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ABSTRACT
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common
liver disease and the burden is increasing around the world. Ultrasound diagnosis
of MASLD is the preferred method due to its convenience, absence of radiation,
and high accuracy. The application of artificial intelligence (AI) in MASLD diagnosis
has been explored across electronic medical records, laboratory tests, ultrasound and
radiographic imaging, and liver histopathological data. Notably, AI’s application in
ultrasound diagnosis has garnered significant attention. Deep learning (DL), known
for its exceptional image recognition and classification capabilities, has become a
focal point in ultrasound research. This paper reviews and analyzes the application
of various machine learning (ML) algorithms in the ultrasound diagnosis of MASLD,
highlighting the advantages and potential of AI in this field. It is intended for clinicians,
AI researchers, and healthcare innovators, aiming to enhance diagnostic accuracy,
expand MASLD screening in primary care, and support early diagnosis, prevention,
and treatment.

Subjects Bioengineering, Gastroenterology and Hepatology, Internal Medicine, Nutrition,
Obesity
Keywords Non-alcoholic fatty liver disease, Metabolic dysfunction-associated steatotic liver
disease, Ultrasound, Artificial intelligence, Machine learning, Deep learning

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide,
with a global prevalence of 38% (Wong et al., 2023). NAFLD is characterized by the
accumulation of fat in more than 5% of hepatocytes, in association with metabolic risk
factors, particularly obesity and type 2 diabetes, and the absence of excessive alcohol
consumption (≥30 g/day in men and≥20 g/day in women) or other chronic liver diseases.
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Figure 1 Evolution of NAFLD.
Full-size DOI: 10.7717/peerj.19645/fig-1

The condition encompasses a spectrum of liver disorders, ranging from simple steatosis,
whichmay ormay not involvemild inflammation, to non-alcoholic steatohepatitis (NASH)
(Powell, Wong & Rinella, 2021). It is increasingly recognized that NAFLD is a multisystem
disease, where insulin resistance and associated metabolic dysfunction play a key role in its
development and in the progression of liver-related morbidities, including cirrhosis, liver
failure, and hepatocellular carcinoma (HCC), as well as extrahepatic complications such
as cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), chronic kidney disease
(CKD), and certain types of extrahepatic cancers (Byrne & Targher, 2015;Devarbhavi et al.,
2023). Although the progression of NAFLD can lead to cirrhosis, liver failure, and HCC,
most deaths in NAFLD patients are due to CVD (Fig. 1). In 2023, three major multinational
liver associations recommended replacing the term NAFLD with metabolic dysfunction-
associated steatotic liver disease (MASLD), and the term metabolic dysfunction-associated
steatohepatitis (MASH) was proposed to replace NASH. The diagnostic criteria forMASLD
involve the presence of hepatic steatosis (identified through imaging or biopsy) alongside
at least one cardiometabolic risk factor (CMRF), with no other identifiable causes of liver
steatosis (Rinella et al., 2023a). Emerging evidence suggests a near-perfect concordance
between the definitions of NAFLD and MASLD—approximately 99% of individuals with
NAFLD meet MASLD criteria (Targher, Byrne & Tilg, 2024).

Auxiliary screening methods for MASLD mainly include ultrasonography, magnetic
resonance imaging (MRI), computed tomography (CT), laboratory tests, and pathological
tests. Ultrasound technology is the first choice for imaging examination of MASLD because
it is real-time, inexpensive, non-invasive, and non-radioactive. Accurate ultrasound
diagnosis of MASLD requires an experienced physician, as it has a subjective component
and can be affected by instrument noise and speckle. Ultrasound-based AI has already been
used for various applications, such as thyroid, breast, and liver-related diseases. Currently,
AI for ultrasound in MASLD is a research hotspot, which has evolved from quantitative
ultrasound (QUS) to machine learning (ML) to deep learning (DL), with increasing
diagnostic accuracy. In this review, we will discuss the application of ultrasound-based
machine learning in the diagnosis of MASLD, focusing on the research and prospects of
deep learning, with a view to its wide clinical application.
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SURVEY METHODOLOGY
To conduct an unbiased review of machine learning applications in ultrasound diagnosis of
metabolic dysfunction-associated steatotic liver disease (MASLD), the following approach
was used:
Search engines and databases: PubMed, Web of Science, Scopus.
Search terms: (‘‘machine learning’’ OR ‘‘deep learning’’) AND (‘‘ultrasound’’ OR
‘‘ultrasonography’’) AND (‘‘NAFLD’’ OR ‘‘MASLD’’), including relevant synonyms,
related terms, and MeSH terms.
Inclusion criteria: Peer-reviewed original English articles from 2010 to 2024, focusing on
machine learning in ultrasound for MASLD diagnosis or evaluation, with quantitative
diagnostic data (e.g., accuracy, sensitivity, specificity).
Exclusion criteria: Review articles, editorials, non-original research, studies using non-
ultrasound imaging modalities (e.g., MRI, CT), or not validating machine learning models
for MASLD.
Potential bias: Reliance on indexed databases may exclude non-English or non-indexed
studies. Publication and reviewer bias may affect the selection of studies.
Screening process: Two independent reviewers screened titles and abstracts, and full-text
articles were assessed based on the criteria. Disagreementswere resolved through discussion,
with a third reviewer consulted if needed.
Contributions: This review differs from existing literature by providing a comprehensive
comparison of various machine learning models applied in the ultrasound diagnosis
of metabolic MASLD, with a particular focus on the advancements in deep learning
technologies. This review covers a wide range of models, from classical machine learning
techniques to advanced deep learning architectures, highlighting their respective strengths
and challenges. Additionally, the review offers insights into the future clinical applications
of deep learning in MASLD diagnosis and outlines key areas for future research.

Metabolic dysfunction-associated steatotic liver disease
Although MASLD can be diagnosed by imaging tests such as ultrasound, CT, or MRI,
diagnosing MASH still requires a liver biopsy to identify features such as inflammation,
hepatocyte ballooning, Mallory-Denk bodies, and early fibrosis (Neuschwander-Tetri,
2017). Furthermore, early identification, prevention, and treatment of MASLD can
significantly reduce its serious consequences.

Conventional ultrasound is the first choice for diagnosing fatty liver disease. This
non-invasive technique is frequently used to screen for MASLD and is recommended by
the European Guidelines for MASLD Management as the first-line imaging method for
patients at risk (Miele et al., 2020). The typical ultrasound features of MASLD include liver
echogenicity higher than the right kidney, with varying degrees of distal attenuation and
intrahepatic vascular blurring. Based on these characteristics, the degree of steatosis can be
subjectively classified as mild, moderate, or severe. Traditional B-mode ultrasonography
has high diagnostic accuracy for moderate and severe hepatic steatosis (≥20% hepatic fat)
but low diagnostic accuracy formild steatosis (<20%hepatic fat) (Dasarathy et al., 2009; Lee
et al., 2010) and does not reliably detect individuals with a high bodymass index (BMI) (>40
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kg/m2). Ultrasound is inexpensive, versatile, non-invasive, and non-radioactive. Current
European practice guidelines recommend identifying hepatic steatosis by ultrasound, as it
is more widespread and cheaper than the gold standard and MRI (European Association for
the Study of the Liver (EASL), 2016).

Quantitative ultrasound in diagnosis of MASLD
Advances in ultrasound technology have significantly enhanced the diagnosis of MASLD,
including traditional B-mode ultrasound, Doppler, elastography, and quantitative
ultrasound (QUS). QUS analyzes raw, unprocessed radiofrequency (RF) data returned
from tissue by inferring the mechanical properties of the tissue through the interaction
of the ultrasound beam with the tissue and applying appropriate modeling (Tamaki,
Ajmera & Loomba, 2021). QUS can model various physical properties, including sound
backscattering, sound attenuation, and speed of sound, to produce objective, absolute
indicators for quantifying hepatic steatosis.

Hepatorenal index
In conventional ultrasound, the diagnosis of fatty liver is typically made by comparing the
echoes of the liver and the right kidney on the same image. However, this method is affected
by various factors including gain, depth, power, and patient anatomy. The hepatorenal
index (HRI), a semi-quantitative biomarker of steatosis, improves upon this method by
dividing the signal intensity of the liver by that of the renal cortex on the same ultrasound
image (Pirmoazen et al., 2022). Higher HRI values indicate increased liver echogenicity,
corresponding to higher steatosis levels. Johnson et al. (2021) demonstrated that an HRI of
≥1.4 is associated with a positive predictive value of over 95% for≥10% steatosis. However,
no corresponding guidelines currently exist. HRI is usually obtained by manually setting
the region of interest (ROI) to avoid vascular and focal lesions. However, it cannot be used
in the presence of ectopic kidneys or the absence of the right kidney.

Attenuation coefficient
The attenuation of sound waves in fatty liver tissue differs from that in normal liver
parenchyma. The attenuation coefficient (AC) quantifies the rate of energy loss of sound
waves as they propagate through tissue, which depends on the wave’s frequency and the
tissue characteristics (Ozturk et al., 2023). Several algorithms are available for estimating
AC, including the controlled attenuation parameter (CAP), which is the most widely
studied ultrasound technique for quantifying fatty liver. CAP is measured in dB/m,
with higher values indicating more severe liver steatosis. CAP is particularly sensitive in
detecting fatty livers with more than 10% steatosis (Pirmoazen et al., 2020). Karlas et al.
(2017) demonstrated that the diagnostic performance of CAP was reflected by an AUC
value ranging from 0.823 to 0.882. However, CAP measurements are obtained without
visualizing the liver, meaning they may be influenced by masses, vessels, or uneven
steatosis, which can affect the accuracy of the results. Its accuracy is also diminished in the
presence of obesity, ascites, and advanced fibrosis. Therefore, CAP should be combined
with other ultrasound techniques to improve diagnostic reliability. In response to these
limitations, researchers have developed methods for measuring liver fat content in real
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time on conventional ultrasound images, with the ability to accurately localize the region
of interest. These methods, such as ultrasound-guided attenuation parameters (UGAP),
attenuation coefficients (ATT), and attenuation imaging (ATI), utilize similar principles
of attenuation measurement. For example, ATI has demonstrated greater accuracy than
CAP, with an AUC ranging from 0.79 to 0.97 (Zeng et al., 2023). Despite their promising
performance, UGAP, ATT, and ATI techniques are limited by factors such as operator
dependence, image quality, and a lack of standardization, which can affect diagnostic
accuracy.

Backscattering coefficient
The backscattering coefficient (BSC) is a quantitative value that reflects the scattering of
an ultrasound pulse back to the echo probe (Wear et al., 2022). The number of scattered
backward-facing ultrasound pulses increases with higher levels of liver fat because fat
vesicles in liver cells enhance the scattered ultrasound signal. Lin et al. (2015) demonstrates
that the backscatter coefficient (BSC) shows strong diagnostic performance in identifying
hepatic steatosis, with an AUC of 0.98 for diagnosing steatosis defined byMRI-PDFF≥5%.
However, its sensitivity and specificity may vary depending on factors like BMI, and it
requires specialized equipment and software for analysis.

Speed of sound
Speed of sound (SoS) can be used to characterize tissue properties based on changes in
ultrasonic echo velocity in various media (Ferraioli & Monteiro, 2019). The speed of sound
decreases with increasing liver fat content. Dioguardi Burgio et al. (2018) demonstrated
that the novel ultrasound-based SoS provides high diagnostic performance for detecting
and grading hepatic steatosis, with an AUC of 0.882 for detecting any grade of steatosis and
0.989 for moderate to severe steatosis. However, SoS is susceptible to confounding factors
such as inflammation, parenchymal edema, and temperature changes.

Speckle statistics
Speckle statistics, also known as ultrasound envelope statistical parametric imaging (Park
et al., 2022), analyze the speckle pattern caused by the scattering of ultrasound signals from
tissue microstructures, which appears in the ultrasound image. Speckle statistics are based
on the parameterization of ultrasound speckle patterns using an established statisticalmodel
that describes the scattering properties of the tissue. Acoustic structure quantification (ASQ)
was introduced as a more advanced approach that builds upon the principles of speckle
statistics. ASQ improves upon traditional methods by directly analyzing the backscattered
ultrasound signals, offering more precise and reliable quantification of tissue composition.
Lin et al. (2019) indicate that, among different scanning planes, the intercostal approach
using ASQ achieves the highest AUC value of 0.92. ASQ improves precision over traditional
speckle-based methods, but it may be less accessible and more dependent on equipment
and scanning conditions compared to CAP.

Shear wave elastography indicators
Shear wave elastography (SWE) is an imaging technology that generates shear waves in
tissues by emitting acoustic radiation pulses and converts the propagation speed of these
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waves into corresponding tissue hardness (Ozturk et al., 2021). Real-time, two-dimensional
shear wave elastography images can be obtained through SWE, and the value of Young’s
modulus (measured in kPa) of the liver can be quantitatively detected, reflecting the
absolute hardness of the liver. The higher the SWE value, the harder the tissue (Taru et
al., 2023). The modulus of elasticity or stiffness of diseased tissues often differs from that
of normal tissues, allowing SWE to distinguish between normal and abnormal tissues.
SWE is primarily used to assess liver fibrosis, an important component of MASLD and
other liver diseases. It is useful in identifying patients with advanced fibrosis or cirrhosis
(Castera, Friedrich-Rust & Loomba, 2019). However, for assessing steatosis, SWE showed
poor correlation with steatosis grades and did not distinguish between different steatosis
grades effectively (Wang et al., 2025). On the other hand, SWE could be used alongside
other diagnostic tools like CAP to provide a comprehensive assessment of liver health.

Multimodal ultrasound improves the accuracy of MASLD diagnosis
The development of quantitative ultrasound holds significant promise for liver disease
diagnosis, yet the establishment of standardized values remains a critical challenge,
influenced by various patient and technical factors. For example, Shi et al. (2019)
incorporated shear wave attenuation, shear wave absorption, elasticity, dispersion slope,
and echo attenuation, achieving an impressive AUC of 0.93. While this result suggests a
high degree of accuracy, the study’s reliance on a complex model may limit its clinical
applicability. Similarly, Labyed & Milkowski (2020) developed the ultrasound-derived fat
fraction (UDFF) by combining attenuation and backscattering coefficients, achieving an
AUC range of 0.83 to 0.94 for liver fat quantification. Dillman et al. (2022) supported these
findings and demonstrated similar results. While UDFF holds significant promise as a
reliable, non-invasive tool for liver fat quantification, challenges related to performance
variability and the need for methodological standardization must be addressed.

Moreover, quantitative ultrasound techniques have increasingly been integrated with
clinical data to improve diagnostic outcomes. Notably, Newsome et al. (2020) introduced
the FibroScan-AST (FAST) score, a composite score that combines vibration-controlled
transient elastography (VCTE), CAP, and aspartate aminotransferase (AST), which
demonstrated the best predictive properties for MASH and advanced fibrosis. In external
validation, the FAST score achievedAUCs between 0.74 and 0.95, with sensitivity potentially
compromised at lower AUC thresholds. More recently, the American Association for
the Study of Liver Diseases (AASLD) (Rinella et al., 2023b) recommended a stepwise
approach, beginning with the FIB-4 index score, followed by liver stiffness measurement
(LSM) via VCTE, as the initial method for identifying high-risk MASH. While this
recommendation aligns with current evidence, it highlights the challenge of developing a
universally applicable screening protocol, as LSM’s effectiveness varies with liver condition
and technology.

Quantitative ultrasound shows strong potential for diagnosing MASLD, but challenges
remain in achieving consistency due to variability in equipment, operator skill, and
patient factors. While techniques like UDFF and the FAST score show high accuracy,
their performance varies, emphasizing the need for better standardization. Combining
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ultrasound with clinical data is promising, but creating universally applicable protocols
remains challenging. Further research is needed to enhance these methods for wider clinical
use.

AI in diagnosis of MASLD based on ultrasound (Table 1)
The diagnosis of MASLD using artificial intelligence (AI) is primarily achieved through
machine learning (ML). ML can be further divided into supervised learning, unsupervised
learning, and deep learning. Supervised learning involves creating predictive models based
on input and output data, while unsupervised learning focuses on grouping and pattern
recognition using only input data (De Bruijne, 2016). Deep learning, a subset of ML,
utilizes neural networks to analyze large datasets (Dinani, Kowdley & Noureddin, 2021)
(Fig. 2). Supervised learning techniques include linear regression, logistic regression,
decision trees, K-nearest neighbors, support vector machines, random forests, naive Bayes
classification, and gradient boosting, among others. Traditional ML methods can classify
and diagnose conditions using input data, which can be either features or raw data. Features
are quantifiable data variables derived from expert knowledge that accurately describe the
data from the ROI. When raw data is used as input, the algorithm must identify the
features autonomously. To compare the performance of different ML methods and the
diagnoses made by diagnostic sonographers, several classification metrics are employed.
Key indicators include accuracy, sensitivity, specificity, and the area under the curve (AUC)
from receiver operating characteristic (ROC) analysis. Below are some major ML methods
and related studies.

Bayes classifier
The Bayes classifier is a probabilistic method widely used in medical diagnostics due to
its ability to handle uncertainty and small datasets. In Ribeiro, Tato Marinho & Sanches
(2014), a Bayes classifier was used to detect hepatic steatosis from ultrasound images,
achieving 93.33% accuracy, with 94.59% sensitivity and 92.11% specificity. Similarly,
Hwang & Cho (2023) applied a Bayes latent model to identify MASLD predictors, finding
that ultrasound attenuation imaging (ATI) was the most effective for predicting hepatic
steatosis, with an AUC of 0.923, a sensitivity of 90.2% and specificity of 85.4%. Both studies
demonstrate the Bayes classifier’s potential in accurately diagnosing MASLD and hepatic
steatosis non-invasively. However, the effectiveness of Bayes classifiers may be limited
when there is a strong correlation or high dimensionality among features.

Support vector machine
Support vector machine (SVM) is a type of linear classifier used for supervised learning,
where it separates data into different classes by finding the optimal hyperplane.
Basavarajappa et al. (2021) applied SVM to six ultrasound imaging measurements,
including H-mode ultrasound, and found it achieved the highest accuracy with H-mode
data. Similarly, Nagy et al. (2015) used SVM to classify hepatic steatosis in 228 patients,
showing that the coefficient of variation of luminance was most effective for distinguishing
mild and moderate-to-severe steatosis. In summary, SVM excels in high-dimensional
classification tasks but requires careful feature selection and parameter tuning to avoid

Li et al. (2025), PeerJ, DOI 10.7717/peerj.19645 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.19645


Table 1 ML algorithm for diagnosis of MASLD patients based on ultrasound images.

Author Years Sample size Classification
categories

Parameters in the
model

ML algorithm Results Reference
standard

Data preprocessing
/augmentation

Ribeiro, Tato Marinho
& Sanches (2014)

2014 74 patients Normal, steatosis Textural features CAD (Bayes) Acc= 0.933
Sen= 0946
Spec= 0.921

/ Radiofrequency image estima-
tion; image decomposition;
speckle and despeckle separation;
normalization and standardiza-
tion; feature set comparison

Hwang & Cho (2023) 2023 89 children Normal, steatosis ATI Bayes classifier Sen= 0.894
Spec= 1

/ Envelope estimation; speckle
decomposition

Basavarajappa et al.
(2021)

2021 21 rats Normal liver and mild,
severe NAFLD

Multiparametric ultra-
sound

SVM Acc= 0.92 Pathology Z-score normalization; principal
component analysis

Nagy et al. (2015) 2015 228 patients None, mild, moderate,
and severe steatosis

CVL SVM AUC= 0.923
Sen= 0.813
Spec= 0.89

Biopsy Intensity histogram analysis

Tang et al. (2018) 2018 60 rats None, mild, moderate,
and severe steatosis

Elastography +QUS RF AUC= 0.66 (mild)
AUC= 0.84 (moderate)
AUC= 0.87 (severe)

Pathology Echo envelope extraction

Destrempes et al.
(2022)

2022 82 patients None, mild, moderate,
and severe steatosis

Elastography +QUS RF AUC= 0.90(mild)
AUC= 0.81(moderate)
AUC= 0.78 (severe)

Biopsy Echo envelope extraction; com-
pensation for time gain com-
pensation; sliding window tech-
nique; Winsorization

Mihai Mihailescu
(2013)

2013 120 patients Stage of steatosis Minimum and maxi-
mum attenuation, me-
dian gray levels

RF Acc= 0.908 / Robust brightness estimation

Acharya et al. (2012) 2012 100 images Normal, fatty liver Textural features CAD (DT) Acc= 0.933 / Image standardization

Subramanya et al.
(2014)

2014 53 images Normal, fatty liver Texture features CAD (SVM) Acc= 0.849 / Feature combination; feature
selection

Saba et al. (2016) 2016 62 patients Normal, fatty liver Texture features CAD (BPN) Acc= 0.976
Sen= 0981
Spec= 0.972

/ Standardization; feature combi-
nation and Scaling

Acharya et al. (2016) 2016 150 images Normal, fatty liver and
cirrhosis

Texture features CAD (PNN) Acc= 0.973
Sen= 1
Spec= 0.960

/ Morphological processing; image
resizing and contrast enhance-
ment; curvelet transform; feature
reduction

Kuppili et al. (2017) 2017 63 patients Normal, fatty liver Texture features CAD (ELM) Acc= 0.968
AUC= 0.97

Biopsy Standardization; data subsam-
pling;

Biswas et al. (2018) 2018 63 patients Normal, fatty liver Features CNN Acc= 0.92 Biopsy Image optimization; image crop-
ping and border stripping

Notes.
Sen, Sensitivity; Spec, Specificity; Acc, Accuracy; AUC, Area Under Curve.

overfitting or underfitting, and can be computationally intensive with large datasets.
Despite these challenges, SVM remains a powerful tool in the diagnosis of MASLD due to
its robustness and ability to handle complex data.

Random Forest
Random Forest (RF) is a classifier that uses multiple decision trees to improve accuracy
and reduce overfitting by averaging the results from several trees. Tang et al. (2018)
used RF to classify liver conditions in rats, finding that combining QUS and shear-wave
elastography improved accuracy over elastography alone, though human data are still
needed to confirm these results. Destrempes et al. (2022) demonstrated this view on human
data. Mihai Mihailescu (2013) compared RF and SVM in assessing MASLD severity,
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Figure 2 Deep learning.
Full-size DOI: 10.7717/peerj.19645/fig-2

demonstrating that RF performed better in terms of accuracy without the need for feature
selection. In conclusion, RF is effective in improving classification accuracy, especially
when combining multiple features. Its main advantages are high accuracy and resistance to
overfitting. However, it can be computationally expensive and may require careful tuning
of hyperparameters for optimal results.

Deep learning
Deep learning (DL) is a type of machine learning (ML) that builds on the development
of artificial neural networks. It outperforms traditional ML, brings ML closer to Artificial
Intelligence, and holds the promise of being far superior to previous techniques (Table 2).
DL is not affected by image variations, does not ROIs, is not limited to expert-defined
features, and can be trained on a large number of images. The algorithm uses multilayer
neural networks for detection, classification, and segmentation of biomedical images.
Convolutional neural networks (CNNs) are a special type of neural network in deep
learning, primarily consisting of convolutional layers, pooling layers, and fully connected
layers (Hosny et al., 2018) (Fig. 3). They are mainly used to process data with a grid
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Table 2 DL algorithm for diagnosis of MASLD patients based on ultrasound images.

Author Years Sample size Classification
categories

DL algorithm Results Reference
standard

Data preprocessing/
augmentation

Pros and cons

Cao et al. (2019) 2019 240 participants Normal liver
and mild, mod-
erate, and severe
NAFLD

CNN AUC= 0.958 / Image resizing; envelope
signal quantification;
data expansion

High diagnostic accuracy, espe-
cially for severe NAFLD cases.
Struggles with mild/moderate
distinction.

Yang et al. (2023) 2023 928 participants
(1,856 images)

None, mild,
moderate, and
severe steatosis

2S-NNet AUC≥0.90
(mild)
AUC ≥ 0.85
(moderate)
AUC≥0.85
(severe)

/ Image stitching A novel two-section deep learn-
ing model. Offers a solution for
large-scale population screening.

Cha et al. (2021) 2021 294 participants Normal and
mild fatty liver

DCNN ICC= 0.734 / Image resizing A novel automated HRI quan-
tification method. Unvalidated
generalizability to severe disease.

Zsombor et al. (2023) 2023 102 patients None, mild,
moderate, and
severe steatosis

CNN AUC= 0.758
(mild) AUC=
0.803 (moder-
ate/severe)

MRI-PDFF Data normalization; var-
ious image transforma-
tions such as rotations
and flips

Easy to implement in clinical
practice. Lacks histology valida-
tion for comparison.

Nguyen et al. (2021) 2021 60 rabbits Normal, steato-
sis

CNN Acc= 0. 738 Pathology Removal of noisy data
and outliers; resizing;
normalization; regular-
ization techniques

Simplifying clinical workflow.
Accuracy affected by liver fibro-
sis. Small dataset leading to vari-
ability in test results.

Han et al. (2020) 2020 204 participants NAFLD, no
NAFLD

1D-CNN Acc= 0. 96
AUC= 0.958

MRI-PDFF remove noise and ar-
tifacts; normalization;
random transformations
(e.g., scaling, rotation)

Robust to system setting
changes. Potential saturation
effect for high fat fractions. Lim-
ited generalizability due to single
platform and operator

Sanabria et al. (2022) 2022 31 patients None, mild,
moderate, and
severe steatosis

2D-CNN, 3D-CNN AUC≥0.90 MRI-PDFF Logarithmic compres-
sion; denoising; nor-
malization; extracting
multiple patches

Uses raw data for enhanced di-
agnostics. Limited by available
ultrasound machines and small
patient sample.

Jeon et al. (2023) 2023 173 participants Normal liver
and mild, mod-
erate, and severe
NAFLD

2D-CNN AUC= 0.97 MRI-PDFF Envelope extraction;
logarithmic compres-
sion; noise reduction;
normalization; extract-
ing multiple patches

QUS parametric maps and B-
mode images for diagnosing.
Limited by single-center data,
saturation in severe steatosis.

Vianna et al. (2023) 2023 199 patients None, mild,
moderate, and
severe steatosis

VGG16 AUC=
0.98 (mild)
AUC= 0.67
(moderate)
AUC= 0.66
(severe)

Biopsy Image cropping; image
resizing; standardization

Outperformed most radiologists
in detecting steatosis. Limited
generalizability due to single-
center study and no data aug-
mentation.

Liu et al. (2024) 2024 710 participants None, mild,
moderate to
severe steatosis

VGG16 AUC=
0.85 (mild)
AUC= 0.95
(moderate to
severe)

/ Image resizing; normal-
ization; random trans-
formations (e.g., scaling,
rotation)

The new multi-input model
showed significant improve-
ment.

Che et al. (2021) 2021 55 patients Normal, fatty
liver

2D-ResNet AUC= 0.978 Biopsy Image cropping; image
resizing; random trans-
formations (e.g., scaling,
rotation)

Utilizes advanced feature fusion
techniques and multi-scale anal-
ysis. Limited by dataset size. De-
pendence on quality data.

Chou et al. (2021) 2021 2070 patients
(21855 images)

None, mild,
moderate, and
severe steatosis

ResNet-50 v2 AUC= 0.974
(mild) AUC=
0.971 (mod-
erate) AUC=
0.981 (severe)

/ Image cropping; image
resizing; normalization;
random transformations
(e.g., scaling, rotation)

A large dataset for better accu-
racy. Limited by variations in
image quality, motion artifacts,
and regional bias from a single
hospital dataset.

(continued on next page)
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Table 2 (continued)

Author Years Sample size Classification
categories

DL algorithm Results Reference
standard

Data preprocessing/
augmentation

Pros and cons

Zamanian et al. (2021) 2021 55 patients Normal, fatty
liver

ResNet101+ SVM Acc 0.986
AUC= 0.9998

Biopsy Image resizing; color
modifications; random
transformations (e.g.,
scaling, rotation)

Enhances model generalization
and reduces overfitting for im-
proved accuracy. Relies heavily
on data augmentation

Hardy et al. (2023) 2023 55 patients Normal, fatty
liver

ResNet-50 AUC= 0.904 Biopsy Center cropping; linear
scaling; random resized
crop

Enhances classification accuracy
with synthetic data. Limited by
small dataset size.

Constantinescu et al.
(2020)

2020 60 patients Normal, steato-
sis

Inception-v3 Acc= 0.932
AUC= 0.93

/ Image cropping; image
rescaling; random trans-
formations (e.g., scal-
ing, rotation); dropout,
activity regularization,
kernel regularization

Reduces the need for large
datasets by using fine-tuning.
Limited by small dataset size and
no comparison with expert diag-
noses.

Santhosh Reddy,
Bharath & Rajalakshmi
(2018)

2018 157 images Normal, fatty
liver

VGG-16 Acc= 0.96 / Image cropping; image
resizing; random trans-
formations (e.g., scaling,
rotation)

Improves diagnosis efficiency
with limited data. Limited by
small dataset size and no com-
parison with expert diagnoses.

Byra et al. (2021) 2021 135 participants Normal, fatty
liver

ResNet-50 AUC 0.91 MRI-PDFF Image cropping; image
resizing; image shiftin;
horizontal flipping

Achieves high diagnostic perfor-
mance with multiple liver views.
Limited by a small dataset and
potential bias.

Li et al. (2022) 2022 3,310 patients None, mild,
moderate, and
severe steatosis

ResNet18 AUC=
0.85 (mild)
AUC= 0.91
(moderate)
AUC= 0.93
(severe)

Biopsy Automatic cropping;
viewpoint filtering;
multi-scanner inclusion;
multi-view Inclusion

Generalizable across multiple
scanners and viewpoint. The
model may be sensitive to the
imaging protocol and dataset
biases.

Notes.
AUC, Area Under Curve; Acc, accuracy; ICC, Intraclass Correlation Coefficient.

Figure 3 Convolutional neural network.
Full-size DOI: 10.7717/peerj.19645/fig-3

structure, extract feature maps, and perform feature aggregation. Currently, CNNs are the
most popular type of architecture in medical imaging.
Deep learning based on feature acquisition. DL has shown promise in extracting features
from ultrasound images to aid in diagnosing MASLD. Cao et al. (2019) analyzed liver
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images from 240 patients using envelope signals, gray signals, and a DL index derived from
three image processing technologies. The DL index outperformed the envelope and gray
values in diagnostic performance. Similarly, Yang et al. (2023) developed and validated a
DL system using ultrasound images from 928 subjects. Their system, which employed a
two-segment neural network (2S-NNet), classified the severity of hepatic steatosis based on
three diagnostic features: bright liver, blurred intrahepatic catheter, and impaired visibility
of more than half of the diaphragm. Both studies found high accuracy for diagnosing
MASLD, though accuracy was lower for mild and moderate cases. However, the studies
have limitations: the limited sample size of Cao et al. (2019) further restricts the broader
applicability of their findings. Yang et al. (2023) lacked secondary validation (e.g., MRI or
biopsy), and sonographer training was not standardized, which could affect the results.
Therefore, while DL shows potential for diagnosing MASLD, further validation with
standardized protocols is necessary to confirm its reliability.

Deep learning based on hepatorenal index. Many DL studies of MASLD have utilized the
HRI. Cha et al. (2021) analyzed 294 ultrasound images from living liver donors and
found that an HRI automatically quantified using a deep convolutional neural network
(DCNN) showed high consistency with measurements made by ultrasound diagnosticians.
However, this study focused only on normal and mild fatty liver, excluding moderate
and severe cases, which limits its broader applicability. In contrast, Zsombor et al. (2023),
in a single-center prospective study, diagnosed mild and moderate steatohepatitis in 102
subjects using an AI-based liver and kidney index (AI-HRI) calculated by DCNN. Their
results showed a higher AUC, higher sensitivity, and lower specificity compared tomanually
measured indices from previous studies. AI-HRI also outperformed grayscale ultrasound in
detecting mild steatosis. Nevertheless, AI-HRI should not replace grayscale ultrasound, as
a combination of both methods is necessary to enhance diagnostic accuracy. Furthermore,
the sample size in this study was limited, and further validation in a multicenter setting is
needed to confirm the findings.

Deep learning based on raw data. The current study indicates that diagnosing MASLD
using raw data may offer advantages over traditional quantitative ultrasound (QUS)
indicators. Nguyen et al. (2021) developed a rabbit MASLD model and showed that a
one-dimensional CNN processing raw radiofrequency signals achieved 74% accuracy,
outperforming the 59% accuracy of a QUS-SVM model. However, as this study was
animal-based, its findings require further validation in clinical settings. Han et al. (2020)
reported a 96% classification accuracy using a one-dimensional CNN with raw ultrasound
radiofrequency signals from 102 subjects. Additionally, studies by Sanabria et al. (2022) and
Jeon et al. (2023) highlighted that two-dimensional CNNs outperform one-dimensional
models for classifying hepatic steatosis using RF data, showing superior diagnostic
performance over traditional methods. The combination of raw radiofrequency data
and deep learning holds significant promise for improving MASLD diagnosis by providing
more accurate liver fat quantification. However, its clinical applicability is still limited by
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challenges such as data standardization, validation, and the need for large-scale patient
datasets.

Transfer learning in deep learning. Deep learning has achieved great success in image
recognition due to its ability to learn hierarchical features from large datasets. However,
training deep models from scratch requires vast amounts of labeled data and significant
computational resources. Transfer learning addresses this issue by leveraging pre-trained
models, that have been trained on large, well-established datasets like ImageNet (Morid,
Borjali & Del Fiol, 2021). These pre-trained models learn general features (e.g., edge
detection, texture recognition) that can be reused for new, related tasks (Cheplygina,
de Bruijne & Pluim, 2019). As a result, transfer learning allows deep learning models to
perform effectively even on smaller, domain-specific datasets.

Pre-trained models like VGG-16 (Vianna et al., 2023; Liu et al., 2024), ResNet (Che
et al., 2021; Chou et al., 2021; Zamanian et al., 2021; Hardy et al., 2023) and Inception
(Constantinescu et al., 2020) have been applied to liver condition classification, improving
diagnostic accuracy with less labeled data. For instance, Byra et al. (2018) demonstrated
that a ResNet-v2 model, fine-tuned for liver ultrasound images, outperformed traditional
methods, showing higher AUC scores in identifying fatty liver. Similarly, Santhosh Reddy,
Bharath & Rajalakshmi (2018) utilized a VGG-16 pre-trained model and achieved 90.6%
accuracy in classifying fatty liver from ultrasound images, showcasing the effectiveness
of transfer learning in improving diagnostic performance in smaller datasets. Byra et
al. (2021) and Li et al. (2022) both demonstrated that multi-view ultrasound enhances
diagnostic accuracy, with Byra et al. (2021) finding the right posterior portal vein to be the
most accurate, while Li et al. (2022) showed that combining multi-view data from 3,310
patients using ResNet-18 achieved performance comparable to CAP measurements and
high consistency across ultrasound scanners.

In recent years, different teams have optimized datasets (e.g., expanding dataset size,
acquiring ultrasound images with different instruments) and compared various pre-trained
models to identify the most suitable model, but no unified conclusion has been reached.
Despite its success, transfer learning is not without limitations. One challenge is the domain
gap, where the source data (such as general images used to train pre-trained models) may
differ significantly from the target data (e.g., medical images). This discrepancy can result
in suboptimal performance if not properly addressed, as the model might struggle to
generalize from one domain to another (Hosseinzadeh Taher et al., 2025). Additionally,
fine-tuning is needed to avoid overfitting with smaller datasets (Xie et al., 2021). The
effectiveness of pre-trained models depends on their alignment with the specific task,
requiring adjustments for optimal performance in medical imaging (Atasever et al., 2023).

Despite these challenges, the increasing availability of pre-trained models and the
advancement of transfer learning techniques continue to enhance diagnostic accuracy,
solidifying transfer learning as a leading approach in medical image analysis. In conclusion,
transfer learning is a transformative technique within deep learning. By reusing knowledge
from pre-trained models, transfer learning significantly improves performance while
reducing the need for large-scale training datasets. As the field evolves, integrating transfer
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learning with emerging technologies, such as synthetic data generation and multi-modal
learning, promises to further enhance the accuracy and robustness of diagnostic systems.

Automated machine learning
Recently, a new method in machine learning, known as automated machine learning
(AutoML), has been proposed. AutoML automates key aspects of the machine learning
process, including data preprocessing, optimal algorithm selection, and hyperparameter
tuning, significantly reducing the time required to buildmachine learningmodels (Wever et
al., 2021). This automation allows for faster model development, making it more accessible
to non-experts and streamlining the workflow for experienced practitioners. Tahmasebi
et al. (2023) conducted a study involving 120 subjects, both with and without MASLD,
using MRI-PDFF as the reference criterion. They employed AutoML Vision to develop
a supervised machine learning model for assessing MASLD, achieving a sensitivity of
72.2% and a specificity of 94.6%. This study highlights AutoML’s potential in medical
diagnostics, demonstrating its ability to build accurate models for complex tasks like
assessing MASLD. However, despite these promising results, there is still a scarcity of
relevant studies utilizing AutoML in this field, which suggests a need for further research
to fully explore its capabilities and limitations.

Computer-aided design based on feature input
Computer-aided design (CAD) techniques have become increasingly integral in enhancing
the diagnosis of non-alcoholic fatty liver disease (MASLD) through ultrasound imaging.
The incorporation of ML in CAD systems has shown significant promise in analyzing liver
ultrasound images with greater accuracy and efficiency than traditional methods. As a
result, researchers have focused on developing the most effective CAD systems, exploring
various classifiers to identify the best-performing models for diagnosing MASLD.

Early studies, such as those byAcharya et al. (2012), employed the Symtosis CADmethod
to extract features from liver ultrasound images, combining texture analysis, higher-order
spectra, and wavelet transforms. This technique, paired with a decision tree (DT) classifier,
accurately distinguished between normal and fatty liver images. Similarly, Subramanya et
al. (2014) used a SVM-based CAD system to diagnose fatty liver, finding that Laws ratio
features yielded the best classification results.

As technology advanced, CAD systems evolved, incorporating more sophisticated
algorithms and a broader range of features. Saba et al. (2016) applied Symtosis to extract
additional features, including Haralick, Gabor, and Fourier transforms, improving the
system’s ability to capture subtle liver texture changes. Their study showed that a back
propagation neural network (BPNN) classifier outperformed traditional DT classifiers.
Acharya et al. (2016) introduced a curvelet-wave transform method with a probabilistic
neural network (PNN), which showed high classification accuracy using only six features.
These advancements marked a shift toward more efficient and robust models, reducing the
complexity of the feature set required for accurate classification.

Further improvements were made in more recent studies. Kuppili et al. (2017) and
Biswas et al. (2018) explored the combination of Symtosis with extreme learning machines
(ELM) and CNNs, both of which led to faster and more accurate liver image classification.
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These models capitalized on the ability of CNNs to automatically learn and refine features
from raw data, removing the need for extensive manual feature extraction.

While CAD systems using various classifiers have been developed for diagnosing hepatic
steatosis, several challenges remain. Factors such as image quality, feature selection, and
the complexity of classification algorithms can all impact the performance of these systems.
The application of machine learning techniques like SVM, CNN, and PNN has significantly
improved liver image classification accuracy. The future of ultrasonic CAD holds great
promise, particularly in enhancing the early detection andmanagement ofMASLD, offering
more reliable and efficient diagnostic tools.

SUMMARY AND PROSPECTIVES
The application of AI in MASLD has gained significant attention. Currently, ultrasound
is the most widely used tool for MASLD screening, and AI-assisted ultrasound has shown
considerable promise. A meta-analysis (Decharatanachart et al., 2021) demonstrated that
AI-assisted ultrasound achieved a sensitivity of 0.97, specificity of 0.98, positive predictive
value (PPV) of 0.98, negative predictive value (NPV) of 0.95, and area under the curve
(AUC) of 0.98, outperforming AI-assisted clinical datasets. Additionally, neural networks
have shown superior performance compared to non-neural network models. However,
most studies to date rely on retrospective, single-center data, which introduces selection
bias, limits generalizability, and results in variability in diagnostic tools and operational
procedures.

AI offers key advantages over traditional statistical models, such as identifying complex
patterns, integrating multiple factors, and creating predictive models. These models aid
risk stratification, improve diagnostic accuracy, and enhance patient outcomes (Dinani,
Kowdley & Noureddin, 2021). In MASLD diagnosis, AI utilizes diverse data sources,
including electronic health records, laboratory tests, imaging, and liver histopathology data
(Li et al., 2021). AI-assisted ultrasound improves diagnostic accuracy, reduces reliance on
operator experience, and minimizes subjectivity. Additionally, AI can enhance diagnostic
efficiency, lower costs, and reduce the burden on sonographers without replacing them. Its
integration is expected to significantly impact primary care, telemedicine, clinical decision
support systems, and early intervention for disease progression.

Despite its promising benefits, current research on AI in MASLD diagnosis faces
several limitations. First, many studies rely on retrospective, single-center data, typically
characterized by small sample sizes and limited representativeness, leading to potential
selection bias and reduced generalizability. Variability in diagnostic tools and operational
procedures across settings also contributes to inconsistencies in model performance.
Furthermore, AI models are often overfitted to training data, performing well on the data
they were trained on but poorly when applied to new, unseen data. The absence of external
validation exacerbates this issue. To address these challenges, AI models must undergo
robust validation in multi-center, prospective studies involving diverse patient populations
to ensure their consistent performance across various settings.

Another significant challenge is the lack of interpretability, commonly referred to
as the ‘‘black box’’ problem. Many advanced AI models, particularly deep learning
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systems, process data through complex algorithms that are difficult for human experts
to interpret. While these models often yield accurate predictions, they do so without
providing clear explanations of how decisions are made. This lack of transparency is
particularly problematic in healthcare, where clinicians must understand and justify
diagnostic decisions. As a result, clinicians may hesitate to rely on AI recommendations,
especially when they cannot validate the underlying logic behind a diagnosis or treatment
suggestion. Furthermore, this lack of interpretability raises significant legal and ethical
concerns. If an AI model makes a diagnostic error that harms a patient, determining
accountability—whether it lies with the developer, the clinician using the tool, or the
institution implementing it—becomes difficult. Enhancing explainable AI, which aims
to make AI models more transparent and understandable, is crucial for addressing these
concerns and promoting the adoption of AI in clinical settings.

The ethical implications of AI in healthcare are multifaceted, raising concerns about
data privacy, bias, and accountability. AI systems require large volumes of sensitive patient
data to function effectively, raising significant concerns about how this data is collected,
stored, and utilized. Ensuring compliance with data protection regulations is critical for
safeguarding patient privacy. As AI models become increasingly integrated into clinical
decision-making, secure handling of data is essential to maintain patient trust and ensure
system integrity. One of the most pressing ethical concerns is the potential for AI models to
inherit biases from the data on which they are trained. If training datasets are not diverse
or representative of global populations, AI systems could perpetuate or even exacerbate
existing healthcare disparities. Tomitigate these biases, it is essential that AI training datasets
reflect a broad range of ethnicities, ages, genders, and socioeconomic backgrounds. The
integration of AI in clinical practice also raises complex questions about responsibility and
accountability. In the event of diagnostic errors or adverse patient outcomes caused by
AI-assisted tools, it may be unclear who should be held accountable. This lack of clarity
could undermine trust in AI systems and complicate medical malpractice frameworks.
These concerns underscore the need for clear ethical guidelines and frameworks to govern
AI deployment in healthcare.

The future potential of AI in MASLD diagnosis is vast, particularly with the integration
of multi-modal data. In addition to traditional ultrasound images, AI is expected to
incorporate clinical data, laboratory test results, and multi-omics information to further
enhance diagnostic accuracy. Future research should focus on multi-center, prospective
studies to gather high-quality, representative data and address current limitations in data
quality. Moreover, there is a need to develop more transparent and interpretable models to
improve clinicians’ trust in AI. Beyond early screening for MASLD, AI-assisted ultrasound
may expand to diagnose other liver diseases, monitor disease progression, and evaluate
treatment efficacy. With continued advancements, AI has the potential to play a crucial
role in primary care and telemedicine, providing accessible, cost-effective diagnostic tools
that support early intervention and precision treatment for liver diseases globally.
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