus</i> 74.6
935	<i>Soriacebus</i> ³	Atelidae 77.1	Callitrichinae 96.7	Callitrichinae 98.0	<i>Saguinus</i> 65.6
936	<i>Dolichocebus</i>	Cebidae 50.7	Callicebinae 92.6	Homunculinae 90.1	<i>Callicebus</i> 92.6
937	<i>Homunculus</i>	Pitheciidae 91.4	Callicebinae 93.7	Homunculinae 97.3	<i>Callicebus</i> 99.9
938	<i>Carlocebus</i>	Cebidae 55.6	Callitrichinae 58.8	Callitrichinae 50.4	<i>Mico</i> 72.5
939	<i>Neosaimiri</i> ⁷	Cebidae 98.3	Callicebinae 92.9	Cebinae 35.8	<i>Callicebus</i> 67.2
940	<i>Neosaimiri</i> ⁸	Cebidae 64.9	Callicebinae 61.2	Homunculinae 93.7	<i>Saguinus</i> 65.1
941	<i>Neosaimiri</i> ⁹	Cebidae 99.5	Callitrichinae 61.3	Callitrichinae 51.7	<i>Saguinus</i> 92.3
942	<i>Neosaimiri</i> ¹⁰	Cebidae 98.9	Callicebinae 84.6	Callitrichinae 71.9	<i>Saguinus</i> 98.3
943	<i>Laventiana</i>	Cebidae 99.9	Callitrichinae 99.8	Callitrichinae 99.7	<i>Saguinus</i> 40.8

944 ***Mohanamico*** Cebidae 97.7 Callitrichinae 94.9 Callitrichinae 94.6 *Saguinus* 99.9

945 ***Aotus dindensis*** Cebidae 84.4 Callicebinae 88.9 Homunculinae 76.1 *Callicebus* 96.5

946 ***Nuciruptor*** Pithecidiae 89.7 Pitheciinae 89.7 Pitheciinae 73.0 *Pithecia* 49.4

947 ***Stirtonia*** Atelidae 81.8 Alouattinae 86.0 Callitrichinae 92.1 *Alouatta* 94.0

948