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ABSTRACT
Proper nutrient management and planting density can effectively improve crop yields
and economic efficiency. Optimized fertilization and high-density planting measures
have gained attention for their ability to balance high crop yields with efficient nitrogen
utilization. High and stable yield of maize is an important guarantee for global
food security, and fertilizer and planting density are important factors affecting yield
components. In this study, dryland maize (Zea mays L.) in the Loess Plateau was used
as the research material, and a three-factor, five-level quadratic orthogonal rotated
combination design with organic fertilizer, nitrogen fertilizer and density were set up
for a field trial. Regression models of organic fertilizer, nitrogen fertilizer, density and
maize yield were established. The results showed that the contribution of each factor
to maize yield was in the order of density > nitrogen fertilizer > organic fertilizer. The
contribution rates are as follows: 90.02, 89.23, and 79.66, respectively. The univariate
analysis concluded that maize yield increased with increasing application of organic
fertilizer. Nitrogen fertilizer and density positively affected maize yield within a certain
range. Maximum yield is achieved when nitrogen fertilizer and planting density are
set at levels 150 kg hm−2 and 82,500 plants hm−2, respectively. The analysis of the
intercropping effects showed that organic fertilizer-nitrogen fertilizer, organic fertilizer-
density, and nitrogen fertilizer-density intercropping had a synergistic effect on maize
yield. Optimisation analysis of different cultivation measures was used to obtain the
optimum range of treatments for yields higher than 15,000 kg hm−2: 6,429.30–7,895.10
kg hm−2 for organic fertilizer application, 159.30–203.55 kg hm−2 for nitrogen fertilizer
application, and 72,465–80,940 plants hm−2 for planting density. This study explored
the effects of different ratios and interactions of organic fertilizer, nitrogen fertilizer
and density on maize yields, and screened out the scientific level of dense fertilizer to
provide theoretical basis and practical experience for the standardised cultivation of
maize in the Loess Plateau.

Subjects Agricultural Science, Ecology, Environmental Sciences, Plant Science
Keywords Loess Plateau, Maize, Quadratic orthogonal rotation, Organic fertilizer, Nitrogen
fertilizer, Density, Yield

INTRODUCTION
As the world’s second largest maize (Zea mays L.) producer, China occupies an important
position in the global maize industry in terms of planting scale, output, and consumption
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demand, which has a profound impact on the balance of supply and demand in the
international market and food security (Ai et al., 2024). The Loess Plateau in north-west
China is typical of rain-fed agriculture, accounting for about 40% of the country’s dryland
area, and is one of China’s important food-producing areas (Xue et al., 2017). Maize,
as one of the world’s major cereals, is also the most common food crop in the Loess
Plateau (Guo et al., 2021). Maize cultivation not only ensures food security supply in the
Loess Plateau, but also affects and restricts water allocation and ecological environment
construction in the region to a certain extent (Jun et al., 2007). However, factors such as
the region’s particular geography, soil type and climatic conditions have created limitations
in maize production (Qiang et al., 2019; Zheng et al., 2018). Therefore, a comprehensive
understanding of the constraints of maize production in the Loess Plateau and the adoption
of appropriate cultivation measures to improve maize yield are of great significance to food
production in the Loess Plateau.

Poor soil fertility is one of the key factors limiting crop productivity in the Loess
Plateau (Wang, Yan & Gu, 2018; Han et al., 2010). Fertilizer application meets the nutrient
requirements of the crop during growth and development and plays an important role
in determining maize yield (Haque et al., 2024; Montemurro et al., 2007; Pakurar et al.,
2004). Nitrogen fertilizer, as the most applied fertilizer, is highly effective in increasing
crop yields. In the continuing quest for higher yields, nitrogen fertilizer inputs are also
increasing (Takács et al., 2007; Wang et al., 2023). However, excessive nitrogen fertilizer
application not only fails to effectively increase maize yield, but also causes a decline in
nitrogen fertilizer use efficiency and soil nutrient imbalance (Haque & Hoque, 2023). It has
also led to increasing secondary salinisation of soil and ecological pollution (Man-Man,
2011; Min et al., 2014). To solve this problem, the application of organic fertilizer has
received widespread attention.

Organic fertilizers contain a variety of active substances that can dissolve insoluble
compounds in the soil and have the advantages of increasing soil fertility, improving the
physical and chemical properties of the soil, maintaining the balance of soil nutrients
and reducing environmental pollution (Aluoch et al., 2022; Haque et al., 2018; Xiao et al.,
2021). Research has shown that organic fertilizers with nitrogen have a significant effect
in improving soil nutrients and increasing maize yields (Ming et al., 2023). However, the
amount of organic fertilizer and nitrogen fertilizer applied varies according to the growing
area. In northeast China, where soil fertility is adequate and organic matter content is high,
the application of organic fertilizers has limited yield enhancement. Nitrogen fertilizer
application at 180 kg hm−2 significantly increased maize yield. In northwest China, the
application of organic fertilizers significantly improves soil structure and enhances water
and fertilizer retention. A mixture of N and organic fertilizers avoids rapid nutrient loss.
The optimum N application for maize yield in this region has been as high as 270 kg hm−2

(Shen et al., 2005; Wei et al., 2004). However, the choice of fertilizer application rates to
improve maize yields in the Loess Plateau is an urgent issue that needs to be addressed.

Planting density is also one of the important cultivation measures that affect crop yields.
Too low a planting density not only can not effectively use water, fertilizer, light and heat,
but also too large a gap between plants will make rainwater erosion of the soil, leading to

Mi et al. (2025), PeerJ, DOI 10.7717/peerj.19654 2/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.19654


soil erosion (Barker & Edwards, 2010). Excessive planting densities are not only ineffective
in increasing crop yields, but also destabilise maize production by disrupting the soil water
balance in dryland ecosystems (Guo et al., 2021; Li et al., 2023; Sárvári, Hallof & Molnár,
2007; Salmerón et al., 2012). It also increases the risk of plant diseases and pests. Therefore,
screening for a reasonable planting density is crucial for improving maize yield in the Loess
Plateau.

Currently, research on maize yield improvement in the Loess Plateau primarily focuses
on single-factor studies (such as optimized nitrogen management, plastic film mulching
innovations, and density-adapted cultivation) or dual-factor approaches (like organic–
inorganic fertilizer combinations and density-cultivarmatching). However, there have been
few reports investigating the interactive effects of organic fertilizer, nitrogen application,
and planting density on maize yield (Wang et al., 2018; Han et al., 2018). In this study,
dry-crop maize on the Loess Plateau was taken as the research object, and the design of
orthogonal rotating combinations through quadratic regression at five levels for three
factors of organic fertilizer, nitrogen fertilizer and density were carried out. The effects
of fertilizer application and planting density on maize yield and the interaction effects
were investigated. In order to propose the optimal agronomic measures for high-yield
cultivation of maize, and to provide theoretical basis for efficient production of dryland
maize in the Loess Plateau.

MATERIALS AND METHODS
Experimental sites
The experiment was conducted from April 2022 to October 2024 at the National Soil
Quality Observation Experimental Station (35◦30′N, 107◦29′E) of the Dryland Farming
Institute, Gansu Academy of Agricultural Sciences. The area is located at an altitude of
1,279 m, with the soil being black loessial soil. The organic matter and total nitrogen
content are 10.7 g kg−1 and 0.91 g kg−1, respectively, while the available nitrogen, available
phosphorus, and available potassium contents are 91.3 mg kg−1, 11.8 mg kg−1, and
228.3 mg kg−1, respectively, indicating medium fertility. The average annual precipitation
is 533.4 mm, with 60% of the rainfall occurring between July and September, making it
a typical rain-fed dryland farming area. The monthly rainfall distribution across different
years is shown in Fig. 1.

Experimental materials
The experimental material is the maize variety Xianyu 1483, with a 100-kernel weight of
37.55 g, a fertility period of 128 days, and a planting density of 4,500 plants hm−2. It was
provided by the Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences.

Experimental design
The experimental treatments consisted of three factors at five levels (coded as −1.682,
−1, 0, 1, 1.682). The corresponding levels for each factor were as follows: Organic
fertilizer: M4: 2,220, M1: 3,570, M2: 6,000, M3: 8,250, M5: 9,780 kg hm−2. Nitrogen
fertilizer: N4: 23.85, N1: 75, N2: 150, N3: 225, N5: 276.15 kg hm−2. Planting density:
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Figure 1 Monthly rainfall and temperature by year.
Full-size DOI: 10.7717/peerj.19654/fig-1

Table 1 Factor level table.

Factor Level code (γ = 1.682)

−γ −1 0 1 +γ

Manure (M) 2,220 3,750 6,000 8,250 9,780
Nitrogen (N) 23.85 75 150 225 276.15
Density (D) 42,270 52,500 67,500 82,500 92,730

D4: 42,270, D1: 52,500, D2: 67,500, D3: 82,500, D5: 92,730 plants hm−2. According to
the rotatable orthogonal experimental design, which is an experimental design method
used to study systems with multiple factors and multiple levels. It selects a subset of
representative experimental points from the full factorial experiments based on the
principle of orthogonality. These representative points are characterized by uniform
distribution across the experimental domain and balanced comparability, ensuring both
efficiency and statistical validity in analyzing factor effects. A total of 23 treatments were
arranged. For operational convenience, treatments 15–23 were combined, resulting in 15
plots. Each plot measured 20 m × 4.8 m = 96 m2, with a spacing of 0.5 m between plots.
All treatments were conducted under wide plastic filmmulching, with a film width of 1.2 m
and four mulched planting strips per plot. The phosphorus application rate was 120 kg
hm−2 (P2O5). The coded levels of the experimental factors are presented in Table 1, while
the specific experimental design and implementation plan are detailed in Table 2.
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Table 2 Experimental design and implementation plan.

Plot No. Text design Applied rate

M N D M
(kg hm−2)

N
(kg hm−2)

D
(plants hm−2)

1 −1 −1 −1 3,750 75 52,500
2 1 −1 −1 8,250 75 52,500
3 −1 1 −1 3,750 225 52,500
4 1 1 −1 8,250 225 52,500
5 −1 −1 1 3,750 75 82,500
6 1 −1 1 8,250 75 82,500
7 −1 1 1 3,750 225 82,500
8 1 1 1 8,250 225 82,500
9 −1.682 0 0 2,220 150 67,500
10 1.682 0 0 9,780 150 67,500
11 0 −1.682 0 6,000 23.85 67,500
12 0 1.682 0 6,000 276.15 67,500
13 0 0 −1.682 6,000 150 42,270
14 0 0 1.682 6,000 150 92,730
15 0 0 0 6,000 150 67,500
16 0 0 0 6,000 150 67,500
17 0 0 0 6,000 150 67,500
18 0 0 0 6,000 150 67,500
19 0 0 0 6,000 150 67,500
20 0 0 0 6,000 150 67,500
21 0 0 0 6,000 150 67,500
22 0 0 0 6,000 150 67,500
23 0 0 0 6,000 150 67,500

Experimental methods
Field preparation and plastic film mulching were carried out in early April during 2022–
2024. Seeds were sown using a dibbler in mid-April, with harvesting conducted in late
September. For yield assessment, a representative sampling area with uniform plant growth
was selected from each plot. Within this area, 30 plants were systematically sampled row by
row, with three replicates per plot. After threshing, grain moisture content was determined
using a grain moisture meter (PM-8188-A), and the yield per unit area was calculated at a
standardized moisture content of 14%.

Statistics analysis
The experimental data were organized, statistically analyzed, and subjected to variance
analysis using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA) and SPSS 27.0 (IBM
Corp, Armonk, NY, USA) statistical analysis software. Graphs were created using Origin
2021 software.
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Table 3 Yield of different years under different treatments.

Plot No. Treatments Yield (kg hm−2)

2022 2023 2024

1 M1N1D1 11,116.05 11,923.58 10,943.25
2 M3N1D1 11,642.27 12,018.45 11,029.67
3 M1N3D1 12,258.56 12,247.65 11,287.11
4 M3N3D1 12,446.73 12,843.45 12,367.82
5 M1N1D3 14,178.51 14,662.36 13,368.45
6 M3N1D3 15,718.46 15,549.26 13,506.43
7 M1N3D3 16,240.50 15,814.80 14,764.65
8 M3N3D3 16,940.33 16,115.25 15,345.01
9 M4N2D2 14,699.40 14,352.11 13,898.62
10 M5N2D2 16,602.21 15,630.12 14,798.70
11 M2N4D2 13,969.50 13,782.90 12,918.15
12 M2N5D2 14,984.10 14,313.60 13,882.73
13 M2N2D4 10,324.76 9,907.35 9,925.28
14 M2N2D5 14,525.10 14,992.68 14,376.15
15 M2N2D2 15,228.60 15,173.41 14,928.00
16 M2N2D2 15,068.10 15,363.15 14,724.45
17 M2N2D2 15,078.45 15,214.65 14,676.00
18 M2N2D2 14,876.85 14,994.75 14,746.05
19 M2N2D2 15,285.45 15,414.15 14,886.75
20 M2N2D2 14,892.75 14,840.70 15,004.80
21 M2N2D2 14,908.35 14,957.70 14,900.40
22 M2N2D2 15,290.25 15,272.10 14,825.55
23 M2N2D2 15,349.80 15,361.65 14,840.40

RESULTS
Modelling and testing
Based on the experimental results (Table 3), a regression model of yield (Y) with organic
fertilizer (X1), nitrogen fertilizer (X2) and density (X3) was established.

Y2022 = 15,115.402+450.621X1+507.927X2+1,660.474X3+127.222X1
2–287.767X2

2–
1,013.066X3

2–147.271X1X2+109.674X1X3+167.111X2X3

Y2023 = 15,173.730+294.886X1+275.302X2+1,586.006X3–34.898X1
2–368.183X2

2–
933.130X3

2–10.690X1X2+62.085X1X3+71.170X2X3

Y2024 = 14,845.102+248.890X1+478.774X2+1,379.610X3–251.469X1
2–586.648X2

2–
1,028.403X3

2–179.584X1X2–56.099X1X3+194.096X2X3.
The regression coefficients, total regression coefficients and lack of fit of the equations

were tested separately by F-test to obtain the ANOVA table (Table 4). The ANOVA results
showed that the total regression coefficients of equations Y2022, Y2023 and Y2024 reached
the highly significant level (P < 0.001), and the lack of fit did not reach the significant level
(P > 0.05), which indicated that the models of equations Y2022, Y2023 and Y2024 were
valid, and the regression equationswere reasonably and reliably fitted. Finally, the optimised
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Table 4 Analysis of variance between yield and various treatments (F -value).

Treatments 2022 2023 2024

X1 32.233*** 10.623** 36.754***

X2 43.730*** 26.299*** 203.515***

X3 486.857*** 376.536*** 1,121.828***

X1
2 1.093 0.559 5.649*

X2
2 5.473* 5.900* 8.513*

X3
2 8.707** 14.592*** 14.923**

X1X2 4.961 0.748 22.950***

X1X3 8.316* 0.983 2.240
X2X3 6.388* 3.584 26.809***

R (F2) 32.274*** 94.372*** 78.933***

Lack of Fit 1f (F1) 0.901 3.584 3.387

Notes.
*0.01< P < 0.05.
**0.001< P < 0.01.
***P < 0.001.

regression equations were obtained after the ANOVA test to eliminate insignificant terms
(P > 0.05).

Y’2022 = 15,115.402+450.621X1+507.927X2+1,660.474X3–287.767X2
2– 1,013.066X3

2

+109.674X1X3+167.111X2X3

Y’2023 = 15,173.730+294.886X1+275.302X2+1,586.006X3–368.183X2
2–933.130X3

2

Y’2024 = 14,845.102+248.890X1+478.774X2+1,379.610X3–251.469X1
2–586.648X2

2–
1,028.403X3

2–179.584X1X2+194.096X2X3.

Factor main effects analysis
The contribution rate of each factor to yield was calculated based on the F value of each
treatment, and the effect of each factor on yield in each year could be obtained by calculating
the contribution rate of each factor to maize yield in different years (Table 5). The effects
of organic fertilizer, nitrogen fertilizer, and density on maize yield exhibited significant
interannual variations. Quantitative analysis of the 2022–2024 growing seasons revealed
a consistent hierarchy of contributing factors: density > nitrogen fertilizer > organic
fertilizer. Meanwhile, the contribution of density to maize yield was much greater than
that of fertilizer.

One-way effects analysis
Dimensionality reductionmethod was used to study the effect of organic fertilizer, nitrogen
fertilizer and density on maize yield, fixing the level of other factors at zero, the effect of
a single factor on maize yield could be obtained. Fixing the nitrogen fertilizer and density
factors at zero level gives an equation for the effect of organic fertilizer on maize yield:

Y2022 = 15,115.402+450.621X1

Y2023 = 15,173.730+294.886X1
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Table 5 Single factor contribution rate (%).

Treatments 2022 2023 2024

X1 4.93 4.51 5.79
X2 5.05 6.26 14.54
X3 90.02 89.23 79.66

Y2024 = 14,845.102+248.890X1–251.469X1
2.

Similarly, the equation for the effect of nitrogen fertilizer on maize yield:

Y2022 = 15,115.402+507.927X2–287.767X2
2

Y2023 = 15,173.730+275.302X2–368.183X2
2

Y2024 = 14,845.102+478.774X2–586.648X2
2.

Similarly, the equation for the effect of density on maize yield:

Y2022 = 15,115.402+1,660.474X3–1,013.066X3
2

Y2023 = 15,173.730+1,586.006X3–933.130X3
2

Y2024 = 14,845.102+1,379.610X3–1,028.403X3
2.

From the equation, a one-factor effect plot was obtained (Fig. 2). Different factors
and levels had different effects on maize yield and, also, varied among years. In 2022 and
2023, maize yield increased with increasing organic fertilizer content. In 2024, maize yield
showed an increasing and then decreasing trend with increasing organic fertilizer content,
andmaize yield in 2024 was significantly lower than the other two years. This may be related
to the rainfall in that year, where sufficient moisture effectively dissolved the nutrients of
organic fertilizer in the soil, which in turn contributed to the increase in yield. The maize
yield showed a trend of decreasing with increasing nitrogen fertilizer content and planting
density. The highest maize yield was recorded at 225 kg hm−2 of N fertilizer in 2022, while
the highest maize yield was recorded at 150 kg hm−2 of N fertilizer in 2023 and 2024. All
planting densities were highest at 82,500 plants hm−2. It indicates that the appropriate
nitrogen fertilizer and density can help to increase maize yield, while too high nitrogen
fertilizer application and planting density will rather inhibit the formation of yield.

Analysis of intercropping effects
The results of ANOVA showed that significant intercropping existed among the crosses.
Organic fertilizer-nitrogen fertilizer, organic fertilizer-density and nitrogen fertilizer-
density intercropping all affectedmaize yield (Table 4). The equations for the intercropping
effects of organic fertilizer, nitrogen fertilizer, density and yield were obtained using the
downscaling method.

Equation for the effect of organic fertilizer-nitrogen fertilizer interactions on yield:

Y2022 = 15,115.402+450.621X1+507.927X2+127.222X1
2–287.767X2

2–147.271X1X2

Y2023 = 15,173.730+294.886X1+275.302X2–34.898X1
2–368.183X2

2–10.690X1X2
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Figure 2 Single factor effects.
Full-size DOI: 10.7717/peerj.19654/fig-2

Y2024 = 14,845.102+248.890X1+478.774X2–251.469X1
2-586.648X2

2–179.584X1X2.

Equation for the effect of organic fertilizer-density interactions on yield:

Y2022 = 15,115.402+450.621X1+1,660.474X3+127.222X1
2–1,013.066X3

2+109.674X1X3

Y2023 = 15,173.730+294.886X1+1,586.006X3–34.898X1
2–933.130X3

2+62.085X1X3

Y2024 = 14,845.102+248.890X1+1,379.610X3–251.469X1
2–1,028.403X3

2–56.099X1X3.

Equations for the effect of nitrogen fertilizer-density interactions on yield:

Y2022 = 15,115.402+507.927X2+1,660.474X3–287.767X2
2–1,013.066X3

2+167.111X2X3

Y2023 = 15,173.730+275.302X2+1,586.006X3–368.183X2
2–933.130X3

2+71.170X2X3

Y2024 = 14,845.102+478.774X2+1,379.610X3–586.648X2
2–1,028.403X3

2+194.096X2X3.

The organic fertilizer-N fertilizer interaction equation yielded a plot of the interaction
effect (Fig. 3). The highest yield of maize was obtained when organic and nitrogen fertilizers
were at higher levels. In all three years, when the organic fertilizer content was at a high
level, the yield showed a trend of increasing and then decreasing with increasing nitrogen
fertilizer content. In 2022 and 2023, yield increased with increase in organic fertilizer when
nitrogen fertilizer content was higher, whereas in 2024, yield showed an increasing and
then decreasing trend with increase in organic fertilizer. It showed that the interaction of
organic and nitrogen fertilizer had a synergistic effect on yield at both organic and nitrogen
fertilizer levels.

The organic fertilizer-density interaction equation yielded a plot of the interaction effect
(Fig. 4). The best yield was obtained only when both organic fertilizer and density were
at high levels. At low planting densities, the effect of increasing organic fertilizer content
on yield improvement was not significant, indicating that planting density had a greater
effect on maize yield. Meanwhile, in all the three years, when the organic fertilizer content
was constant, the yield showed an increasing and then decreasing trend with increasing
planting density. In 2022 and 2023, when planting density was constant, yield increased
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Figure 3 Diagram of the interaction effect between organic fertilizer and nitrogen fertilizer.
Full-size DOI: 10.7717/peerj.19654/fig-3

Figure 4 Diagram of the interaction effect between organic fertilizer and density.
Full-size DOI: 10.7717/peerj.19654/fig-4

with increase in organic fertilizer, while in 2024, yield showed an increasing and then
decreasing trend with increase in organic fertilizer.

Nitrogen fertilizer-density reciprocal equations yielded a plot of reciprocal effects
(Fig. 5). The highest maize yield occurred at higher levels of nitrogen fertilizer and density,
indicating a synergistic effect of nitrogen fertilizer and density on yield. In the three years,
when the planting density was constant, the yield showed a trend of increasing and then
decreasing with the increase of nitrogen fertilizer content. Meanwhile, when nitrogen
fertilizer application was constant, yield also showed a trend of first increase and then
decrease with increasing planting density. This indicates that both excessive nitrogen
fertilizer application and planting density are not conducive to the formation of maize
yield.

Analysis of the optimisation of cultivation measures
With maize yield as a function of the target, the integrated agronomic measures can
be optimised by the statistical frequency method to derive the target. Considering the
production conditions, climatic conditions, and soil conditions in the Loess Plateau,
a maize yield of 15,000 kg hm−2 can be positioned as a high-yield target. A total of
24 treatments were calculated to have theoretical yield higher than 15,000 kg hm−2 in
the experiment, and the frequency of occurrence of the 24 treatments at the level of
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Figure 5 Diagram of the interaction effect between nitrogen fertilizer and density.
Full-size DOI: 10.7717/peerj.19654/fig-5

each factor was counted. It can be seen that the highest frequency of yield higher than
15,000 kg hm−2 occurred when the coded levels of organic fertilizer, nitrogen fertilizer
and density were zero. By calculating the distribution of 95% confidence intervals, stable
organic and nitrogen fertilizer application rates and planting densities could be optimised,
i.e., organic fertilizer application rates of 6,429.30–7,895.10 kg hm−2, nitrogen fertilizer
application rates of 159.30–203.55 kg hm−2, and planting densities of 72,465–80,940 plants
hm−2 resulted in high maize yield (Table 6).

DISCUSSION
Importance of density on yield
The Loess Plateau, as one of the major areas of dryland food production in China, provides
an important guarantee for national food security. Maize is the main food crop in the
region, and its yield is the result of a synergy of planting density, nutrient management
and environmental conditions (Jia et al., 2018). Planting density directly affects population
structure and resource use efficiency and is the most important factor affecting yield (Hou
et al., 2020). This was also confirmed in this study, with the effect on maize yield: density
> nitrogen fertilizer > organic fertilizer. Increasing planting density is one of the most
direct and effective cultivation measures to improve crop yield. Moderate densification can
improve the growth rate and dry matter accumulation of maize in the pre-reproductive
period by improving the canopy light interception rate and productivity, but too high
a density is not conducive to the accumulation of dry matter in the post-reproductive
period, which is prone to cause a decline in the growth rate of the population. At the same
time, over-densification will increase the competition among plants for light, water and
nutrients, leading to individual stunting and increased risk of failure, which will ultimately
affect the formation of yield (Han et al., 2015; Liu et al., 2017; Tokatlidis & Koutroubas,
2004). In this study, maize yield increased with increasing density when planted below
82,500 plants hm−2. However, when the density exceeded 82,500 plants hm−2, the yield
decreased instead with the increase of planting density. Therefore, while increasing planting
density, soil fertility and hydrothermal conditions, etc., need to be considered.
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Table 6 Analysis of the optimisation of cultivation measures for high maize yields.

Level Organic fertilizer Nitrogen fertilizer Density

Times Frequency Times Frequency Times Frequency

−1.682 0 0 0 0 0 0
−1 1 0.04 1 0.04 0 0
0 13 0.54 14 0.58 12 0.50
1 5 0.21 6 0.25 8 0.33
1.682 5 0.21 3 0.13 4 0.17

Sum 24 1 24 1 24 1
95% frequency distribution 0.191–0.843 0.123–0.714 0.331–0.896
Optimal range 6,429.30–7,895.10 159.30–203.55 72,465–80,940

Effect of water-fertilizer synergy on yield
Water and nutrients are the main influences on crop development and yield formation in
arid regions. Insufficient precipitation inhibits nutrient uptake and insufficient nutrients
reduce water use efficiency, both of which are detrimental to crop yield formation. (Mingde,
2019; Pinheiro & Chaves, 2011). In this study, maize yields were significantly higher in 2022
and 2023, when rainfall was more abundant, than in 2024. Under the organic fertilizer
treatment, maize yield tended to increase as the amount of organic fertilizer applied
increased. This is due to the fact that organic fertilizer addition improves soil structure,
enhances water and fertilizer retention capacity and slow release of nutrients, which
contributes to kernel filling and resilience in the later stages of maize fertility (Gathorne-
Hardy, 2016; Haque et al., 2015). And with the increase of nitrogen fertilizer application,
the maize yield showed a trend of first increase and then decrease. This may be due to
the fact that nitrogen addition can quickly replenish key nutrients for crop growth and
promote the accumulation of dry matter in maize. Whereas, excessive nitrogen application
can cause problems such as vigorous nutrient growth, soil acidification and organic matter
loss, which ultimately lead to a reduction in maize yield (Marques et al., 2017; Okalebo et
al., 1999).

Effect of organic fertilizer, nitrogen fertilizer and density interactions
on yield
Reasonable fertilizer application and planting density are key to improving crop yields.
Density and fertilizer application interactively influence root spatial distribution. Under
high nitrogen conditions, roots tend to concentrate in shallow soil layers, whereas organic
fertilizer promotes deep root development, effectively mitigating water competition
(Ma & Zheng, 2018). Fertilizer supply at high planting densities can effectively alleviate
problems such as unbalanced nutrient supply to maize and fertilizer removal at the
later stages of fertility (Lai et al., 2022). At the same time, organic fertilizers increase the
abundance of ammonia-oxidising bacteria by providing a carbon source to stimulate
microbial activity, promote organic nitrogen mineralisation, and form a slow-release
complementary effect with chemical nitrogen fertilizers to improve nitrogen deficiency
under high density conditions. The combination of organic fertilizer and nitrogen fertilizer
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can increase bioproductivity and reduce leaching losses, playing an important role in
achieving high-yield and green agriculture (Li et al., 2024). This study showed that organic
fertilizer-nitrogen fertilizer intercropping, organic fertilizer-density intercropping and
nitrogen fertilizer-density intercropping all had significant yield enhancement in maize.
It is noteworthy that the interaction effect of the three yield increases was significant. For
example, at medium densities, organic- nitrogen fertilizers are most effective in increasing
yields because of a well-structured population and a balanced supply of nutrients. In
contrast, high-density planting may result in lower yields if it is not supported by adequate
amounts of fertilizer (Workayehu, 2000). Combined with the actual environmental
conditions and production conditions in the Loess Plateau, the optimal range of each
cultivation measure was obtained when the yield was higher than 15,000 kg hm−2:
the application of organic fertilizer was 6,429.30–7,895.10 kg hm−2, nitrogen fertilizer
was 159.30–203.55 kg hm−2, and the planting density was 72,465–80,940 plants hm−2.
Considering the arid climate characteristics of the Loess Plateau, the combination of
moderate planting density + slow-release nitrogen fertilizer + organic fertilizer can be
adopted, along with appropriate moisture-conserving and rainfall-harvesting cultivation
measures (such as double ridge-furrow mulching, straw mulching, etc.), to achieve high
maize yields. The results are reliable and can provide theoretical basis and practical reference
for maize production in the Loess Plateau.

CONCLUSION
Maize is not only the core crop of the agricultural economy of the Loess Plateau, but also
plays an irreplaceable role in ecological protection and livelihood security. The magnitude
of contribution of different factors in increasing maize yield was in the following order:
density > nitrogen fertilizer > organic fertilizer. Meanwhile, this study screened out the
dense fertilizer levels for high yield of maize in the Loess Plateau: 6,429.30–7,895.10 kg
hm−2 of organic fertilizer, 159.30–203.55 kg hm−2 of nitrogen fertilizer, and planting
densities of 72,465–80,940 plants hm−2. Considering the arid climate characteristics of
the Loess Plateau, the combination of moderate planting density + slow-release nitrogen
fertilizer + organic fertilizer can be adopted, along with appropriate moisture-conserving
and rainfall-harvesting cultivation measures (such as double ridge-furrow mulching, straw
mulching, etc.), to achieve high maize yields. This study provides theoretical basis and
practical experience for the standardised cultivation of maize in the Loess Plateau.
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