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ABSTRACT
Background. Lysine post-translational modification (PTM) is pivotal in regulating
diverse cellular processes, profoundly impacting protein structure and function.
Over recent decades, numerous experimental techniques have advanced PTM site
identification, significantly contributing to research progress. However, these methods
are time-intensive and labor-intensive. Deep learning technologies have shown promise
in predicting PTM sites, yet current approaches struggle with species-specific PTM site
prediction.
Methods. We introduce MDDeep-Ace, a novel deep learning method based on
multi-domain adaptation for predicting lysine acetylation sites. By integrating data
from multiple species, MDDeep-Ace enhances the generalization of species-specific
prediction models, improving predictive performance.
Results. Experimental findings illustrate that our proposed multi-domain adaptation
approach significantly enhances prediction accuracy across multiple species, surpassing
existing lysine acetylation site prediction tools.

Subjects Biochemistry, Bioengineering, Bioinformatics
Keywords Acetylation, Species-specific, Deep learning, Multi-domain adaptation

INTRODUCTION
Protein acetylation is a critical post-translational modification (PTM) in which lysine
acetyltransferase transfers an acetyl group from a donor to the ε-amino group side chain of
lysine, typically at the protein’s N-terminus. Initially identified in histone lysine residues of
eukaryotic organisms, this reversible and tightly regulated process is vital for maintaining
protein structure and function (Kim et al., 2006; Narita, Weinert & Choudhary, 2018; Graf
et al., 2021). For example, research has shown that histone acetylationmodification inhibits
the promoter activity, mRNA, and protein expression of ADRB2, offering novel insights
into asthma prevention and treatment (Sheikhpour et al., 2021). Additionally, acetylation
modification contributes to the biological mechanisms of plant photomorphogenesis,
such as seed germination, chlorophyll synthesis, and hypocotyl elongation (Le Roux et al.,
2015; Ma et al., 2020). Thus, a comprehensive understanding of acetylation mechanisms
is essential for elucidating cellular activity patterns and guiding disease management
strategies.

Over the past few decades, various experimental techniques have advanced PTM site
identification, driving progress in PTM research (Aponte et al., 2009; Bockus & Scofield,

How to cite this article Liu Y, Ye C, Lin C, Mao K, Zhu M. 2025. MDDeep-Ace: species-specific acetylation site prediction based on
multi-domain adaptation. PeerJ 13:e19649 http://doi.org/10.7717/peerj.19649

https://peerj.com
mailto:zhuming@ahu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.19649
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.19649


2009). However, these methods are labor-intensive and time-consuming. With the
exponential growth of protein data, relying solely on experimental approaches to identify
PTM sites has become increasingly impractical. Consequently, there is an urgent need for
computational methods to efficiently predict PTM sites on a large scale. For instance, Deng
et al. (2016) developed a Bayes discrimination-based method called PAIL for acetylation
site prediction, achieving over 85% accuracy across various thresholds. Similarly, Shao et al.
(2012) proposed a Bayesian feature extraction approach in conjunction with support vector
mechanisms for constructing an acetylation site prediction model, achieving high accuracy
in predicting human acetylation sites. Furthermore, ProAcePred, proposed by Chen et
al., (2018) employs elastic net optimization to enhance feature extraction, significantly
improving species-specific lysine acetylation site prediction.

Although traditional machine learning-based PTM prediction methods have made
notable progress, their dependence on manually extracted sequence features limits
their ability to uncover complex patterns in large datasets. Recent advancements in
deep learning methods have proven to be highly beneficial in the realms of artificial
intelligence and biomedicine (Wu et al., 2020; Lin et al., 2022; Zhu et al., 2023; Zou et
al., 2023; Zou et al., 2024). Their strength lies in their ability to automatically identify
intricate patterns within training samples, leading to the abstract characterization of
samples and enhanced prediction capabilities. For instance, Chen et al. (2019) developed
MUscADEL, a bidirectional long short-term memory (LSTM) recurrent network-based
tool for predicting PTM sites, including glycosylation, methylation, and ubiquitination,
with superior performance. Additionally, CapsNet (Wang, Liang & Xu, 2019), replaces the
convolutional layer with a capsule layer in the MusiteDeep framework (Wang et al., 2017),
achieving outstanding performance across various PTM sites. Lai & Gao (2023) developed
a web server named Auto-Kla, a transformer-based model. This model matches or exceeds
the performance of existing acetylation site prediction models.

Despite the success of deep learning, developing species-specific PTM site prediction
models requires substantial labeled data, which is often limited formany species. To address
the issue of limited data, transfer learning has emerged as a solution to this challenge. For
example, Li et al. (2020) used transfer learning to predict protease-specific cleavage sites by
pre-training on extensive protease family data and fine-tuning on smaller, specific datasets.
Besides fine-tuning, domain adaptation has been successfully employed in species-specific
PTM site prediction. For instance, Liu et al. (2021) introduced DeepTL-Ubi, a domain
adaptation-based method for predicting species-specific ubiquitination sites, boosting
performance by incorporating a species transfer loss function to align semantics across
different species. Subsequently, Liu, Wang & Xi (2022) developed DeepDA-Ace, a novel
approach, leveraging semantic adversarial learning to minimize domain discrepancies
among species, improving performance across multiple species. More recently, a semi-
supervised method has been proposed to enhance species-specific PTM site prediction,
which utilizes unlabeled data to augment species-specific data. Despite the effectiveness of
these strategies in enhancing species-specific PTM site prediction, these methods primarily
rely on human data as the source domain, neglecting valuable data from other species.
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To address this gap, we design a multi-domain adaptation approach, MDDeep-Ace,
utilizing PTM sites of multiple species to learn more discriminative patterns, enhancing the
performance of the models. It employs a convolutional neural network-long short-term
network (CNN-LSTM) hybrid network to extract sequence features and introduce a
dynamic domain difference adjustment loss to modulate the influence of source domains.
Extensive experiments demonstrate thatMDDeep-Ace outperforms species-specificmodels
trained on single-source domain, highlighting the benefits of multi-domain adaptation.
Meanwhile, compared with the state-of-the-art lysine acetylation site prediction tools,
MDDeep-Ace also achieves a remarkable performance improvement, establishing it as a
robust tool for species-specific PTM site prediction.

This study conducted extensive ablation and comparison experiments to validate three
hypotheses: (1) Domain adaptation enhances prediction accuracy for species with limited
data, with MDDeep-Ace achieving a 7% higher average area under the curve (AUC)
across nine species compared to non-domain adaptation methods. (2) Multi-species
source domain models outperform single-source (human-only) models, with MDDeep-
Ace showing AUC improvements of 4.2% and 2.0% for B. velezensis and A. thaliana,
respectively. (3) In comparison with existing lysine PTM prediction tools, we finds that
the deep learning-based methods, particularly species-specific models like MDDeep-Ace,
surpass traditional machine learning approaches and general models.

The key contributions of this work include: (1) Proposing a multi-domain
adaptation method that leverages the PTM sites of multiple species to improve the
model’s ability to generalize across species. (2) Designing a hybrid neural network
to extract critical features for efficient bioinformatics prediction of PTM sites. (3)
Demonstrating through experiments that MDDeep-Ace outperforms existing lysine
PTM prediction tools. The code and data for MDDeep-Ace are available on GitHub:
https://github.com/Lxiaoyuleyuan/MDDeep-Ace.

MATERIALS AND METHODS
Dataset
We collected ten species of lysine acetylation sites from PLMD dataset (Xu et al., 2017),
including 6,078H. sapiens proteins, 3,645M. musculus proteins, 2,960 S. cerevisiae proteins,
4,359 R. norvegicus proteins, 1,251 S. japonicum proteins, 231 A. thaliana proteins, 1,860
E. coli proteins, 1,146 B. velezensis proteins, 1,214 P. falciparum proteins, 336 O. sativa
proteins. We utilized the CD-HIT tool (Huang et al., 2010) to cluster protein sequences
for each species, filtering out homologous proteins exceeding a 40% similarity threshold.
Negative samples were defined as lysine residues that were not experimentally verified as
acetylation sites from the non-homologous proteins. Subsequently, 10% of both positive
and negative samples per species were randomly allocated to an independent test dataset,
with the remaining data used for training and validation. To address sample imbalance and
prevent over-optimization, we balanced the dataset by equalizing the number of positive
and negative samples (Table 1). Finally, protein sequences were encoded into numerical
vectors using one-hot encoding, where each amino acid is represented by a vector with a
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Table 1 The AUC value of MDDeep-Ace and baseline methods.

Species Species-Specific Genaral

MDDeep-Ace SSDA SSDT MDDeep-Ace
(Uniform weight)

R. norvegicus 0.764 0.749 0.729 0.756
S. japonicum 0.818 0.802 0.727 0.813
S. cerevisiae 0.808 0.783 0.738 0.803
M. musculus 0.772 0.761 0.731 0.766
E. coli 0.763 0.748 0.742 0.755
B. velezensis 0.847 0.805 0.741 0.825
P. falciparum 0.700 0.682 0.659 0.692
O. sativa 0.823 0.804 0.689 0.803
A. thaliana 0.813 0.793 0.713 0.804
Average 0.790 0.770 0.719 0.779

single ‘1’ and all other elements as ‘0’. For example, for lysine (K), the one-hot encoding
is ‘‘000000100000000000000’’, while for serine (S), it is ‘‘000000000000000100000’’.
By following previous studies (Jia et al., 2016; Liu et al., 2021), symmetrical 31-residue
windows, spanning from −15 to +15 with lysine at the center, were extracted from
protein fragments to serve as training and testing samples. Meanwhile, we also conducted
comparative experiments on different window sizes, demonstrating the rationality of
choosing a length of 31. The relevant settings and results of the experiments are listed in
the Table S1. To standardize fragment lengths, we used the placeholder amino acid ‘X’
for padding missing residues or replacing non-standard amino acids. The fragments were
transformed into numerical vectors using one-hot encoding. Each fragment was encoded
as a 31 × 21 feature, where 31 represents the sequence length and 21 the amino acid
categories.

MDDeep-Ace architecture
MDDeep-Ace is a novel multi-domain adaptation learning based species-specific lysine
acetylation site prediction method, with its workflow illustrated in Fig. 1. We curated data
from ten species, using nine as source domains when training a predictive model for a
specific target species.

The training dataset consists of two components: N labeled source dataset DS
=

{DS1,DS2,...,DSN }. The categories across all source domains are identical. DSj ={
x
Sj
i ,y

Sj
i

}NSj

i=1
, where x denotes the one-hot encoding sequence feature of sample and y

denotes the label of sample, x
Sj
i and y

Sj
i denote sequence feature of jth source domain and

corresponding label, NSj denotes the number of sample of jth source domain; a labeled

target dataset DT
=
{
xTi ,y

T
i
}NT

i=1, where x
T
i and yTi denote sequence feature and label of

target domain, NT denotes the number of labeled target domain.
MDDeep-Ace employs a CNN-LSTM hybrid network g to extract sequence features

and map protein sequences into an embedding space, followed by a classifier h for feature
classification. The CNN layer, with 21 input channels and 128 output channels, uses a kernel
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Figure 1 The overall framework of MDDeep-Ace. The sample sj denotes the j-th data among multiple
source domains, while the sampleT represents the data in target domain.

Full-size DOI: 10.7717/peerj.19649/fig-1

size of 3 with a padding of 1 to capture local sequence features. The subsequent LSTM layer,
with a hidden size of 128, processes the 128-channel CNN output to capture long-range
dependencies. An average pooling layer (kernel size 2, stride 2) reduces dimensionality,
enabling efficient extraction of both local and long-range features. The classifier applies a
softmax operation to generate predictions.

p
(
y|x
)
= h

(
g (x : θ);W

)
. (1)

The entire framework employs CNN-LSTM hybrid network as shared feature extractors
across multiple domains. This shared structure allows data from different domains to be
mapped to the same feature space, ensuring the extraction of domain-invariant features
common to all fields. The domain alignment component minimizes feature distribution
discrepancies between source and target domains through a domain discrepancy loss.

We employ Kullback–Leibler (KL) divergence to measure feature distribution distances
between domains, calculating a dynamic adjustment factor to prioritize source domain
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samples closer to the target domain while suppressing less similar ones. By differentially
reducing inter-domain discrepancies, the framework better learns domain-invariant feature
representations, thereby achieving more accurate recognition of target domain samples.
To support the domain adaptation, the total loss comprises two parts: the classification
loss of all source domains and the inter-domain discrepancy loss. By adjusting the weight
proportions of each source domain within the total loss function, the influence of each
source domain on the target domain is determined by the specific weight allocation. The
total loss function is shown below:

Ltotal = LTC
(
g ,h

)
+αj

(
L
Sj
C
(
g ,h

)
+L

Sj
KL
(
g
))

(2)

where LTC(·) and L
Sj
C (·) represent the classification loss function applied to the target domain

and the jth source domain, respectively, L
Sj
KL(·) denotes domain difference loss function

for the jth source domain whileαj is the weight coefficient of the jth source domain in the
loss function. The classification loss function is defined as follows:

Lc
(
g ,h

)
=−

1
N

Q∑
i=1

yi lnp
(
yi|xi

)
+
(
1−yi

)
ln
(
1−p

(
yi|xi

))
, (3)

where Q is the number of samples. The domain difference loss function is defined as
follows:

L
Sj
KL= E

( M∑
k=1

g
(
xT
)
k · log

g
(
xT
)
k

g
(
xSj
)
k

)
(4)

where E(·) denotes the mathematical expectation, g (x)k denotes the kth dimension feature
of g (x). The weight coefficient is computed by:

αj =
exp

(
Dj
)∑N

c=1exp(Dc)
(5)

where Dj denotes the KL divergence between the features of jth source domain and the
target domain. Supplementary File S1 details the corresponding code for loss function
calculations.

Performance evaluation indicators
To evaluate MDDeep-Ace, we used five performance metrics: area under the receiver
operating characteristic (ROC) curves (AUC), sensitivity (Sn), accuracy (Acc), precision
(Pre) and F1 score. The formula of these metrics are as follows.

Acc =
TP+TN

TP+TN +FP+FN
(6)

Sn=
TP

TP+FN
(7)

Sp=
TN

TN +FP
(8)

Pre=
TP

TP+FP
(9)

F1=
2×Pre×Sn
Pre+Sn

(10)
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Figure 2 The two-sample-logo representation of position-specific residue composition surrounding
the acetylation sites and non-acetylation sites. The logo graphs are generated by the web server http://
www.twosamplelogo.org/. Only residues significantly enriched or depleted (t -test, P < 0.050) flanking the
centered acetylation sites (upstream 15 residues and downstream 15 residues) are shown.

Full-size DOI: 10.7717/peerj.19649/fig-2

where TP, TN, FP, FN represent true positives, true negatives, false positives and false
negatives, respectively.

RESULTS
Sequence analysis
We analyzed the patterns of lysine acetylation using two-sample logo tool (Fig. 2). The
analysis revealed distinct sequence differences across species. For example, Glycine/G
residue is found enriched in position −1, −4 and +2 for H. sapiens, but not in O. sativa
and A. thaliana. However, compared with R. norvegicus and H. sapiens, phenylalanine/F
and tyrosine/Y residue prefer to enrich in position −1, −2 and +2 on B. velezensis. These
findings underscore the need for species-specific prediction models. However, there still
exist similarities between different species. For example, in most species, lysine (K) shows
a significant depletion at diverse positions surrounding the acetylation site, both upstream
and downstream.Meanwhile, the asparagine/D is enriched at−1 and+1 position on several
species. Additionally, we also found that the degree of similarity varies among different
species. For example, the types of amino acids enriched and depleted near acetylation sites
in S. cerevisiae and E. coli are almost identical, whereas there are significant differences in
the distribution of amino acids near acetylation sites between S. cerevisiae and B. velezensis.
These observations highlight the potential of domain adaptation methods to leverage
inter-species similarities, enhancing species-specific acetylation site prediction.
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Comparison with existing methods
We compare MDDeep-Ace with several existing acetylation site prediction methods
including DeepDA-Ace (Liu, Wang & Xi, 2022), CapsNet (Wang, Liang & Xu, 2019), and
PAIL (Deng et al., 2016) based on test dataset, and the construction approach of the test
data set is shown as 2.1. In order to visualize the predictive performance, we show the ROC
curves of different methods on multiple species in Fig. 3 and Fig. S1. From the Figure,
we find that MDDeep-Ace, DeepDA-Ace and CapsNet achieved better performance than
PAIL on all species. Take S. cerevisiae as an example, the AUC value of MDDeep-Ace,
DeepDA-Ace and CapsNet are 0.808, 0.780 and 0.736 respectively, while PAIL only
obtains 0.541 AUC value, demonstrating the superiority of deep learning-based methods.
Besides, MDDeep-Ace and DeepDA-Ace outperform the other methods, suggesting that
species-specific models have more advantages than general models. Meanwhile, it indicates
that the transfer learning technique has an advantage over other deep learning methods
in species-specific acetylation site prediction. For instance, DeepDA-Ace achieves 3.1%,
4.9%, 4.4% and 4.9% improvement compared to CapsNet on S. japonicum,R. norvegicus, S.
cerevisiae andM. musculus. Additionally, our proposedMDDeep-Ace combines the benefits
of transfer learning and multi-domain adaptation technique, and obtains the highest AUC
value among existing methods on almost all species in test dataset. Taking B. velezensis
as an example, compared to DeepDA-Ace, CapsNet and PAIL, the AUC of MDDeep-Ace
has improved by 5.3%, 7.7% and 29.4%, respectively. As for R. norvegicus, MDDeep-Ace
obtains 0.764 AUC value, while the corresponding AUC value of DeepDA-Ace, CapsNet
and PAIL are 0.732, 0.683 and 0.538, respectively.

Additionally, to evaluate the performance ofMDDeep-Acemore comprehensively, these
four metrics are also considered by us: sensitivity (Sn), accuracy (Acc), precision (Pre)
and F1 score at high specificity (Sp). We compared these metrics of the four methods at a
specificity of 0.900, and the results are illustrated in Fig. 4 and Fig. S2. Clearly,MDDeep-Ace
demonstrates superior performance across most metrics for all species. For example, on
S. cerevisiae, MDDeep-Ace shows notable improvements: accuracy (Acc) increases by 5%,
sensitivity (Sn) by 9.8%, precision (Pre) by 3.6%, and F1 score by 9.3% compared to PAIL.
When compared to DeepDA-Ace, the improvements are also significant, with Acc, Sn,
Pre, and F1 score increasing by 10.7%, 21%, 10.3%, and 21.8%, respectively. Moreover,
compared with CapsNet, the gains are even more pronounced, with Sn, Acc, Pre, and F1
score increasing by 34.9%, 17.8%, 28.5%, and 40.4%, respectively. MDDeep-Ace not only
outperforms these models in S.cerevisiae but also achieves competitive results across other
species.

The superior performance ofMDDeep-Ace can be attributed to twomain factors. Firstly,
MDDeep-Ace leverages multi-domain adaptation, effectively transferring acetylation
knowledge from multiple species to enhance the model’s predictive power. Secondly,
MDDeep-Ace employs a CNN-LSTM hybrid network, which captures both local features
and long-range dependencies, further boosting the model’s predictive performance.
Overall, MDDeep-Ace not only surpasses existing methods with respect to accuracy,
sensitivity, precision, and F1 score, but also represents a significant advancement in
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Figure 3 Performance of ROC curves on R. norvegicus, S. japonicum, S. cerevisiae, M. musculus,
E. coli, B. velezensis, P. falciparum, A. thaliana. The red lines represent the performance of MDDeep-
Ace, the blue, orange and green lines represent the DeepDA-Ace, CapsNet and PAIL, respectively.

Full-size DOI: 10.7717/peerj.19649/fig-3
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Figure 4 The Sn, Acc, Pre, F1-score value comparison with different methods for R. norvegicus,
S. japonicum, S. cerevisiae, M. musculus, E. coli, and B. velezensis at specificity of 0.900. The horizontal
axis represents sensitivity, accuracy, precision and F1, respectively.

Full-size DOI: 10.7717/peerj.19649/fig-4

species-specific lysine acetylation site prediction, offering a robust and versatile tool for
bioinformatics research.

Ablation study
To validate the efficacy of the introduced multi-domain adaptation method, we compared
MDDeep-Ace with three baseline models. (1) Species-specific direct training (SSDT)
model: for each species, a supervised model is trained using only the labeled data specific
to that species. (2) Species-specific domain adaptation (SSDA) model: this model leverages
domain adaptation techniques, but uses only human data as source domain. It trains
species-specific prediction models based on labeled data from both human and the target
species. (3) Uniform-weight MDDeep-Ace model: to assess the impact of the domain
weighting strategy, this model uses the same architecture as MDDeep-Ace but applies equal
weighting to all source domains. The above three methods are all based on the CNN-LSTM
hybrid network. The differences among them lie in either the distinct training data they
utilize or the different training strategies they adopt. The results clearly demonstrate that
the adaptative weighting mechanism in MDDeep-Ace plays a critical role in enhancing
prediction accuracy.

Table 1 illustrates the performance of MDDeep-Ace compared to baseline methods,
demonstrating thatMDDeep-Ace generally outperforms the uniform-weightMDDeep-Ace
in predicting PTM sites across various species. For instance, MDDeep-Ace achieves the
highest AUC values across all species, reflecting its superior capability. However, it is also
notable that the uniform-weight MDDeep-Ace performs comparably to the SSDA method
in some species. For example, the AUC values of the uniform-weight MDDeep-Ace
are only 0.5% and 0.7% higher than those of the SSDA method in M. musculus and
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R. norvegicus, respectively. This can be attributed to the fact that human acetylation sites
constitute a significant portion of the training data for the uniform-weight MDDeep-Ace,
and the acetylation patterns of M. musculus and R. norvegicus are quite similar to those
of humans. Conversely, the uniform-weight MDDeep-Ace performs poorly on O. sativa
and A. thaliana, likely due to the considerable differences in acetylation patterns between
these species and humans, making it challenging for the uniform-weight MDDeep-Ace
to effectively capture species-specific patterns. These findings highlight the limitations of
the uniform-weight MDDeep-Ace in accurately predicting PTM sites across all species,
underscoring the necessity of establishing adaptative weight species-specific prediction
models for enhanced performance.

Although SSDT is a species-specific method, it exhibits poor performance in some
species such as A. thaliana, O. sativa, and B. velezensis, indicating the difficulty of building
effective species-specific prediction models through direct training when training data
is insufficient. To address this issue, domain adaptation technology, as employed in the
SSDA method, transfers knowledge from extensive human PTM data to improve the
prediction accuracy for other species. For instance, the SSDA method achieves AUC
values of 0.793, 0.804, and 0.805 in A. thaliana, O. sativa, and B. velezensis, representing
improvements of 8%, 11.5%, and 6.4% over SSDT. Moreover, with the integration of
multiple species data, MDDeep-Ace further enhances prediction accuracy, achieving AUC
values of 0.813, 0.823, and 0.847 in these species, respectively. In addition to these species,
MDDeep-Ace also achieves the optimal performance across all other species, confirming its
effectiveness in species-specific acetylation site prediction. The multi-domain adaptation
strategy, combined with the incorporation of diverse species data, allows MDDeep-Ace to
outperform existing methods.

Besides, we also compared the F1 scores, accuracy (Acc), sensitivity (Sn), and precision
(Pre) for thesemethods, and the results are listed in Table 2. From the table, it is evident that
the methods utilizing multi-domain adaptation technology achieved higher performance
across several indicators. For example, in R. norvegicus, the Pre values of MDDeep-Ace
and SSDA methods are 0.783 and 0.752, respectively, with MDDeep-Ace showing a 3.1%
improvement over SSDA. Additionally, the Acc values of MDDeep-Ace and SSDAmethods
are 0.620 and 0.592, representing a 2.8% increase for MDDeep-Ace over SSDA. Moreover,
compared to the uniform-weightMDDeep-Acemodel,MDDeep-Ace demonstrates notable
improvements. For instance, in S. cerevisiae, the Sn, Acc, Pre, and F1 score of MDDeep-Ace
are 0.463, 0.677, 0.827, and 0.593, respectively, while the corresponding values for the
uniform-weight MDDeep-Ace model are 0.431, 0.661, 0.817, and 0.565. This reflects a
3.2% increase in Sn, a 1.6% increase in Acc, a 1% increase in Pre, and a 2.8% improvement
in F1 score. Among the domain adaptation-based methods, our proposed MDDeep-Ace
shows clear advantages across most species. For example, in B. velezensis, the Pre, Acc, F1,
and Sn of MDDeep-Ace are 0.846, 0.694, 0.634, and 0.507, respectively, whereas the SSDA
method only achieves 0.774, 0.594, 0.449, and 0.316. This represents improvements of 7.2%,
10%, 18.5%, and 19.1% in Pre, Acc, F1, and Sn, respectively, when using MDDeep-Ace.
These results further support the conclusions drawn from the comparison using AUC
values.
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Table 2 Performance comparison of MDDeep-Ace with baseline methods including direct training, fine tuning and combinedmethod on nine
different species.

Sp= 0.900

Species Method Pre Sn Acc Pre F1-score

general MDDeep-Ace (Uniform weight) 0.333 0.613 0.776 0.466
MDDeep-Ace 0.348 0.620 0.783 0.481
SSDA 0.292 0.592 0.752 0.421

R. norvegicus
species-specific

SSDT 0.295 0.593 0.754 0.424
general MDDeep-Ace (Uniform weight) 0.419 0.662 0.808 0.551

MDDeep-Ace 0.482 0.694 0.829 0.609
SSDA 0.382 0.644 0.793 0.516

S. japonicum
species-specific

SSDT 0.272 0.590 0.732 0.397
general MDDeep-Ace (Uniform weight) 0.431 0.661 0.817 0.565

MDDeep-Ace 0.463 0.677 0.827 0.593
SSDA 0.325 0.607 0.771 0.457

S. cerevisiae
species-specific

SSDT 0.340 0.615 0.779 0.474
general MDDeep-Ace (Uniform weight) 0.327 0.608 0.771 0.459

MDDeep-Ace 0.346 0.618 0.781 0.479
SSDA 0.321 0.605 0.768 0.452

M. musculus
species-specific

SSDT 0.286 0.587 0.747 0.413
general MDDeep-Ace (Uniform weight) 0.322 0.609 0.766 0.453

MDDeep-Ace 0.363 0.629 0.787 0.497
SSDA 0.279 0.587 0.739 0.405

E. coli
species-specific

SSDT 0.339 0.617 0.775 0.472
general MDDeep-Ace (Uniform weight) 0.493 0.687 0.843 0.622

MDDeep-Ace 0.507 0.694 0.846 0.634
SSDA 0.316 0.594 0.774 0.449

B. velezensis
species-specific

SSDT 0.316 0.594 0.774 0.449
general MDDeep-Ace (Uniform weight) 0.283 0.577 0.758 0.413

MDDeep-Ace 0.259 0.564 0.741 0.383
SSDA 0.215 0.541 0.704 0.329

P. falciparum
species-specific

SSDT 0.199 0.533 0.688 0.309
general MDDeep-Ace (Uniform weight) 0.500 0.685 0.857 0.632

MDDeep-Ace 0.458 0.663 0.846 0.595
SSDA 0.417 0.640 0.833 0.556

O. sativa
species-specific

SSDT 0.208 0.528 0.714 0.323
general MDDeep-Ace (Uniform weight) 0.357 0.532 0.882 0.508

MDDeep-Ace 0.405 0.565 0.895 0.557
SSDA 0.381 0.548 0.889 0.533

A. thaliana
species-specific

SSDT 0.262 0.468 0.846 0.400

DISCUSSION
Despite the strong results achieved by MDDeep-Ace in lysine PTM site prediction, there
remains potential for further improvement through refinements in training methods and
network architecture. For example, recent research by Lai & Gao (2023) demonstrated
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that natural language processing models like transformers can be effectively applied to
acetylation site prediction, offering high robustness and generalization ability. In future
work, we aim to integrate transformer architecture into MDDeep-Ace to enhance feature
extraction. Additionally, there are millions of lysine sites in protein sequences, some of
which may not be confirmed as acetylated, and which can be used as unlabeled data to
pre-train models. Therefore, we plan to explore leveraging this unlabeled data to transfer
knowledge, thereby improving PTM site prediction accuracy for target species.

CONCLUSIONS
Lysine PTMs play a critical role in controlling protein functions and numerous biological
processes. Identifying lysine PTM sites is crucial for advancing our understanding of the
molecular mechanisms underlying these modifications. However, there remains significant
room for improvement in species-specific PTM site prediction using existing methods. In
this study, we introduce MDDeep-Ace, a multi-domain adaptation method, designed
to predict species-specific PTM sites with high accuracy. MDDeep-Ace consistently
outperforms the state-of-the-art PTM site prediction tools across multiple species.

The exceptional performance ofMDDeep-Ace can be attributed to several key factors: (1)
Unlike existing PTM site prediction tools such as MUscADEL and CapsNet, MDDeep-Ace
leverages domain adaptation techniques, effectively utilizing other species knowledge to
enhance PTM prediction in small sample species. This approach addresses the limitations
of models that rely solely on species-specific data. (2) Compared to transfer learning-based
methods like DeepDA-Ace and DeepTL-Ubi, MDDeep-Ace integrates multiple species
data, significantly boosting model generalization. (3) MDDeep-Ace employs a CNN-LSTM
hybrid network, which excels at capturing both local features and long-range dependencies
within protein sequences, further enhancing predictive accuracy. (4) A novel adaptive
weighting mechanism dynamically prioritizes source domains based on their similarity to
the target species, optimizing domain adaptation. These advancements position MDDeep-
Ace as a powerful tool for species-specific lysine PTM prediction, offering valuable insights
for developing novel computational approaches in bioinformatics.
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