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ABSTRACT
Background. Lactate is notably involved in the advancement of rheumatoid arthritis
(RA) and osteoarthritis (OA). Nevertheless, the causal association between these
conditions and lactate remains uncertain. This study aims to use Mendelian random-
ization (MR) to investigate their relationship with lactate and understand the genetic
differences in lactate metabolism between them.
Methods. Genetic data for RA, OA, and lactate metabolismwere obtained fromGWAS,
GEO, and MSigDB databases. MR analysis was performed using the inverse variance
weighted (IVW) method. Differential gene expression analysis was conducted using
the ‘‘limma’’ package, and Gene Set Enrichment Analysis (GSEA) was performed with
GSEA software. Immune cell infiltration was assessed using the CIBERSORT platform.
Validation of differentially expressed genes was carried out via Western blotting.
Additionally, weighted gene co-expression network analysis (WGCNA) was employed
to identify hub genes, while GO and KEGG analyses were performed to compare
mechanistic differences between RA and OA. In vitro experiments were conducted to
assess the effects of PCK1 on lactate secretion and cellular functions in RA-FLS.
Results. MR analysis indicated a causal relationship between RA and OA with
lactate levels. Differential gene expression analysis revealed that PCK1 is a key gene
underlying the metabolic differences in lactate levels between RA and OA. In vitro
experiments demonstrated that knocking down PCK1 in RA-FLS affected lactate
secretion, inhibited cell migration, and promoted apoptosis, suggesting its critical role
in lactate metabolism. Additionally, GSEA analysis showed significant enrichment of
PCK1 in the citrate cycle and gluconeogenesis signaling pathways in RA.
Conclusion. This study provides genetic evidence supporting the causal relationship
between RA, OA, and lactate levels. Additionally, PCK1 is identified as a pivotal target
implicated in the metabolic disparities of lactate between RA and OA, highlighting its
potential significance in RA therapeutics.
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INTRODUCTION
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the most prevalent forms of arthritis
in clinical practice, sharing common disease features such as joint pain, stiffness, articular
cartilage destruction, monocyte infiltration, inflammation, and synovial swelling (Heo et
al., 2025;Tang, 2019). It is estimated that 0.5%–1%of adults in theUnited States suffer from
RA, and its progression can potentially lead to joint deformity, severe disability, and even
premature death (Barker & Puckett, 2010;Di Matteo, Bathon & Emery, 2023). Similarly, OA
is the most prevalent chronic degenerative arthritis and a leading cause of chronic disability
among older adults (Palumbo et al., 2023). RA andOAexhibit similar clinical symptoms, yet
their pathological mechanisms differ significantly (Di Matteo, Bathon & Emery, 2023; Ge
et al., 2021; Heo et al., 2025). OA is a whole-joint disease that affects multiple joint tissues,
including subchondral bone remodeling, meniscal degeneration, synovial inflammation,
and pathological alterations of the infrapatellar fat pad (Cao et al., 2024; Fontanella et al.,
2022). In contrast, RA is characterized by immune-mediated synovial inflammation and
bone destruction (Park et al., 2025). However, the precise mechanistic differences between
the two conditions remain incompletely understood, necessitating further research for
clarification.

Recent research has underscored a profound link between lactate metabolism and
the pathological progression of RA (Gan et al., 2024; Pucino et al., 2023; Yi et al., 2022).
Lactate, as the primary product of the glycolytic pathway, serves as a catalyst for the
progression of RA (Yi et al., 2022). Multiple investigations have noted a phenomenon of
low glucose and high lactate levels in the synovial fluid of RA patients, alongside a marked
elevation in the local lactate/glucose ratio within RA synovial tissues (Ahn et al., 2016;
Quinonez-Flores, Gonzalez-Chavez & Pacheco-Tena, 2016). Synovial lactate production can
exert influences on T cells, macrophages, and osteoclasts, precipitating the progression of
bone erosion in RA (Gan et al., 2024; Yi et al., 2022). Notably, it has been confirmed that
hexokinase 2 (HK2), a critical enzyme in lactate metabolism, exhibits specific expression
in RA. Overexpression of HK2 has been associated with heightened migratory and invasive
capacities of synovial cells, along with an escalation in extracellular lactate levels (Torres et
al., 2023). In OA research, it has also been confirmed that lactate can damage the cartilage of
OA rats and exacerbate the progression of OA (Huang et al., 2023), while lactate synthesis
inhibitors can alleviate inflammation, cartilage degradation, and chondrocyte apoptosis in
OA rats (Wen et al., 2023). Currently, the causal relationship between RA, OA, and lactate
remains unclear. In addition, the differences in lactate metabolism between the synovium
of RA and OA have not been thoroughly studied. Therefore, it is necessary to explore these
differences in order to provide new insights into the mechanistic differences between the
two conditions and the treatment of RA.

Mendelian randomization (MR) analysis has emerged as a highly regarded method in
recent years for inferring potential causal relationships. The core principle of MR is to
use genetic variants, such as single nucleotide polymorphisms (SNPs), that are strongly
associated with an exposure as instrumental variables (IVs) to estimate their potential
causal effect on an outcome. MR simulates the design logic of randomized controlled trials
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Figure 1 Research workflow chart.
Full-size DOI: 10.7717/peerj.19661/fig-1

when assessing the causal relationship between exposure factors and outcome indicators
(Larsson, Butterworth & Burgess, 2023; Skrivankova et al., 2021). To date, no studies have
explored the causal relationship between RA, OA, and lactate from the perspective of
genetic susceptibility. Furthermore, as bioinformatics technologies advance, microarrays
on high-throughput platforms have emerged as potent instruments for discovering novel
genes, biomarkers, and delving into themolecularmechanisms of diverse diseases (Shen-Orr
& Gaujoux, 2013; Zhao et al., 2021).

Thus, this study aims to elucidate the causal relationships between RA, OA, and lactate
through MR analysis. Furthermore, we will retrieve gene expression profiling data for RA
and OA from the NCBI Gene Expression Omnibus (GEO) repository and categorize them
into three groups: (1) RA/OA group (RA vs.OA), (2) RA group (RA vs. normal), and (3) OA
group (OA vs. normal). Accessing the GSEA database can yield lactate metabolism-related
genes (LMRGs). Ultimately, our goal is to pinpoint the crucial genes that underlie the
metabolic differences in lactate between RA and OA, and to compare the mechanistic
disparities between these two conditions. The workflow of this study is depicted in Fig. 1.
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Table 1 All data sources used for the MR analysis.

GWAS ID Year Detailed information Population Attribute

ebi-a-GCST90018910 2021 8,255 cases and 409,001 controls European RA-Exposure
met-c-894 2016 24,871 Case Samples European RA-Outcome
ukb-b-14486 2018 38,472 cases and 424,461 controls European OA-Exposure
met-a-310 2014 7,814 Case Samples European OA-Outcome

MATERIALS & METHODS
Mendelian randomization
In this study, we used a two-sample MR approach to explore the causal relationship
between RA, OA, and lactate levels, with SNPs serving as IVs. RA and OA were selected as
the exposure factors, and lactate levels were the outcome measure of this study. The
GWAS data for RA were obtained from a meta-analysis conducted by Sakaue et al.
(2021), encompassing 417,256 participants of European descent. GWAS data for OA
were obtained from the UK Biobank (UKB), encompassing 462,933 participants. GWAS
data for lactate were sourced from metabolomics studies involving 24,871 and 7,814
participants, respectively (Kettunen et al., 2016; Shin et al., 2014). The detailed data sources
are listed in Table 1.

MR analysis was conducted using the ‘‘TwoSampleMR’’ package in R (version 4.2.1) to
investigate the potential causal effect of RA and OA on lactate levels. The inverse variance
weighted (IVW) method served as the primary analytical approach. To ensure valid MR
analysis, IVs were required to: (1) be strongly associated with the exposure (RA or OA);
(2) be independent of confounders; and (3) affect the outcome (lactate levels) only via
the exposure. Accordingly, we applied rigorous filtering steps to ensure IV quality. SNPs
associatedwithRAorOAat a genome-wide suggestive significance level (P <5× 10−6)were
initially extracted as candidate IVs. To obtain independent variants, linkage disequilibrium
(LD) clumping was performed using a reference panel from the 1000 Genomes Project
(European population), with an LD threshold of R2 < 0.001 and a window size of 10,000
kb. Palindromic SNPs with ambiguous strand orientation were excluded to minimize bias,
and weak instruments were further removed by retaining only SNPs with F-statistics >10.
Finally, MR-Egger regression was performed to evaluate potential horizontal pleiotropy
(Emdin, Khera & Kathiresan, 2017).

Datasets collection
Human synovial tissue gene expression profile datasets were downloaded from the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) using the keywords ‘‘rheumatoid arthritis’’
and ‘‘osteoarthritis’’ (Clough & Barrett, 2016). The inclusion criteria for the test set are
as follows: (1) expression profiling by array; (2) The datasets contain synovial tissues
of patients with healthy control, OA, and RA from the joint; and (3) 30 or more
synovial samples in the dataset. Finally, the three test datasets, GSE55235, GSE12021,
and GSE55457, were downloaded from the GEO database, comprising a total of 94
samples; the above three datasets were all gene expression arrays and based on GPL96
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Table 2 Detailed information of selected datasets.

Dataset Platform Detailed information Data
type

Source Tissue Attribute

GSE12021 GPL96 9 normal, 10 OA, and 12 RA samples Array Synovium Test set
GSE55235 GPL96 10 normal, 10 OA, and 10 RA samples Array Synovium Test set
GSE55457 GPL96 10 normal, 10 OA, and 13 RA samples Array Synovium Test set
GSE1919 GPL91 5 OA and 5 RA samples Array Synovium Validation set
LMRGs MSigDB 320 LMRGs NA NA Test set

Notes.
GPL96 refers to the Affymetrix Human Genome U133A Array; GPL91 refers to the Affymetrix Human Genome U95A Array.
LMRGs, Lactate metabolism-related genes; MSigDB, Molecular Signatures Database.

platforms. Additionally, Using the keyword ‘‘Lactate’’ for searching in the MSigDB
(https://www.gsea-msigdb.org/gsea/msigdb) (Liberzon et al., 2011), we identified a total
of 320 LMRGs. The GSE1919 dataset was used to validate differentially expressed LMRGs
between OA and RA. The details of all data are shown in Table 2.

Data processing and identification of DEGs
The three raw datasets were consolidated, and the ‘‘affy’’ package in R software was utilized
for background calibration, normalization, and addressing other unwanted variations
(Irizarry et al., 2003). When multiple probes corresponded to a common gene, the average
value was calculated as its expression value. Additionally, the ‘‘sva’’ package was utilized
to mitigate batch effects (Leek et al., 2012). Subsequently, differentially expressed genes
(DEGs) were identified in the three datasets by comparing the gene expression profiles of
synovial tissues using the ‘‘limma’’ package (Ritchie et al., 2015). To account for multiple
testing, the Benjamini–Hochbergmethodwas used to adjust p-values. Statistical significance
was defined as an adjusted p-value (FDR) <0.05 and |log2 Fold change (FC)|>1.

Differentially expressed LMRGs selection and validation
In the RA/OA group, the intersection of DEGs and LMRGs yielded differentially expressed
LMRGs. Subsequently, these differentially expressed LMRGs were validated using the
GSE1919 dataset.

Ethical approval and Western blot validation
All procedures involving human participants were approved by the Ethics Committee of
Shanghai Guanghua Hospital of Integrative Medicine (Approval No.: 2018-K-12). Written
informed consent was obtained from all subjects prior to participation. Synovial tissues
(STs) were collected from the suprapatellar region during total knee arthroplasty (TKA)
in RA and OA patients treated at Shanghai Guanghua Hospital of Integrative Medicine.
Inclusion criteria included clinical and radiological confirmation of RA or OA diagnosis;
patients with prior immunosuppressive treatment, joint infection, or other systemic
inflammatory diseases were excluded.

Tissues were homogenized in RIPA lysis buffer (#P0013B; Beyotime, Jiangsu, China)
supplemented with protease inhibitors, followed by centrifugation at 12,000 rpm for 15min
at 4 ◦C. Protein concentrations were determined using the BCA assay (#P0010; Jiangsu,
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China). Equal amounts of total protein (20µg)were separated using 4–20%gradient precast
SDS-PAGE gels (#180-9110H; Tanon, Shanhai, China) and subsequently transferred onto
PVDF membranes. The membranes were probed with primary antibodies against PCK1
(1:3000, #16754-1-AP, Proteintech, Rosemont, IL, USA) and β-actin (1:1000, #66009-
1-Ig, Proteintech, Rosemont, IL, USA) as a loading control. HRP-conjugated secondary
antibodies (anti-rabbit IgG, #SA00001-2; anti-mouse IgG, #SA00001-1, Proteintech,
Rosemont, IL, USA) were used at 1:5000 dilution. Protein bands were visualized by
enhanced chemiluminescence and quantified using ImageJ software (version 1.53a).

Fibroblast-like synoviocytes culture and grouping
STs from RA patients were processed under sterile conditions. The tissues were minced
into small fragments, washed with PBS (#10010049; Gibco, Waltham, MA, USA), and
digested with 100 U/mL type II collagenase (#17101015; Gibco, Waltham, MA, USA) at
37 ◦C for 1 h to isolate synovial cells. Cells were cultured in DMEM (#2764635; Gibco,
Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, #10091148)
at 37 ◦C in a 5% CO2 atmosphere. When confluency reached 80–90%, cells were passaged
using trypsin (#25300062; Gibco, Waltham, MA, USA). Cells from passages 3 to 6 were
used in experiments.

To investigate the role of PCK1, FLS were transfected with either small interfering
RNA targeting PCK1 (Si-PCK1) or a negative control siRNA (Si-NC), both purchased
from GenePharma (Shanghai, China). Transfection was carried out using Lipofectamine
2000 reagent (#11668030; Invitrogen, Waltham, MA, USA) following the manufacturer’s
instructions. The siRNA sequences are listed in Table S1. Cells were harvested 48 h
post-transfection for subsequent assays.

Quantitative real-time PCR
Total RNA was extracted from tissue samples using the Simply P Total RNA Extraction Kit
(BioFlux, China) following the manufacturer’s protocol. RNA purity and concentration
were determined using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA), with an A260/A280 ratio between 1.8 and 2.0 indicating high purity.
Reverse transcription was performed using the PrimeScript™ RT Reagent Kit (Perfect
Real Time; Takara, Shiga, Japan) to synthesize cDNA. The reaction mixture (20 µL)
contained 2 µg of total RNA, 4 µL of 5x Reaction Buffer, 1 µL of PrimeScript RT Enzyme
Mix, and nuclease-free water. The reaction conditions were as follows: 25 ◦C for 5 min
(primer annealing), 50 ◦C for 15 min (reverse transcription), and 85 ◦C for 5 s (enzyme
inactivation). The resulting cDNAwas diluted 5–20 times with RNase-free water and stored
at −20 ◦C for subsequent qPCR analysis.

Quantitative real-time PCR (qRT-PCR) was performed using TB Green® Premix Ex
Taq™ (Tli RNaseH Plus; Takara, Shiga, Japan) on a CFX96 Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA). Each 20 µL reaction mixture contained 3 µL of
diluted cDNA, 5 µL of 2x TB Green Premix, 1 µL each of forward and reverse primers
(10 µM), and nuclease-free water. The thermal cycling conditions were as follows: initial
denaturation at 95 ◦C for 1 min, followed by 40 cycles of denaturation at 95 ◦C for 20 s,
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annealing at 55 ◦C for 20 s, and extension at 72 ◦C for 30 s. Amplification specificity was
confirmed by melting curve analysis, and no-template controls (NTCs) were included to
rule out contamination.

The relative mRNA expression levels were normalized to the reference gene GAPDH
and calculated using the 2−11Ct method. Statistical significance was assessed using the
t -test, with a P-value <0.05 considered statistically significant. Primer sequences are listed
in Table S2.

Quantification of lactate levels
Lactate levels in the cell culture supernatant weremeasured using lactate assay kits (BC2235,
Solarbio, China) according to the manufacturer’s instructions.

Wound healing assay
RA-FLSs were seeded at a density of 1 × 105 cells per well in six-well plates and cultured
until reaching over 80% confluence. A straight scratch was created on the cell monolayer
using a 200 µL pipette tip, followed by washing with culture medium to remove detached
cells and debris. Wound healing was monitored at 0 and 24 h post-scratch using an inverted
optical microscope (Leica, DMI3000), and the scratch closure was quantified using ImageJ
software.

Flow cytometry
After collection, Cells were washed with PBS and resuspended in binding buffer at a
density of 1 × 106 cells per sample. Apoptotic cells were stained using the Annexin
V-FITC Apoptosis Detection Kit (Beyotime, Beijing, China) following the manufacturer’s
instructions. Flow cytometry analysis was performed using a CytoFLEX S flow cytometer
(Beckman Coulter, Brea, CA, USA), and data were analyzed with CytExpert software.

Evaluation of immune cell infiltration
The immune microenvironment of the RA/OA group was evaluated using CIBERSORT
(https://cibersort.stanford.edu/), an online analysis tool commonly used to assess the relative
content of 22 immune cell types. The proportions of these immune cells were calculated
in every sample with a P-value <0.05 as a filter criterion and visualized in R software as a
violin plot with the ‘‘vioplot’’ package.

Gene set enrichment analysis
To investigate the potential molecular mechanisms of PCK1 in the occurrence and
advancement of RA, we utilized GSEA to assess if predefined gene sets displayed noteworthy
statistical variances between cohorts with high and low PCK1 expression levels (Mootha et
al., 2003; Subramanian et al., 2005). Gene sets exhibiting a nominal (NOM) P-value <0.05,
normalized enrichment score (NES) >1.0, and a false discovery rate (FDR) q-value <0.25
were considered significantly enriched.

WGCNA construction and identification of modules
We utilized the systems biology approach WGCNA to investigate key gene modules
significantly linked to the disease in both the OA and RA groups (Langfelder & Horvath,
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2008). In brief, the topological overlap matrix (TOM) was employed to determine the
connectivity and dissimilarity of the co-expression network establishedwith the appropriate
soft thresholding power β (ranged from 1 to 20), and the corresponding dissimilarity (1-
TOM) was calculated. Subsequently, hierarchical clustering and dynamic tree cut function
were used to detect coexpressed gene modules. Finally, Pearson’s test was applied to
calculate the modules’ correlation with clinical attributes, module membership (MM), and
gene significance (GS). Modules with a p-value <0.05 were considered significantly related
to the disease, and the eigengene network was visualized. The intersection of the DEGs
identified with the integrated dataset and the modules genes most related to the disease are
common genes and displayed in the form of a Venn.

Enrichment analysis and PPI network construction
For a comprehensive grasp of the biological functions and pathways linked with common
genes in both OA and RA, we performed enrichment analyses utilizing Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Metscape, a web portal
offering extensive gene list annotation and analysis resources for experimental biologists,
was employed for this purpose (Zhou et al., 2019).

Subsequently, the protein–protein interaction (PPI) network was established using the
Search Tool for the Retrieval of Interacting Genes database (STRING), with a confidence
score >0.4 as the filtering criterion. The resulting PPI network was visualized using
Cytoscape software (version 3.7.2). Additionally, the MCODE plugin in Cytoscape
was utilized to identify significant gene modules, employing the following parameters:
maximum depth = 100, node score cut-off = 0.2, degree cut-off = 2, and k-score = 2.

Statistical analysis
Statistical methods were chosen based on data normality. Student’s t -test was used to
assess the comparative differences between two groups. Spearman correlation analysis was
employed to assess the relationship between PCK1 expression and the levels of infiltrating
immune cells. All analyses were conducted using SPSS software (version 24.0; IBM Corp.,
Armonk, NY, USA) or R software (version 4.2.1) (R Core Team, 2018). Correlation results
were visualized using R-based charting tools. A P-value <0.05 was considered statistically
significant.

RESULTS
The causal relationships between RA/OA and lactate
After strict filtering conditions, 59 SNPs of RA and 26 SNPs of OA were selected as
IVs, respectively. Without of the SNPs were weak IVs, with further details regarding the
characteristics of the IVs provided in Files S1 and S2. The results from the IVW method
indicated an association between genetically determined RA and lactate levels (OR 1.03,
95% CI [1.00–1.05], p= 0.021). Similarly, OA was significantly associated with lactate
levels (OR 1.45, 95% CI [1.14–1.85], p= 0.002) (Figs. 2A and 2B). Cochran’s Q test results
showed no heterogeneity between genetic predisposition to RA/OA and lactate levels
(Figs. 2C and 2D). No horizontal pleiotropy was detected in the intercepts of the MR
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Figure 2 Causal effect of RA and OA on the risk of increased lactate levels in Mendelian randomiza-
tion analysis. (A) The causal effect of RA on lactate. (B) The causal effect of OA on lactate. (C, D) Funnel
plots representing the overall heterogeneity of Mendelian randomization estimates for the effect of RA and
OA on lactate, respectively. CI, confidence interval; ∗∗∗p< 0.001.

Full-size DOI: 10.7717/peerj.19661/fig-2

Egger regression (RA, p= 0.151; OA, p= 0.532). The ‘‘leave-one-out’’ analysis revealed
no individual SNP driving the overall result in the opposite direction (Figs. S1 and S2).
Therefore, our results were robust and reliable.

To further clarify the differences in lactate metabolism between RA and OA, we
conducted further explorations to identify differentially expressed LMRGs in RA and
OA.

DEGs screening
We conducted DEG analysis on the three groups separately. In the RA/OA group, which
consisted of 35 RA and 30 OA samples, revealed 444 DEGs, including 245 upregulated and
199 downregulated genes. Within the RA group, which included 35 RA and 29 normal
samples, 624 DEGs were detected, comprising 366 upregulated and 258 downregulated
genes. The OA group, encompassing 30 OA and 29 normal samples, 457 DEGs were
identified, with 218 upregulated and 239 downregulated genes. The volcano plots
illustrating the DEGs for each group are presented in Figs. 3A–3C. To clarify the differences
in LMRGs between RA and OA, we selected the DEGs from the RA/OA group for further
analysis.
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Figure 3 RA and OA lactate metabolism-related genes (LMRGs) selection and validation. (A–C) Rep-
resent DEGs in RA/OA group, RA group, and OA group respectively. (D) The Venn diagram of differ-
entially expressed LMRGs between RA and OA. (E, F) Validate the expression of PC and PCK1 in the
GSE1919 dataset. (G, H) Protein expression of PCK1 in synovial tissues of both RA and OA was assessed
using Western blot analysis. ∗p< 0.05, ns, no significant difference.

Full-size DOI: 10.7717/peerj.19661/fig-3

Hub differentially expressed LMRGs selection and validation
In the RA/OA group, the intersection of LMRGs and DEGs revealed two common genes,
specifically pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase 1 (PCK1),
as shown in Fig. 3D. Further validation of these two differentially expressed genes was
conducted using the GSE1919 dataset, indicating a significant downregulation of PCK1
in the RA group (P < 0.05, Figs. 3E and 3F). Similarly, Western blotting results from six
knee joint tissue samples showed a significant decrease in PCK1 protein expression in RA
synovial tissue (P < 0.05, Figs. 3G and 3H).

Downregulation of PCK1 expression affects lactate secretion in
RA-FLS and influences cell function
FLS are the main cellular components of synovial tissue and play a crucial role in the
progression of RA (Meng et al., 2024). To further elucidate the role of PCK1 in RA, we
employed siRNA interference to inhibit PCK1 expression in FLS. After 48 h, significant
suppression of Si-PCK1#3 expression was observed compared to the control group
(Fig. 4A). Lactate level measurements revealed that Si-PCK1#3 reduced the lactate
concentration in FLS supernatants, indicating that PCK1 influences lactate secretion
in RA-FLS (Fig. 4B). Furthermore, scratch assays demonstrated that Si-PCK1 inhibited
the migration of RA-FLS (Figs. 4C and 4D), while flow cytometry analyses indicated
that Si-PCK1 promoted apoptosis in RA-FLS (Figs. 4E and 4F), consistent with previous
reports on PCK1 knockout in Crohn’s disease (Yang et al., 2024). These findings indicate
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Figure 4 The impact of downregulating PCK1 expression in RA-FLS on lactate levels and cellular
functions. (A) Verification of the knockdown efficiency of three siRNAs targeting PCK1 in RA-FLS us-
ing qPCR. (B) The effect of PCK1 knockdown on lactate metabolism in RA-FLS. (C, D) The influence of
PCK1 knockdown on the migratory capacity of RA-FLS. (E, F) The effect of PCK1 knockdown on apopto-
sis in RA-FLS. Scale bar= 200 µm. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001.

Full-size DOI: 10.7717/peerj.19661/fig-4

that PCK1 can influence lactate metabolism in RA-FLS, and changes in the function of FLS
may be related to alterations in lactate metabolism (Wang et al., 2022).

Immune cell infiltration analysis and correlation of PCK1 with immune
cells
RA is a multi-system autoimmune disease closely associated with immune cells (Komatsu
& Takayanagi, 2022). To clarify the differences in immune cell infiltration between RA and
OA, we conducted further analysis using the CIBERSORT website. The results indicated
significant variations in the infiltration of various immune cell types in the synovial tissues
of OA and RA. Compared to OA samples, RA synovial tissues exhibited significantly higher
proportions of nine immune cell types, while five immune cell types were comparatively
lower (Fig. 5A). This suggests that RA is associated with greater immune cell infiltration,
which may relate to its pathological mechanisms. Furthermore, to explore the relationship
between immune cell infiltration and PCK1 expression, we conducted a correlation
analysis. Correlation analysis (Figs. 5B–5E) indicated that, in RA, PCK1 displayed a
positive correlation with plasma cells (R= 0.53, P = 0.001), while exhibiting negative
correlations with M2 macrophages (R= −0.34, P = 0.043) and memory resting CD4+ T
cells (R= −0.42, P = 0.013).
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Figure 5 The immune correlation of PCK1 in RA. (A) The relative distribution of 22 immune cell types
in synovial tissues of RA and OA. (B–E) The correlation of PCK1 with different immune cell types in RA.

Full-size DOI: 10.7717/peerj.19661/fig-5

GSEA identified signaling pathways associated with PCK1
To determine the potential signaling pathways linked to the regulatorymechanism of PCK1
in RA, we performed a comparative analysis employing the GSEA method. The results
demonstrated a notable correlation between the expression levels of PCK1 and 19 signaling
pathways, including CITRATE_CYCLE_TCA_CYCLE (NES = 2.08, P = 0.000, q= 0.005)
and GLYCOLYSIS_GLUCONEOGENESIS (NES = 1.63, P = 0.019, q= 0.097) (as shown
in Figs. 6A and 6B and Table 3).

The co-expression modules in RA and OA groups
In addition to the differences in lactate metabolism mechanisms, we also performed
WGCNA analysis for the RA andOA groups to further compare themechanistic differences
between them. All samples and 12,483 genes from both groups were utilized for WGCNA
analysis. In the OA group, a soft threshold β of 8 (R2 = 0.85) was chosen, ensuring the
gene association’s consistency with the scale-free distribution. The threshold was set at 0.4,
and the minimum number of genes in a module was set to 30 to facilitate the merging
of similar modules in the cluster tree. A hierarchical clustering tree was constructed
following a dynamic hybrid cut (Fig. 7A). Ultimately, 16 modules were identified within
the co-expression network. The MEbrown module (r = −0.84, p= 7e−17) significantly
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A B

Figure 6 GSEA enrichment plots. The GSEA results revealed significant enrichment of genes associated
with PCK1 in key signaling pathways in RA, including (A) the tricarboxylic acid cycle and (B) gluconeoge-
nesis signaling pathway.

Full-size DOI: 10.7717/peerj.19661/fig-6

Table 3 Enrichment parameters of PCK1 analyzed by GSEA.

Gene set name ES NES NOM
P-value

FDR
q-value

KEGG_CITRATE_CYCLE_TCA_CYCLE 0.66 2.08 0.000 0.005
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 0.55 1.90 0.000 0.019
KEGG_FATTY_ACID_METABOLISM 0.69 1.85 0.002 0.025
KEGG_PPAR_SIGNALING_PATHWAY 0.69 1.78 0.000 0.041
KEGG_PYRUVATE_METABOLISM 0.59 1.77 0.006 0.037
KEGG_PROPANOATE_METABOLISM 0.61 1.76 0.010 0.038
KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 0.76 1.75 0.000 0.033

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0.58 1.63 0.019 0.097
KEGG_STEROID_BIOSYNTHESIS 0.65 1.62 0.027 0.091
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0.47 1.60 0.040 0.105

KEGG_PEROXISOME 0.41 1.59 0.021 0.097
KEGG_GLUTATHIONE_METABOLISM 0.40 1.56 0.027 0.121
KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 0.57 1.55 0.023 0.115

KEGG_TYROSINE_METABOLISM 0.65 1.55 0.014 0.113
KEGG_LYSINE_DEGRADATION 0.47 1.48 0.036 0.180
KEGG_RETINOL_METABOLISM 0.57 1.48 0.008 0.171
KEGG_BETA_ALANINE_METABOLISM 0.57 1.48 0.045 0.161
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 0.55 1.48 0.027 0.156
KEGG_TRYPTOPHAN_METABOLISM 0.50 1.43 0.030 0.211
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Figure 7 Identification of gene modules associated with RA and OA in the GEO dataset using
WGCNA. (A, D) Different colors under the gene tree represent gene co-expression modules. (B, E)
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cell indicating the corresponding correlation coefficient and associated P value. (C, F) Scatter plots of
module eigengenes in the brown and turquoise modules.

Full-size DOI: 10.7717/peerj.19661/fig-7

correlated with OA (Figs. 7B and 7C). Further analysis was conducted using 2,217 genes
in the brown module. Similarly, in the RA group, hierarchical clustering tree maps and
heatmaps of module-trait relationships were constructed (Figs. 7D and 7E). Within the 14
modules, the MEturquoise module (r = 0.8, p= 3e−15) displayed the highest correlation
with RA (Fig. 7F), encompassing 1,205 genes. The intersection of DEGs screened from the
integrated dataset in the OA and RA groups and the genes in the brown and turquoise
modules represents common genes associated with OA and RA, respectively.

Enrichment analysis of common genes in the RA and OA groups
In the RA group, 241 intersecting genes were identified (Fig. 8A). GO enrichment analysis
revealed that the common genes were mainly enriched in various biological processes
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the RA common genes. Gray and yellow are Cluster 1 and 2, respectively.
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and pathways, such as lymphocyte activation, adaptive immune response, regulation
of leukocyte activation, B cell activation, Th17 cell differentiation pathway, and NF-
kappa B signaling pathway. In summary, these biological processes and pathways are
predominantly associated with immunity and inflammation, as depicted in Fig. 8B. The
PPI network visualized by Cytoscape comprises 148 nodes and 452 edges. Module analysis
using the MCODE plugin identified two clustered modules based on filtering criteria.
Cluster 1 obtained the highest score (14.5, with 17 nodes and 116 edges), while Cluster
2 followed closely behind (with a score of 10.429, 15 nodes, and 73 edges). The genes
within the cluster are enriched in lymphocyte chemotaxis and adaptive immune response,
respectively (Fig. 8C).

In the OA group, we detected 241 intersecting genes (Fig. 9A). Similarly, GO enrichment
analysis indicated their predominant enrichment in biological processes such as blood
vessel development, transcription regulator complex, and regulation of smooth muscle
cell proliferation alongside signaling pathways, including the TNF and MAPK signaling
pathways, as illustrated in Fig. 9B. These processes and pathways are also correlated with
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inflammation.We identified a clusteredmodule in the visualized PPI network, with Cluster
1 achieving the highest score (Score: 4.2, 11 nodes, and 21 edges). These genes are primarily
enriched in Signaling by Interleukins, as detailed in Fig. 9C. In summary, both RA and
OA groups show significant immune and inflammatory-related pathways, highlighting the
underlying commonalities and differences in their pathophysiology.

DISCUSSION
RA and OA represent the two most prevalent forms of arthritis encountered in clinical
settings, often posing challenges in their differentiation (Ge et al., 2021; Ureten & Maras,
2022). Lactate plays a significant role in the progression of both diseases (Huang et al.,
2023; Yi et al., 2022). Through MR studies, we found that genetically determined RA and
OA are associated with lactate levels. Further investigations revealed that the expression
of PCK1, a LMRG, is lower in RA synovial tissues compared to OA. Silencing PCK1 in
RA-FLS can affect lactate secretion, leading to a reduction in cell migration ability and
promoting apoptosis. GSEA indicated that high PCK1 expression in RA is significantly
enriched in the CITRATE CYCLE TCA CYCLE and GLYCOLYSIS_GLUCONEOGENESIS
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pathways. Therefore, we propose that PCK1 is a hub gene contributing to the differences
in lactate metabolism between RA and OA.

In our previous research, we observed a notable increase in serum lactate levels among
patients with RA and OA (Jiang et al., 2013). Additionally, multiple studies have confirmed
that lactate levels are also elevated in the synovial fluid of the knee joints in RA and
OA (Ahn et al., 2016; Garcia-Carbonell et al., 2016). The elevation of lactate levels may be
attributed to various factors, including hypoxia in synovial tissue and enhanced glycolysis
(Bustamante et al., 2017; Quinonez-Flores, Gonzalez-Chavez & Pacheco-Tena, 2016), but
no study has yet confirmed a causal relationship between RA/OA and lactate levels. This
study, based on large-scale GWAS data, found a causal relationship between RA/OA and
lactate levels. The concept of MR is similar to that of prospective randomized controlled
trials (RCTs), but it effectively avoids the influence of reverse causality and various biases.
To ensure that the SNPs were unrelated to any confounding factors between RA/OA and
lactate, we only selected participants from European populations. We employed the IVW
model to minimize heterogeneity’s influence as much as possible, ensuring all outcomes
were devoid of horizontal pleiotropy. Consequently, our MR results are deemed reliable,
furnishing robust genetic evidence underpinning the causal nexus between RA/OA and
lactate levels.

PCK1 plays a pivotal role as a rate-limiting enzyme in gluconeogenesis, responsible for
catalyzing the conversion of oxaloacetate (OAA) andGTP into phosphoenolpyruvate (PEP)
and carbon dioxide by adding phosphate to pyruvate and simultaneously cleaving carbon
dioxide from OAA (Liu et al., 2024; Lu et al., 2023). Recent research has yielded numerous
findings on PCK1 in tumor studies, yet its role remains controversial, exhibiting both
tumor-suppressive and oncogenic properties across various malignancies. Nevertheless,
it is evident that PCK1 influences disease progression by modulating lactate metabolism
(Abate et al., 2023). Our investigation revealed that PCK1 expression is significantly lower
in the synovial tissues of RA compared to OA. Consistent with this, Zhao et al. (2016)
reported a downregulation of PCK1 in the synovial tissues of CIA rats. Additionally, our in
vitro experiments demonstrated that silencing PCK1 in RA-FLS alters lactate levels, inhibits
cell migration, and promotes apoptosis. The increased lactate secretion is a hallmark of
RA-FLS activation, while reduced lactate levels correlate with the functional state of
RA-FLS. The proliferation and migration of FLS represent critical pathological features
of RA, where rapid RA-FLS proliferation can lead to elevated lactate levels (Bustamante
et al., 2017; Wang et al., 2022). Consequently, the functional alterations in FLS resulting
from PCK1 knockout may be linked to changes in lactate metabolism. The pathways
associated with lactate metabolism identified through GSEA analysis further substantiate
our hypothesis. Similarly, Verissimo et al. (2023) found that PCK1 knockout induces
alterations in lactate metabolism in kidney disease research. Thus, our study uncovers
novel targets for distinguishing RA from OA and provides valuable insights for future
research on PCK1 in RA.

Additionally, Our study entailed a comparative analysis delineating the mechanistic
disparities between RA and OA. Enrichment analysis showed that genes differing in RA
were mainly enriched in the NF-kappa B signaling pathway. The excessive activation
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of NF-κB is closely associated with the pathogenesis of RA, as this pathway is involved
in the synovial inflammation and bone destruction in RA, promoting the onset and
progression of the disease (Clanchy et al., 2021; Ren et al., 2023; Schett & Gravallese, 2012).
Differential genes in OA were predominantly enriched in the TNF and MAPK signaling
pathway. Similarly, the activation of these pathways can induce chondrocytes to synthesize
MMP, proteoglycanase, and other factors, ultimately leading to joint inflammation and
degradation of the cartilage matrix, thereby promoting the progression of OA (Xu et al.,
2022; Zhang et al., 2021). Both the mechanisms of RA and OA are inherently linked to
inflammation. However, RA exhibits a more intricate association with the functionality of
immune cells, corroborating with the findings of immune cell infiltration analysis.

Despite our study yielding significant findings, several limitations remain. Firstly, the
GWAS data utilized in this research primarily derive from populations of European
ancestry, which restricts the generalizability of the conclusions to other ethnic groups.
Secondly, although our study identified PCK1 as a participant in lactate metabolism in
RA, the specific mechanisms underlying PCK1’s role in RA require further investigation.
Finally, our previous research indicated that synovial tissues exhibit distinct metabolic
characteristics during relapsed and remission phases (Meng et al., 2024), and the regulatory
role of PCK1 in lactate metabolism within synovial tissues with varying metabolic profiles
still needs clarification.

CONCLUSIONS
Overall, our MR study provides genetic evidence for the causal relationship between
individuals with RA and OA and lactate levels. Additionally, we identified PCK1 as a key
target for the differences in lactate metabolism between RA and OA. Our findings highlight
a novel target that may play a significant role in the future treatment of RA.

ACKNOWLEDGEMENTS
This work has benefited from GEO and GWAS, and I would like to express my gratitude
to my girlfriend, Ms. Mengnan Ke, for her strong support of my scientific research work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was funded by the National Natural Science Foundation of China (Grant No.
82474302). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 82474302.

Competing Interests
The authors declare there are no competing interests.

Xin et al. (2025), PeerJ, DOI 10.7717/peerj.19661 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.19661


Author Contributions
• Pengfei Xin conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Shaoqiang Pei conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.
• Nanshan Ma conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.
• Lianbo Xiao analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The Ethics Committee of the Shanghai Guanghua Hospital of Integrative Medicine.

Data Availability
The following information was supplied regarding data availability:

The data is available at Zenodo: XIN, P. (2025). The impact of PCK1 knockout on the
apoptosis of FLS cells. [Data set]. Zenodo. https://doi.org/10.5281/zenodo.15654040.

The GEO datasets used in this study are publicly available from NCBI GEO: GSE12021,
GSE55235, GSE55457, and GSE1919.

The GWAS summary statistics used in this study are available from the OpenGWAS
database: ebi-a-GCST90018910, met-c-894, ukb-b-14486 and met-a-310.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.19661#supplemental-information.

REFERENCES
Abate E, Mehdi M, Addisu S, Degef M, Tebeje S, Kelemu T. 2023. Emerging roles

of cytosolic phosphoenolpyruvate kinase 1 (PCK1) in cancer. Biochemistry and
Biophysics Reports 35:101528 DOI 10.1016/j.bbrep.2023.101528.

Ahn JK, Kim S, Hwang J, Kim J, Kim KH, Cha HS. 2016. GC/TOF-MS-based
metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid
arthritis. Joint Bone Spine 83:707–713 DOI 10.1016/j.jbspin.2015.11.009.

Barker TL, Puckett TL. 2010. Rheumatoid arthritis: coping with disability. Rehabilitation
Nursing 35:75–79 DOI 10.1002/j.2048-7940.2010.tb00035.x.

Bustamante MF, Garcia-Carbonell R, Whisenant KD, GumaM. 2017. Fibroblast-
like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis
Research & Therapy 19:110 DOI 10.1186/s13075-017-1303-3.

Cao Y, Ruan J, Kang J, Nie X, LanW, Ruan G, Li J, Zhu Z, HanW, Tang S, Ding C.
2024. Extracellular vesicles in infrapatellar fat pad from osteoarthritis patients

Xin et al. (2025), PeerJ, DOI 10.7717/peerj.19661 19/24

https://peerj.com
https://doi.org/10.5281/zenodo.15654040
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12021
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55235
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55457
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1919
https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90018910
https://gwas.mrcieu.ac.uk/datasets/met-c-894
https://gwas.mrcieu.ac.uk/datasets/ukb-b-14486
https://gwas.mrcieu.ac.uk/datasets/met-a-310
http://dx.doi.org/10.7717/peerj.19661#supplemental-information
http://dx.doi.org/10.7717/peerj.19661#supplemental-information
http://dx.doi.org/10.1016/j.bbrep.2023.101528
http://dx.doi.org/10.1016/j.jbspin.2015.11.009
http://dx.doi.org/10.1002/j.2048-7940.2010.tb00035.x
http://dx.doi.org/10.1186/s13075-017-1303-3
http://dx.doi.org/10.7717/peerj.19661


impair cartilage metabolism and induce senescence. Advanced Science 11:e2303614
DOI 10.1002/advs.202303614.

Clanchy FIL, Borghese F, Bystrom J, Balog A, Penn H, Hull DN,Wells GMA, Kiri-
akidis S, Taylor PC, Sacre SM,Williams LM, Stone TW,Mageed RA,Williams
RO. 2021. TLR expression profiles are a function of disease status in rheuma-
toid arthritis and experimental arthritis. Journal of Autoimmunity 118:102597
DOI 10.1016/j.jaut.2021.102597.

Clough E, Barrett T. 2016. The gene expression omnibus database.Methods in Molecular
Biology 1418:93–110 DOI 10.1007/978-1-4939-3578-9_5.

DiMatteo A, Bathon JM, Emery P. 2023. Rheumatoid arthritis. The Lancet 402:
P2019–P2033 DOI 10.1016/s0140-6736(23)01525-8.

Emdin CA, Khera AV, Kathiresan S. 2017.Mendelian randomization. JAMA
318:1925–1926 DOI 10.1001/jama.2017.17219.

Fontanella CG, Belluzzi E, Pozzuoli A, Scioni M, Olivotto E, Reale D, Ruggieri P,
DeCaro R, Ramonda R, Carniel EL, FaveroM,Macchi V. 2022. Exploring anatomo-
morphometric characteristics of infrapatellar, suprapatellar fat pad, and knee
ligaments in osteoarthritis compared to post-traumatic lesions. Biomedicines
10:1369 DOI 10.3390/biomedicines10061369.

Gan PR,WuH, Zhu YL, Shu Y,Wei Y. 2024. Glycolysis, a driving force of rheumatoid
arthritis. International Immunopharmacology 132:111913
DOI 10.1016/j.intimp.2024.111913.

Garcia-Carbonell R, Divakaruni AS, Lodi A, Vicente-Suarez I, Saha A, Cheroutre H,
Boss GR, Tiziani S, Murphy AN, GumaM. 2016. Critical role of glucose metabolism
in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis & Rheumatology
68:1614–1626 DOI 10.1002/art.39608.

Ge Y, Chen Z, Fu Y, Xiao X, Xu H, Shan L, Tong P, Zhou L. 2021. Identification and
validation of hub genes of synovial tissue for patients with osteoarthritis and
rheumatoid arthritis. Hereditas 158:37 DOI 10.1186/s41065-021-00201-0.

Heo B, Linh VTN, Yang JY, Park R, Park SG, NamMK, Yoo SA, KimWU, LeeMY,
Jung HS. 2025. AI-assisted plasmonic diagnostics platform for osteoarthritis and
rheumatoid arthritis with biomarker quantification using mathematical models.
Small 21:e2500264 DOI 10.1002/smll.202500264.

Huang YF,Wang G, Ding L, Bai ZR, Leng Y, Tian JW, Zhang JZ, Li YQ, Ahmad , Qin
YH, Li X, Qi X. 2023. Lactate-upregulated NADPH-dependent NOX4 expression
via HCAR1/PI3K pathway contributes to ROS-induced osteoarthritis chondrocyte
damage. Redox Biology 67:102867 DOI 10.1016/j.redox.2023.102867.

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP.
2003. Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics 4:249–264 DOI 10.1093/biostatistics/4.2.249.

JiangM, Chen T, Feng H, Zhang Y, Li L, Zhao A, Niu X, Liang F,WangM, Zhan J, Lu C,
He X, Xiao L, JiaW, Lu A. 2013. Serum metabolic signatures of four types of human
arthritis. Journal of Proteome Research 12:3769–3779 DOI 10.1021/pr400415a.

Xin et al. (2025), PeerJ, DOI 10.7717/peerj.19661 20/24

https://peerj.com
http://dx.doi.org/10.1002/advs.202303614
http://dx.doi.org/10.1016/j.jaut.2021.102597
http://dx.doi.org/10.1007/978-1-4939-3578-9_5
http://dx.doi.org/10.1016/s0140-6736(23)01525-8
http://dx.doi.org/10.1001/jama.2017.17219
http://dx.doi.org/10.3390/biomedicines10061369
http://dx.doi.org/10.1016/j.intimp.2024.111913
http://dx.doi.org/10.1002/art.39608
http://dx.doi.org/10.1186/s41065-021-00201-0
http://dx.doi.org/10.1002/smll.202500264
http://dx.doi.org/10.1016/j.redox.2023.102867
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1021/pr400415a
http://dx.doi.org/10.7717/peerj.19661


Kettunen J, Demirkan A,Wurtz P, Draisma HH, Haller T, Rawal R, Vaarhorst A,
Kangas AJ, Lyytikainen LP, PirinenM, Pool R, Sarin AP, Soininen P, Tukiainen
T,Wang Q, TiainenM, Tynkkynen T, Amin N, Zeller T, BeekmanM, Deelen J,
Van Dijk KW, Esko T, Hottenga JJ, Van Leeuwen EM, Lehtimaki T, Mihailov E,
Rose RJ, De Craen AJ, Gieger C, KahonenM, Perola M, Blankenberg S, Savolainen
MJ, Verhoeven A, Viikari J, Willemsen G, Boomsma DI, Van Duijn CM, Eriksson
J, Jula A, Jarvelin MR, Kaprio J, Metspalu A, Raitakari O, Salomaa V, Slagboom
PE,Waldenberger M, Ripatti S, Ala-Korpela M. 2016. Genome-wide study for
circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA.
Nature Communications 7:11122 DOI 10.1038/ncomms11122.

Komatsu N, Takayanagi H. 2022.Mechanisms of joint destruction in rheumatoid
arthritis - immune cell-fibroblast-bone interactions. Nature Reviews Rheumatology
18:415–429 DOI 10.1038/s41584-022-00793-5.

Langfelder P, Horvath S. 2008.WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics 9:559 DOI 10.1186/1471-2105-9-559.

Larsson SC, Butterworth AS, Burgess S. 2023.Mendelian randomization for cardiovas-
cular diseases: principles and applications. European Heart Journal 44:4913–4924
DOI 10.1093/eurheartj/ehad736.

Leek JT, JohnsonWE, Parker HS, Jaffe AE, Storey JD. 2012. The sva package for remov-
ing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics 28:882–883 DOI 10.1093/bioinformatics/bts034.

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP.
2011.Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740
DOI 10.1093/bioinformatics/btr260.

Liu R, Liu Y, ZhangW, Zhang G, Zhang Z, Huang L, Tang N,Wang K. 2024. PCK1
attenuates tumor stemness via activating the Hippo signaling pathway in hepato-
cellular carcinoma. Genes & Diseases 11:101114 DOI 10.1016/j.gendis.2023.101114.

Lu K,Wu J, Zhang Y, ZhuangW, Liang XF. 2023. Role of phosphoenolpyruvate
carboxykinase 1 (pck1) in mediating nutrient metabolism in zebrafish. Functional
& Integrative Genomics 23:67 DOI 10.1007/s10142-023-00993-6.

Meng X, Chen Z, Li T, Nie Z, Han H, Zhong S, Yin Z, Sun S, Xie J, Shen J, Xu X, Gao C,
Ran L, Xu B, Xiang Z,Wang J, Sun P, Xin P, A X, Zhang C, Qiu G, Gao H, Bian Y,
XuM, Cao B, Li F, Zheng L, Zhang X, Xiao L. 2024. Role and therapeutic potential
for targeting fibroblast growth factor 10/FGFR1 in relapsed rheumatoid arthritis.
Arthritis & Rheumatology 76:32–47 DOI 10.1002/art.42674.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver
P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N,
Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN,
Altshuler D, Groop LC. 2003. PGC-1alpha-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nature Genetics
34:267–273 DOI 10.1038/ng1180.

Xin et al. (2025), PeerJ, DOI 10.7717/peerj.19661 21/24

https://peerj.com
http://dx.doi.org/10.1038/ncomms11122
http://dx.doi.org/10.1038/s41584-022-00793-5
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.1093/eurheartj/ehad736
http://dx.doi.org/10.1093/bioinformatics/bts034
http://dx.doi.org/10.1093/bioinformatics/btr260
http://dx.doi.org/10.1016/j.gendis.2023.101114
http://dx.doi.org/10.1007/s10142-023-00993-6
http://dx.doi.org/10.1002/art.42674
http://dx.doi.org/10.1038/ng1180
http://dx.doi.org/10.7717/peerj.19661


Palumbo A, Atzeni F, Murdaca G, Gangemi S. 2023. The role of alarmins in osteoarthri-
tis pathogenesis: HMGB1, S100B and IL-33. International Journal of Molecular
Sciences 24:12143 DOI 10.3390/ijms241512143.

Park S, Yoon K, Hong E, KimMW, KangMG,Mizuno S, KimHJ, Lee MJ, Choi HJ, Heo
JS, Bae JB, An H, Park N, Park H, Kim P, SonM, Pang K, Park JY, Takahashi S,
Kwon YJ, Kang DW, Kim SJ. 2025. Tm4sf19 inhibition ameliorates inflammation
and bone destruction in collagen-induced arthritis by suppressing TLR4-mediated
inflammatory signaling and abnormal osteoclast activation. Bone Research 13:40
DOI 10.1038/s41413-025-00419-y.

Pucino V, Nefla M, Gauthier V, Alsaleh G, Clayton SA, Marshall J, Filer A, Clark
AR, Raza K, Buckley CD. 2023. Differential effect of lactate on synovial fibrob-
last and macrophage effector functions. Frontiers in Immunology 14:1183825
DOI 10.3389/fimmu.2023.1183825.

Quinonez-Flores CM, Gonzalez-Chavez SA, Pacheco-Tena C. 2016.Hypoxia and
its implications in rheumatoid arthritis. Journal of Biomedical Science 23:62
DOI 10.1186/s12929-016-0281-0.

R Core Team. 2018. R: a language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Available at https://www.R-project.
org/.

Ren C, Chen J, Che Q, Jia Q, Lu H, Qi X, Zhang X, Shu Q. 2023. IL-37 alleviates TNF-
α-induced pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes by
inhibiting the NF-κB/GSDMD signaling pathway. Immunobiology 228:152382
DOI 10.1016/j.imbio.2023.152382.

Ritchie ME, Phipson B,WuD, Hu Y, Law CW, ShiW, Smyth GK. 2015. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Research 43:e47 DOI 10.1093/nar/gkv007.

Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, Narita A, Konuma
T, Yamamoto K, AkiyamaM, Ishigaki K, Suzuki A, Suzuki K, ObaraW, Yamaji K,
Takahashi K, Asai S, Takahashi Y, Suzuki T, Shinozaki N, Yamaguchi H, Minami
S, Murayama S, Yoshimori K, Nagayama S, Obata D, HigashiyamaM,Masumoto
A, Koretsune Y, Finn Gen , Ito K, Terao C, Yamauchi T, Komuro I, Kadowaki
T, Tamiya G, YamamotoM, Nakamura Y, KuboM,Murakami Y, Yamamoto K,
Kamatani Y, Palotie A, Rivas MA, Daly MJ, Matsuda K, Okada Y. 2021. A cross-
population atlas of genetic associations for 220 human phenotypes. Nature Genetics
53:1415–1424 DOI 10.1038/s41588-021-00931-x.

Schett G, Gravallese E. 2012. Bone erosion in rheumatoid arthritis: mechanisms,
diagnosis and treatment. Nature Reviews Rheumatology 8:656–664
DOI 10.1038/nrrheum.2012.153.

Shen-Orr SS, Gaujoux R. 2013. Computational deconvolution: extracting cell type-
specific information from heterogeneous samples. Current Opinion in Immunology
25:571–578 DOI 10.1016/j.coi.2013.09.015.

Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, ArnoldM, Erte I,
Forgetta V, Yang TP,Walter K, Menni C, Chen L, Vasquez L, Valdes AM, Hyde

Xin et al. (2025), PeerJ, DOI 10.7717/peerj.19661 22/24

https://peerj.com
http://dx.doi.org/10.3390/ijms241512143
http://dx.doi.org/10.1038/s41413-025-00419-y
http://dx.doi.org/10.3389/fimmu.2023.1183825
http://dx.doi.org/10.1186/s12929-016-0281-0
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1016/j.imbio.2023.152382
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1038/s41588-021-00931-x
http://dx.doi.org/10.1038/nrrheum.2012.153
http://dx.doi.org/10.1016/j.coi.2013.09.015
http://dx.doi.org/10.7717/peerj.19661


CL,Wang V, Ziemek D, Roberts P, Xi L, Grundberg E, Multiple Tissue Human
Expression Resource C,Waldenberger M, Richards JB, Mohney RP, MilburnMV,
John SL, Trimmer J, Theis FJ, Overington JP, Suhre K, BrosnanMJ, Gieger C,
Kastenmuller G, Spector TD, Soranzo N. 2014. An atlas of genetic influences on
human blood metabolites. Nature Genetics 46:543–550 DOI 10.1038/ng.2982.

Skrivankova VW, Richmond RC,Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA,
VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, Langenberg C, Golub RM,
Loder EW, Gallo V, Tybjaerg-Hansen A, Davey Smith G, Egger M, Richards JB.
2021. Strengthening the reporting of observational studies in epidemiology using
mendelian randomization: the STROBE-MR statement. JAMA 326:1614–1621
DOI 10.1001/jama.2021.18236.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. 2005. Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences of the United
States of America 102:15545–15550 DOI 10.1073/pnas.0506580102.

Tang CH. 2019. Research of pathogenesis and novel therapeutics in arthritis. Interna-
tional Journal of Molecular Sciences 20:1646 DOI 10.3390/ijms20071646.

Torres A, Kang S, Mahony CB, CedenoM, Oliveira PG, Fernandez-Bustamante M,
Kemble S, Laragione T, Gulko PS, Croft AP, Sanchez-Lopez E, Miyamoto S, Guma
M. 2023. Role of mitochondria-bound HK2 in rheumatoid arthritis fibroblast-like
synoviocytes. Frontiers in Immunology 14:1103231 DOI 10.3389/fimmu.2023.1103231.

Ureten K, Maras HH. 2022. Automated classification of rheumatoid arthritis, os-
teoarthritis, and normal hand radiographs with deep learning methods. Journal of
Digital Imaging 35:193–199 DOI 10.1007/s10278-021-00564-w.

Verissimo T, Dalga D, Arnoux G, Sakhi I, Faivre A, Auwerx H, Bourgeois S, Paolucci
D, Gex Q, Rutkowski JM, Legouis D,Wagner CA, Hall AM, De Seigneux S.
2023. PCK1 is a key regulator of metabolic and mitochondrial functions in renal
tubular cells. American Journal of Physiology-Renal Physiology 324:F532–F543
DOI 10.1152/ajprenal.00038.2023.

Wang Q, Asenso J, Xiao N, Gao J, Xiao F, Kuai J, WeiW,Wang C. 2022. Lactic acid
regulation: a potential therapeutic option in rheumatoid arthritis. Journal of
Immunology Research 2022:2280973 DOI 10.1155/2022/2280973.

Wen ZH, Sung CS, Lin SC, Yao ZK, Lai YC, Liu YW,Wu YY, Sun HW, Liu HT, Chen
WF, Jean YH. 2023. Intra-articular lactate dehydrogenase a inhibitor oxamate
reduces experimental osteoarthritis and nociception in rats via possible alteration
of glycolysis-related protein expression in cartilage tissue. International Journal of
Molecular Sciences 24:10770 DOI 10.3390/ijms241310770.

Xu F, Zhao LJ, Liao T, Li ZC,Wang LL, Lin PY, Jiang R,Wei QJ. 2022. Ononin ame-
liorates inflammation and cartilage degradation in rat chondrocytes with IL-1β-
induced osteoarthritis by downregulating the MAPK and NF-κB pathways. BMC
Complementary Medicine and Therapies 22:25 DOI 10.1186/s12906-022-03504-5.

Xin et al. (2025), PeerJ, DOI 10.7717/peerj.19661 23/24

https://peerj.com
http://dx.doi.org/10.1038/ng.2982
http://dx.doi.org/10.1001/jama.2021.18236
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.3390/ijms20071646
http://dx.doi.org/10.3389/fimmu.2023.1103231
http://dx.doi.org/10.1007/s10278-021-00564-w
http://dx.doi.org/10.1152/ajprenal.00038.2023
http://dx.doi.org/10.1155/2022/2280973
http://dx.doi.org/10.3390/ijms241310770
http://dx.doi.org/10.1186/s12906-022-03504-5
http://dx.doi.org/10.7717/peerj.19661


Yang D, Li P, Dang Y, Zhu S, Shi H,Wu T, Zhang Z, Chen C, Zong Y. 2024. Identifying
the importance of PCK1 in maintaining ileal epithelial barrier integrity in Crohn’s
disease. Gene 931:148872 DOI 10.1016/j.gene.2024.148872.

Yi O, Lin Y, HuM, Hu S, Su Z, Liao J, Liu B, Liu L, Cai X. 2022. Lactate metabolism in
rheumatoid arthritis: pathogenic mechanisms and therapeutic intervention with
natural compounds. Phytomedicine 100:154048 DOI 10.1016/j.phymed.2022.154048.

Zhang X, HsuehMF, Huebner JL, Kraus VB. 2021. TNF-α carried by plasma extra-
cellular vesicles predicts knee osteoarthritis progression. Frontiers in Immunology
12:758386 DOI 10.3389/fimmu.2021.758386.

Zhao X, Zhang L,Wang J, ZhangM, Song Z, Ni B, You Y. 2021. Identification of
key biomarkers and immune infiltration in systemic lupus erythematosus by
integrated bioinformatics analysis. Journal of Translational Medicine 19:35
DOI 10.1186/s12967-020-02698-x.

Zhao Y, Yan X, Li X, Zheng Y, Li S, Chang X. 2016. PGK1, a glucose metabolism
enzyme, may play an important role in rheumatoid arthritis. Inflammation Research
65:815–825 DOI 10.1007/s00011-016-0965-7.

Zhou Y, Zhou B, Pache L, ChangM, Khodabakhshi AH, Tanaseichuk O, Ben-
ner C, Chanda SK. 2019.Metascape provides a biologist-oriented resource
for the analysis of systems-level datasets. Nature Communications 10:1523
DOI 10.1038/s41467-019-09234-6.

Xin et al. (2025), PeerJ, DOI 10.7717/peerj.19661 24/24

https://peerj.com
http://dx.doi.org/10.1016/j.gene.2024.148872
http://dx.doi.org/10.1016/j.phymed.2022.154048
http://dx.doi.org/10.3389/fimmu.2021.758386
http://dx.doi.org/10.1186/s12967-020-02698-x
http://dx.doi.org/10.1007/s00011-016-0965-7
http://dx.doi.org/10.1038/s41467-019-09234-6
http://dx.doi.org/10.7717/peerj.19661

