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ABSTRACT
Background. Antibiotics play a critical role in treating microbial infections. However,
their widespread use has contributed to the growing problem of microbial resistance.
Addressing this challenge requires the identification of new microbe-drug associations
to support the development of novel therapeutic strategies. Since traditional wet-lab
experiments are time-consuming and costly, computational models offer an efficient
alternative for discovering potential applications of existing drugs against previously
untestedmicrobes. Thesemodels can facilitate the identification of novel microbe-drug
associations and help counteract resistance mechanisms.
Methods. This study proposes a novel computational model: convolutional neural
network with Bernoulli random forest for Microbe-Drug Association prediction
(CNNBRFMDA). The model constructs feature vectors for all microbe-drug pairs
based on known associations, microbe similarity, and drug similarity. A subset of these
vectors is randomly selected to form the training set. A convolutional neural network
(CNN) is then used to reduce the dimensionality of all feature vectors, including those
in the training set. The reduced training set is subsequently used to train a Bernoulli
random forest (BRF) to predict potential microbe-drug associations. The innovation of
CNNBRFMDA lies in its integration of CNN for nonlinear feature extraction and BRF
for robust prediction. This approach enhances computational efficiency and improves
the model’s ability to capture complex patterns, thereby increasing the precision and
interpretability of drug response predictions. The dual use of the Bernoulli distribution
in BRF ensures algorithmic consistency and contributes to superior performance.
Results. Themodel was evaluated using five-fold cross-validation on theMicrobe-Drug
Association Database (MDAD) and abiofilm datasets. CNNBRFMDA achieved mean
AUC scores of 0.9017 ± 0.0032 (MDAD) and 0.9146 ± 0.0041 (abiofilm). Two case
studies further validated the model’s reliability: 41 of the top 50 predicted microbes
associated with ciprofloxacin and 38 of the top 50 associated with moxifloxacin were
confirmed through literature review.
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INTRODUCTION
Microbes are a class of tiny organisms that include bacteria, viruses, fungi, and parasites
(Schommer & Gallo, 2013). They are widely distributed in our surrounding environment
and played important roles in the lives of humans and animals (Rashno et al., 2021).
Some of microbes are beneficial to human bodies and ecosystems, some of microbes are
pathogens that can cause serious diseases (Tremlett & Waubant, 2018).

On the one hand, some microbes have evolved with humans and work in concert
with the human body to maintain human immune and metabolic functions (Meng et al.,
2019). On the other hand, some microbes can cause disease and further damage hosts
(Pirofski & Casadevall, 2020). For example, Pneumococcus can cause pneumonia, sepsis
and meningitis by colonizing the human upper respiratory tract (Morimura et al., 2021).
Moreover, tetanus neurotoxin produced by Clostridium tetani inhibits neurotransmission,
causing spastic paralysis in tetanus disease (Masuyer, Conrad & Stenmark, 2017). However,
humans are fortunate to have discovered antibiotic drugs, which can inhibit or kill harmful
microorganisms, becoming an effective method for combating microbe infections and
diseases (Pauter, Szultka-Młyńska & Buszewski, 2020). Especially, antibiotic drugs can act
on microbe through different mechanisms, thereby blocking their life cycle and controlling
infection (Baquero & Levin, 2021). For example, antibiotics can intervene in key processes of
cell wall synthesis (Cho, Uehara & Bernhardt Thomas, 2014), protein synthesis (Hashemian,
Farhadi & Ganjparvar, 2018), and nucleic acid replication in bacteria, thereby inhibiting
bacterial growth and reproduction (Drlica & Zhao, 2021). Unsurprisingly, the discovery
and application of antibiotics is considered as a major breakthrough in the field of medicine
(Moser et al., 2019). However, with the widespread use of antibiotics, microbe have also
begun to develop resistance to antibiotics, resulting in a decrease in the ability of antibiotics
to kill or inhibit microbe (Bassegoda et al., 2018). Therefore, it is urgent to develop new
antibiotic drugs (Bhardwaj et al., 2022).

At present, the development of new drugs face two main challenges. The first challenge
is the insufficient investment in drug research and drug development (Fernandes &
Martens, 2017). In contrast, more research and investment are focused on drugs with
long-term use, while the discovery and development of new drugs face relatively few
resources and attention (Martens & Demain, 2017). Another challenge is the resistance
of microbe. The growing challenge of antibiotic resistance in treating diseases caused by
microbes susceptible to antibiotics diminishes the efficacy of current antibiotic drugs. This
phenomenon makes it increasingly difficult to effectively address infections caused by
susceptible microorganisms (Eisenreich et al., 2022). For example, patience infected with
Human Immunodeficiency Virus (HIV) who have been undergoing long-term treatment
with antiretroviral drugs (ARV) may generate drug-resistant virus strains, reducing
sensitivity to conventional antiretroviral drugs (Capetti & Rizzardini, 2019). Therefore,
there is an urgent need to develop new antiviral drugs to treat patients with HIV infection
(Lingappa, Lingappa & Reed, 2021). Moreover, multidrug-resistant tuberculosis (MDR-
TB) and extensively drug-resistant tuberculosis (XDR-TB) are two forms of resistance of
bacteria to conventional TB drugs. These strains have developed resistance to many of the
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drugs commonly used to treat TB, making treatment difficult (Seung, Keshavjee & Rich,
2015). Antimicrobial drug resistance poses a great threat to human beings in the word. It
is estimated that antimicrobial resistance causes 700,000 deaths annually, and this number
will rise to 10 million annually after 2050 (Asare et al., 2022). Currently, drug combination
therapy and drug repurposing are effective approaches to combat antimicrobial resistance
(Foletto et al., 2021; Liu et al., 2021). In particular, drug repurposing, which utilizes existing
drugs to treat different diseases, is a safe and successful way to accelerate the discovery and
development of new drug (Konreddy et al., 2019). It is worth mentioning that identification
of microbes-associated drugs can facilitate the development of drug combination and drug
repositioning. Therefore, developing effectivemethods to discovery potentialmicrobe-drug
associations is urgently needed.

Currently, with the continuous increase of available biological data, computational
methods have emerged in predicting potential microbe-drug associations. Using
computational models to predict drugs associated with microorganisms can significantly
reduce the time and cost required for traditional wet experiments. The currently developed
microbe-drug association prediction models can be broadly classified into two categories.
The first type of prediction models is network-based models. For example, Long & Luo
(2021) proposed a novel Heterogeneous Network Embedding Representation framework
forMicrobe-DrugAssociation prediction (HNERMDA). They constructed a heterogeneous
network based on microbe-microbe associations, drug-drug associations, and known
microbe-drug associations. To capture different semantic features hidden in diverse
networks, the metapath2vec algorithm was used to learn the embedded representations
of microbes and drugs based on heterogeneous networks. Furthermore, a biased network
projection recommendation algorithm was implemented to identify new microbe-drug
associations by assigning different bias weights to microbes and drugs. Moreover, Zhu et al.
(2019) developed a new computational model of the KATZ measure for predicting novel
human microbe-drug associations (HMDAKATZ). In the model, they first constructed
a microbe-drug heterogeneous network by integrating multi-source data. Subsequently,
based on the constructed heterogeneous network, they used the length-based algorithm
of KATZ to predict potential microbe-drug associations by comprehensively considering
paths of various lengths between microbe and drug.

The second type of prediction models is machine learning-based models. For example,
Long et al. (2020a) proposed a graph convolutional network (GCN) based framework
for predicting human Microbe-Drug Associations named GCNMDA to predict potential
microbe-drug associations. First, they constructed a heterogeneous network by integrating
drug similarity network, microbe similarity network and microbe-drug association
network. Next, the restart random walk algorithm was applied to process both the microbe
similarity network and the drug similarity network, resulting in the derivation of a microbe
feature matrix and a drug feature matrix. Then, they used GCN to learn node embeddings
based on the heterogeneous networks and the new feature matrices. Furthermore, within
the hidden layer of GCN, a conditional random field (CRF) was introduced to augment
the learning efficacy of node representation, ensuring that analogous nodes (i.e., microbes
or drugs) exhibit comparable representations. To accurately aggregate representations of
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communities, they applied the attention mechanism in the CRF. Finally, they established
a reconstructed bipartite graph for the prediction of microbe-drug associations. Besides,
based on the research foundation of GCNMDA, Long et al. (2020b) further proposed a
novel Ensemble framework of Graph Attention networks with a hierarchical attention
mechanism for Microbe-Drug Association prediction (EGATMDA). Firstly, three distinct
networks (graphs) were established based on microbe, drug, and disease factors, resulting
in a microbe-drug bipartite network, a microbe-drug heterogeneous network, and a
microbe-disease-drug heterogeneous network. Secondly, microbe feature matrix and
drug integrated matrix are constructed based on drug structure similarity, drug Gaussian
kernel similarity and microbe gene sequence similarity. Thirdly, they employed graph
convolutional networks (GCN) and graph attention networks (GAT) to learn node
embedding representations for each microbe and drug node from the feature matrix
and each input microbe-drug network. In their methodology, each node, representing
both microbe and drug, holds diverse semantic information within different graphs. To
effectively integrate this information and alleviate noise originating from diverse graphs,
they propose the utilization of a graph-level attention mechanism. Additionally, Deng et
al. (2022) proposed a computational model called Graph2MDA that utilizes variational
graph autoencoders (VGAE) and deep neural networks (DNN) to predict potential
microbe-drug associations. First, they constructed a multimodal property graph that
included drug structural similarity, drug Gaussian kernel similarity, microbial functional
similarity, and microbial sequence similarity. Then, the latent representation of the
nodes (i.e., microbes or drugs) is learned using VGAE. Finally, they used a deep neural
network classifier to predict potential microbe-drug associations based on the node
embeddings learned by VGAE. To fully harness the informative potential embedded in
similar (neighbor) characteristics of drugs or microbes and unveil the latent probability
distributionwithin establishedmicrobe-drug associations,Cheng et al. (2022) implemented
a two-step methodology. Initially, they utilized neighborhood integration (NI) to generate
a score matrix for potential microbe-drug associations. This involved employing diverse
thresholds to identify comparable neighbors for drugs or microbes. Subsequently, the
authors applied the Restricted Boltzmann Machine (RBM) to derive another score matrix
for potential microbe-drug associations, leveraging the contrastive divergence algorithm
and sigmoid function. To enhance predictive accuracy, an ensemble learning approach was
employed to integrate these two score matrices.

In this article, based on the known microbe-drug associations, drug similarity and
microbe similarity, we proposed a new computational model of convolutional neural
network with Bernoulli Random Forest for Microbe-Drug Association prediction
(CNNBRFMDA) based on CNN and BRF (Deepthi, Jereesh & Liu, 2021;Wang et al., 2018).
Firstly, drug chemical structure similarity and drug side effect similarity were combined
into integrated drug similarity. Similarly, Integrated microbe similarity was constructed
through microbe sequence similarity. Subsequently, feature vector for each microbe-drug
pair can be constructed by concatenating integrated drug similarity and integrated microbe
similarity. Next, CNN is utilized to extract latent feature representations from the feature
vectors of all microbe-drug pairs and low-dimensional feature vectors for all microbe-drug
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Table 1 The statistics for each microbe-drug association dataset.

Datasets Drugs Microbes Associations

abiofilm 1,720 140 2,884
MDAD 1,373 173 2,470

pairs can be generated. Finally, we employed BRF to infer potential associations between
microbes and drugs. In addition, we implemented five-fold cross-validation to evaluate the
capabilities of CNNBRFMDA based on the MDAD and abiofilm datasets, respectively. The
results showed that the mean AUCs and standard deviations of the 5-fold cross-validation
were 0.9017+/- 0.0032 for theMDADdataset and 0.9146+/- 0.0041 for the abiofilm dataset.
Two different case studies were conducted to evaluate the performance of CNNBRFMDA.
The results showed that 41 out of the top 50 microbes predicted for ciprofloxacin were
confirmed by literatures. Another case studies showed that 38 out of the top 50 predicted
microbes for moxifloxacin were confirmed by searching the published literatures.

MATERIALS & METHODS
Microbe-drug association
In this article, we introduced two datasets of known microbe-drug associations, separately
for abiofilm (Rajput et al., 2018), Microbe-Drug Association Database (MDAD) (Sun et al.,
2018). The abiofilm dataset records 2,884 known microbe-drug associations between 1,720
drugs and 140 microbes. Moreover, MDAD dataset collected 2,470 known microbe-drug
associations between 1,373 drugs and 173 microbes. The statistics of the two datasets
mentioned above are shown in Table 1. Furthermore, the adjacency matrix A∈Rnd×nm was
used to represent the microbe-drug association information, where nd means the number
of drugs and nm means the number of microbes. The value of entity Aij is set to 1 when
the drug di was associated with the microbe mj . Otherwise, the value is set to 0.

Aij =

{
1, if durg di is associated with microbe mj

0,otherwise
(1)

Drug side effect similarity
The SIDER (Kuhn et al., 2010) database provides extensive information about drug side
effects, and we downloaded the side effects of the drugs used in the this study from SIDER.
Based on the view that the more side effects shared by two drugs, the more similar the two
drugs. The set of side effects associated with drug di is defined as N (i). We defined the
similarity between two drugs as 0 when there were no common side effects between the
two drugs. The entity SS1(i,j) denoted the similarity of side effects between drug di and
drug dj . Jaccard (Gottlieb et al., 2011) was utilized to calculate drug side effect similarity
Eq. (2) showed as following.

SS1= Jaccard score=

∣∣N (i)∩N (j)
∣∣∣∣N (i)∪N (j)
∣∣ . (2)
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Drug chemical structure similarity
SIMCOMP (http://www.genome.jp/tools/simcomp/) is a graph-based chemical structure
comparisonmethod that can be used to obtain the chemical structure similarity of different
drugs. SIMCOMP is used to find maximal cliques in association graphs and furthermore
to discover isomorphic maximal common subgraphs (Hattori et al., 2003). In the data
pre-processing of this article, SIMCOMP2 quantifies the similarity between drugs by
comparing their chemical structures. Specifically, we set the cutoff score for drug structure
similarity at 0.5. The drug chemical structural similarity between drug di and drug dj was
represented by SS2.

Microbe sequence similarity
In this paper, we obtained two microbe sequence similarity based on two different known
microbe-drug association datasets, respectively. For microbes in the MDAD dataset
or the abiofilm dataset, microbe sequence similarity obtained by MAFFT and BioEdit
calculations. MAFFT introduces the approximate distance calculation algorithm and the
fast Fourier alignment algorithm to achieve multiple sequence matching. The sequence
similarity matrix can be calculated by using the sequence identification matrix function
in BioEdit (Tippmann, 2004). Based on the idea that the more sequences two microbes
have in common, the more similar they are to each other. Hence, when two microbes
have no sequence in common, the value of the microbe sequence similarity score between
the two microbes is equal to 0. In this article, the microbe sequence similarity matrix was
represented by the MV matrix, as in which MV (mi,mj) denotes the sequence similarity
value between microbe mi and microbe mj .

Integrated similarity for microbe and drug
To fully leverage the raw information of drugs and microbes, we construct the integrated
similarity for microbes using unprocessed microbe sequence similarity. For drugs, we
aggregate the drug chemical structure similarity and drug side effect similarity and
compute their average to obtain the integrated similarity for drugs. CNNBRF demonstrates
outstanding performance by thoroughly exploiting the original data.

Moreover, to ensure consistency in data processing, we exclude the parts of models
like NIRBMMDA, LAGCNMDA, and RFMDA that utilize Gaussian kernel similarity. We
observe a significant decrease in performance when these parts are removed, while our
model maintains its robustness. This resilience is one of the strengths of our model.

CNNBRFMDA
In this article, we propose a new computational model named CNNBRFMDA to predict
potential microbe-drug associations. The flowchart of CNNBRFMDA is shown in Fig. 1.
The proposed method consists of three main parts: Data preparation, CNN for latent
feature extraction and BRF for predicting potential microbe-drug association.

Data preparation
Data preparation is the first step of the CNNBRFMDA algorithm, aimed at representing
microbe-drug pairs as feature vectors. As previously mentioned, in our study, we
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Figure 1 The flowchart of CNNBRFMDA. The proposed method consists of three main parts: Data
preparation, Convolutional Neural Network (CNN) for latent feature extraction and Bernoulli Random
Forest (BRF) for predicting potential microbe-drug association.

Full-size DOI: 10.7717/peerj.19637/fig-1

constructed the adjacencymatrix A of knownmicrobe-drug association, the integrated drug
similarity matrix SD(nd×nd) and the integrated microbe similarity matrix SM (nm×nm).
We extracted nm and nd features separately for microbe and drugs from these matrices,
respectively. By concatenating the feature vectors of the investigated microbes and drugs,
we obtained nm+nd features for each microbe-drug pair. For any one of the two datasets,
each drug is comprised of nd features (f1,f2,...,fx ...,fnd), where the x− th feature fx ,
represents the integrated similarity between the investigated drug and the x− th drug.
Therefore, drug du can be represented by nd-dimensional vector FeV (du), which can be
described as Eq. (3):

FeV (du)= (f (u)1,f (u)2,...,f (u)x ,...,f (u)nd) (3)

where the x− th element f (u)x of FeV (du) is the integrated similarity between drug dx and
drug du. Similarity, we denoted the nm-dimensional vector FeV (mv) for microbe mv as
Eq. (4):

FeV (mv)= (f (v)1,f (v)2,...,f (v)y ,...,f (v)nm) (4)

where the y− th element f (v)y of FeV (mv) is the integrated similarity between microbe
my and mv .

Subsequently, by concatenating the feature vectors of FeV (mv) and FeV (du), we obtained
nm+nd features for each microbe-drug pair. As a result, there were nm×nd samples and
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the length of each sample was nm+nd , each sample corresponds to a microbe-drug
pair. Next, we set the labels of the known microbe-drug association to 1, forming the
positive sample set P . Simultaneously, negative samples were selected from the unlabeled
microbe-drug pairs, and their labels were set as 0 to create a negative sample set NCNN ,
ensuring a balanced 1:1 ratio of positive sample set and negative sample set. This method
is feasible due to the low ratio of (the number of P)

nm×nd−(the number of P) . After compiling P and N , the next
step was combined them into a training set to construct low- dimension feature vectors.

Convolutional neural network for latent feature extraction
CNN is a deep learning algorithm (LeCun et al., 1989), the three basic layers of CNN are
the convolutional layer, the pooling layer (the subsampling layer), and the fully connected
layer. The convolutional layer obtains different features of the input data by learning
filters, and then the pooling layer is used to reduce the feature dimension, enhance the
translation invariance and robustness of themodel, and finally classify in the fully connected
layer. In the CNNBRFMDA model, we utilized CNN to extract complex features from
microbe-drug feature vectors in a deep-learning framework. Specifically, we perform
multiple convolution operations on input samples using different kernels to generate
activation maps. The activation map Ql at layer l can be described as:

Ql = σ (Ql−1�Wl+bl) (5)

where σ (k) denotes the activation function, Wl the convolution kernel at layer l , bl the
offset vector, and � the convolution operation. Subsampling layers are used to compress
the feature vectors of microbe-drug pairs and minimize overfitting. The formula for the
subsampling layer Ql can be expressed as:

Ql = Subsampling (Ql−1). (6)

In order to preserve the most salient features of each filtered region, we employ max-
pooling in the subsampling layer. During the training process, CNN was optimized to
minimize the network’s loss function. The training data was fed into CNN, enabling it to
capture salient features from the input feature vectors ofmicrobe-drug pairs.We conducted
several experiments to identify the optimal hyperparameters of the CNN and obtain the
best predictive model. For the convolutional operation, we incorporated 16 filters with
a size of 1×16 in the convolutional layer, based on the configuration used in Deepthi,
Jereesh & Liu (2021), which has been shown to perform effectively for similar tasks. In the
subsampling layer, we established a filter size of 1×2. In our model, At the convolution and
fully connected layers, we employed the rectified linear unit (ReLU (Nair & Hinton, 2010))
as the activation function. Additionally, the sigmoid function was used at the output layer.
The model was implemented with the binary cross-entropy error function and optimized
using Adam. Furthermore, to avoid overfitting, two dropout layer (Srivastava et al., 2014)
are added between the convolutional and fully connected layers. Finally, we retrieved the
weight data learned after multiple convolution and pooling operations. Ultimately, we
updated the feature vectors of all microbe-drug pairs using the weight data learned from
CNN. Specifically, we used the output data of the second-to-last layer (fully connected
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layer) as the low-dimension feature vectors for all microbe-drug pairs. Here, we reduced
the dimensionality to nd+nm

2 .
The model prevents overfitting through several strategies, including the use of dropout

layers that randomly deactivate neurons to reduce model dependency on any specific set
of features, as well as employing five-fold cross-validation. This cross-validation technique
helps ensure that the model’s performance is robust across different subsets of the data,
further mitigating the risk of overfitting.

It is worth mentioning that the model consists of only three layers with trainable
parameters: one convolutional layer and two fully connected layers. This streamlined
architecture significantly reduces computational complexity, decreases memory usage,
and accelerates the training process, making it exceptionally efficient for deployment
in environments with limited computational resources. Furthermore, the simplicity of
having fewer trainable layers reduces the risk of overfitting and streamlines the model
tuning and optimization process, ensuring robust performance across diverse datasets.
Consequently, the model remains both practical and effective for applications that demand
rapid processing with reliable accuracy.

Bernoulli random forest based prediction
As a learning algorithm, random forest (RF) is widely used in various prediction tasks and
has achieved notable performance (Chen et al., 2018; Wang et al., 2019). This technique
involves three key processes: random bootstrap sampling, random attribute bagging, and
tree node splitting.

First, random bootstrap sampling is a method of sampling with replacement. For
each tree, the random forest algorithm selects a subset of the training data, known as a
‘‘bootstrap sample’’, which may contain duplicate data points. Second, random attribute
bagging involves selecting a random subset of features for each node split rather than using
all available features. Finally, tree node splitting is the core step in constructing decision
trees. At each node, the algorithm selects the optimal feature and split point based on
criteria such as Gini impurity or information gain (see Fig. S1).

However, RF cannot simultaneously account for both theoretical consistency and
empirical reliability. The BRF, a variant of RF introduced in this article, demonstrates
good experimental performance while maintaining theoretical consistency. Compared
to RF, BRF achieves theoretical consistency while retaining strong performance. The
key differences lie in their approaches to random bootstrap sampling, random attribute
bagging, and tree node splitting

BRF divides the training data into a structural part and an estimation part. The structural
part is used to construct the tree’s shape, while the estimation part is reserved exclusively
for sample prediction and not used in tree construction. This contrasts with RF, where the
entire bootstrap sample is used for both tree construction and prediction.

In the BRF, the feature selection for node splitting is not conducted by merely randomly
selecting a subset of features. Instead, Bernoulli trials are employed to decide whether to
select a single feature or a subset of features. Thismethod introduces controlled randomness
into the feature selection process, thereby enhancing model robustness. As illustrated in
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Fig. S2, event B1 chooses a value from 0 or 1 with probability p1, where B1 follows a
Bernoulli distribution. Here, p1 corresponds to choosing one candidate feature, while
1−p1 corresponds to selecting

√
D candidate features from the D features in training data.

In contrast, traditional RF selects features purely at random without such control. After
selecting features and samples, RF deterministically splits tree nodes using conventional
decision tree algorithms. Conversely, BRF utilizes Bernoulli trials to determine whether
to select the splitting point based on the impurity criterion or random sampling. This
decision process is controlled by B2: Bernoulli trial controlled tree node splitting, where
p2 represents random sampling, and 1−p2 represents splitting based on the impurity
criterion. This additional layer of randomness adds complexity to the tree structure. These
three differences collectively ensure that as data size grows indefinitely large, BRF converges
to the optimal solution, thereby achieving consistency.

RESULTS
Performance evaluation
We conducted crossover experiments to assess the performance of CNNBRFMDA based on
two representative datasets: MDAD and abiofilm. Each dataset was trained separately, with
the abiofilm dataset containing 2,884 known associations between 1,720 drugs and 140
microbes, the MDAD dataset containing 2,470 known associations between 1,373 drugs
and 173 microbes. To validate the predictive performance of CNNBRFMDA, 5-fold cross-
validation was performed. All known microbe-drug associations were randomly divided
into five equally sized subsets, with each subset being used as the test set in rotation. In
comparison, the remaining four subsets were used as the training set. CNNBRFMDA was
used to score all unlabeled microbe-drug pairs and test samples, and the scores of each test
sample were compared with the scores of all unlabeled pairs to determine their ranking.
Additionally, by setting the association values for the microbe-drug pairs to be predicted
as 0, we simulated a scenario where the model predicts new, unseen microbes or drugs that
are not present in the current datasets. This approach mirrors real-world conditions, where
the model would encounter novel entities, providing a realistic estimate of its predictive
capabilities in such situations.

Based on the CNNparameters derived fromDeepthi, Jereesh & Liu (2021), we conducted
a comparative analysis of CNNBRFMDA against five models: CNNRFMDA, BRFMDA
(Wang et al., 2018), NIRBMMDA (Cheng et al., 2022), LAGCNMDA (Qu et al., 2024),
RFMDA (Chen et al., 2018), employing a five-fold cross-validation.

For MDAD dataset, as shown in Fig. S3, CNNBRFMDA obtained an AUC of 0.9074,
which was superior to CNNRFMDA (0.9043), BRFMDA (0.8873), NIRBMMDA (0.8589),
LAGCNMDA (0.8241), RFMDA (0.7834).

For abiofilm dataset, as shown in Fig. S4, CNNBRFMDA obtained an AUC of 0.9221,
which was superior to CNNRFMDA (0.9079), BRFMDA (0.8816), NIRBMMDA (0.8660),
LAGCNMDA (0.8425), RFMDA (0.8313).

The corresponding Precision-Recall (PR) curves for the CNNBRF model are presented
in Figs. S5 and S6, based on the MDAD and abiofilm datasets, respectively. We observed
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that CNNBRF significantly outperforms both the random forest model and the baseline
random model in terms of precision and recall. This indicates that the CNNBRF model is
more effective at identifying true microbe-drug associations when processing the MDAD
and abiofilm datasets. From the graphs, it is evident that the CNNBRF model maintains a
high level of precision across most levels of recall, demonstrating that the model can retain
high result reliability without sacrificing significant recall. In contrast, the random forest
model shows a more pronounced decline in precision at higher recall levels. Moreover,
the overall precision performance of CNNBRF is stable and does not rely on optimization
for any specific threshold, indicating that the model performs consistently under varying
conditions.

Taking the MDAD dataset as an example, the CNN model initially reduces the
dimensionality of the input data, resulting in 773-dimensional feature vectors. These
vectors are then input into the BRF, where they are used to construct decision trees. To
improve interpretability, we have focused on the features utilized for splitting nodes within
these trees. We have generated correlation coefficient plots of these features, as shown in
Fig. S7. This visualization demonstrates low inter-feature correlation, suggesting that the
features used for splitting in the BRF possess good independence. This independence is key
to understanding the model’s robust predictive performance.

To mitigate bias resulting from the random partitioning of known microbe-drug
associations, the 5-fold cross-validation process was repeated 10 times. As a result, for
the two datasets of MDAD, and abiofilm, CNNBRFMDA acquired the average AUC and
standard deviation of 0.9017+/−0.0032 and 0.9146+/−0.0041, respectively, which were
higher than those of five previous models. Additionally, we integrated logistic regression
and k-nearest neighbors into our comparative analysis to further validate the performance
of our model against these well-established techniques (see Tables S1, S2). It is worth
mentioning that all prediction models underwent evaluation against CNNBRFMDA,
utilizing the same dataset in 5-fold cross-validation.

To validate the efficacy of CNNBRF across different biological contexts, we employed
the DrugVirus dataset (Andersen et al., 2020), which contains 933 associations between 175
drugs and 95 viruses. After conducting ten times five-fold cross-validation, we observed a
performance metric of 0.7963± 0.0017. This result is lower compared to the performances
achieved with the MDAD and abiofilm datasets. We believe this underperformance can
largely be attributed to the smaller size of the DrugVirus dataset, which limits the model’s
ability to generalize as effectively as it does with larger datasets. The results highlight the
challenges associated with smaller datasets and emphasize the need for further refinement
of CNNBRFMDA to enhance its robustness and accuracy. Improving model performance
across various data scales and biological contexts will be a key focus of our future work.

To investigate the impact of different epochs on model performance, we conducted
performance tests at epochs 10, 20, 50, and 100 on the MDAD and abiofilm datasets, as
depicted in (see Tables S3, S4). We found that at epoch 20, the performance achieved by
the training was optimally balanced with computational resource consumption.
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Case studies
In our study, we conducted two case studies using the CNNBRFMDA model, building
upon previous research to further validate its predictive capabilities. These case studies
were informed by the methodologies and findings of earlier studies, as referenced in
Cheng et al. (2022), Fan, Wang & Zhu (2023), Li et al. (2023a), Long et al. (2020a), Tian et
al. (2023). The first case study focused on predicting potential microbe associations of the
drug ciprofloxacin based on the abiofilm dataset using CNNBRFMDA. Ciprofloxacin is
one of a new generation of fluorinated quinolones. The results of clinical trials with orally
and intravenously administered ciprofloxacin have confirmed its potential for use in a wide
range of infections (Campoli-Richards et al., 1988).We employed CNNBRFMDA to predict
ciprofloxacin-related microbes, subsequently ranking the top 50 potential ciprofloxacin-
related microbes. These predictions were then validated by reviewing the relevant literature
on PubMed. The results showed that 41 out of the top 50 predicted ciprofloxacin-related
microbes were confirmed through literature review (see Table S5). For instance, the
top-ranked ciprofloxacin-related microbe is Escherichia coli, a Gram-negative bacterium
in the family Enterobacteriaceae. It can cause various disease syndromes such as different
diarrheal diseases, wound infections, meningitis, septicemia, and atherosclerosis (Olsvik
et al., 1991). Jakobsen, Lundberg & Frimodt-Møller (2020) found that ciprofloxacin was
highly effective in eliminating susceptible Escherichia coli in urine and kidney tissues.
This specific effectiveness is crucial, given the increasing antibiotic resistance among E. coli
strains, which complicates the management of such infections. The activity of ciprofloxacin
against E. coli not only highlights the importance of this antibiotic in the arsenal against
Gram-negative bacterial infections but also emphasizes the need for targeted antibiotic
therapy. This approach minimizes the misuse of broad-spectrum antibiotics and helps
preserve the efficacy of these drugs, which is essential for slowing the development of
resistance.

Shigellosis, predicted to be related to ciprofloxacin and ranked 13th, is a major global
cause of dysentery (Thompson, Duy & Baker, 2015). It often manifests with symptoms
such as diarrhea, abdominal pain, fever, and vomiting, and in severe cases, it can lead to
dehydration and other complications. Gharpure et al. (2022) investigated an outbreak of
multidrug-resistant Shigella sonnei infections in a retirement community and found that
the isolated strains were susceptible to ciprofloxacin. The effectiveness of ciprofloxacin
against drug-resistant Shigella sonnei provides a reliable treatment pathway, particularly in
outbreak scenarios where a quick and effective response is crucial. This underscores the
importance of maintaining ciprofloxacin as a viable treatment option in the face of rising
antibiotic resistance, ensuring that healthcare providers can effectively manage outbreaks
and prevent widespread transmission and morbidity.

Additionally, Salmonella enterica was predicted to be related to ciprofloxacin and
ranked 14th. Salmonella enterica, a Gram-negative rod-shaped bacterium, is commonly
transmitted through contaminated water and food and can cause several different disease
syndromes, with the most common being gastroenteritis, followed by bacteremia and
typhoid fever (Han et al., 2024). Li et al. (2023b) discovered that ciprofloxacin can be
used in the treatment of Salmonella enterica serovar Typhimurium infection. The model’s
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identification of ciprofloxacin as effective against Salmonella enterica serovar Typhimurium
is particularly important given the bacterium’s role in significant public health issues like
gastroenteritis and typhoid fever. Ciprofloxacin’s efficacy highlights its importance not only
in treating common infections but also severe systemic infections caused by Salmonella,
providing a reliable treatment option in the face of increasing antibiotic resistance. This
underscores the value of targeted antibiotic therapy, allowing for more precise treatment
strategies and helping to preserve the effectiveness of essential drugs against resistant
strains.

In the second case study, we aimed to verify the predictive ability of CNNBRFMDA on
microbe potentially associatedwith newdrugs. To achieve this object, we removed all known
associations of the drug moxifloxacin in the MDAD dataset and utilized the processed
MDAD dataset to predict potential associated microbe of the new drug moxifloxacin using
CNNBRFMDA. The results showed that 38 out of the top 50 predicted moxifloxacin-
related microbes were confirmed through literature review (see Table S6). For example,
with the highest correlation score to moxifloxacin, Haemophilus influenzae, a pathogenic
bacterium causing respiratory and otolaryngological infections (Honda et al., 2020), has
been experimentally confirmed byHonda et al. to be susceptible tomoxifloxacin treatment.
This finding is particularly important for guiding antibiotic stewardship and treatment
strategies. By identifying Haemophilus influenzae as highly responsive to moxifloxacin,
healthcare providers can more accurately prescribe treatments that are likely to be effective,
reducing the need for broader spectrum antibiotics that may contribute to the development
of further resistance. Additionally, this outcome highlights the potential ofmoxifloxacin as a
valuable antibiotic inmanaging infections that are difficult to treat due to either the location
or the nature of the bacterial resistance. Additionally,Candida albicans, which ranks second
in correlation to moxifloxacin, is a commonly encountered fungal pathogen associated
with diseases ranging from superficial mucosal complaints to life-threatening systemic
disorders (Wang, 2015). Jadhav et al. (2017) have demonstrated the potential impact of
moxifloxacin on the growth, morphogenesis, and abiofilm formation of Candida albicans,
with minimal likelihood of Candida albicans developing resistance to moxifloxacin. This
efficacy against Candida albicans is particularly significant given the pathogen’s association
with a range of diseases from mild mucosal ailments to severe systemic infections that
can be life-threatening. The ability of moxifloxacin to inhibit biofilm formation—a key
factor in the virulence and drug resistance of Candida infections—further enhances its
potential utility in clinical settings where fungal infections are prevalent or complicated
by biofilms. The implications of these findings are broad, not only for the treatment of
fungal infections but also for the potential development of moxifloxacin as a multi-use
antimicrobial agent. This could lead to its strategic use in cases where fungal and bacterial
co-infections are suspected, thus simplifying treatment regimes and potentially reducing
the need for combination therapies that may have higher toxicities or drug interaction
risks. Staphylococcus aureus, which ranks sixth in correlation to moxifloxacin, is a clinically
important pathogen causing a wide range of human infections, from minor skin infections
to severe tissue infection (Ahmad-Mansour et al., 2021). Ince, Zhang & Hooper (2003) have
confirmed that moxifloxacin exhibits enhanced potency against Staphylococcus aureus,
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lower propensity to select for resistant mutants, and higher bactericidal activity against
highly resistant strains. Moxifloxacin’s ability to effectively target Staphylococcus aureus
with a lower propensity for developing resistance is particularly significant in the context
of increasing antibiotic resistance worldwide. This characteristic makes moxifloxacin an
important option in the antibiotic arsenal, especially in settings where drug resistance
is prevalent, and traditional treatments fail. Its higher bactericidal activity is also critical
for ensuring effective eradication of infections, minimizing the risk of recurrence and the
spread of infection within healthcare settings. Moreover, the broad efficacy of moxifloxacin
against Staphylococcus aureus enhances its utility not just for typical bacterial infections but
also for more complicated clinical scenarios where the bacterial load and resistance factors
complicate treatment strategies. This versatility can lead to better clinical outcomes and
may reduce the duration and complexity of antibiotic therapy needed to manage infections
effectively.

DISCUSSION
Because the problem of microbe resistance to drugs is intensifying and the development
cycle of new drugs is prolonged, more and more researchers have begun to pay attention
to computational models for the prediction of microbial-drug associations (Liang et al.,
2024; Xuan et al., 2024; Zhao et al., 2024; Zhu et al., 2024). In this study, we developed a
computational model CNNBRF for microbe-drug association prediction. First, we leverage
known microbe-drug associations to construct a positive sample set. At the same time,
in order to maintain a 1:1 ratio between the positive sample set and the negative sample
set, we randomly choose an equal number of samples from unknown microbe-drug
pairs to form the negative sample set. Second, feature vectors are constructed for each
microbe-drug pair by utilizing the integrated microbe similarity and integrated drug
similarity. Then, a convolutional neural network is employed to extract latent features
and construct low-dimensional feature vectors for each microbe-drug pair. Finally, we
used the BRF model to predict potential microbe-drug associations. We performed 5-fold
cross-validation to verify the accuracy of CNNBRFMDA. In addition, we conducted two
types of case studies. The results of the extended analysis demonstrate the well performance
of CNNBRFMDA in predicting potential microbe-drug associations.

To transition the findings from the CNNBRFMDAmodel into clinical or pharmaceutical
trials, the following steps could be implemented: The first step involves rigorous validation
of the model’s predictions using independent laboratory tests to verify the predicted
microbe-drug interactions. This could include in vitro testing to assess the efficacy and
safety of the drug interactions identified by the model. Specifically, researchers can obtain
microbe-drug association data of interest, similar to what we described in the Materials
& Methods section of our study. They can then input this association data into the
CNNBRFMDA model and use the scores generated for these microbe-drug pairs to
determine whether to proceed with actual clinical or pharmaceutical trials. The model
will provide valuable insights and serve as a reference for designing these trials, helping to
prioritize interventions based on the predicted effectiveness and safety of the interactions.
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Following the initial validation, the next steps would involve detailed planning and
implementation of pilot studies. These preliminary studies are crucial as they allow for the
assessment of the model’s predictions in a controlled, smaller-scale clinical environment
before proceeding to larger trials. During these pilot studies, the practical application of the
CNNBRFMDA model’s predictions can be observed firsthand, providing an opportunity
to fine-tune the trial design based on real-world data and feedback.

Several key factors contribute to the reliable empirical performance and theoretical
consistency of CNNBRFMDA. CNN serves as a powerful feature extractor, enabling
automatic learning of high-quality features from raw input data. However, in regression
tasks, CNNmodels tend to be complex and lack interpretability. Hence, we employ BRF to
fulfill the regression task. BRF introduces Bernoulli distribution during the feature selection
and split node selection process, allowing for the generation of both deterministic and
uncertain tree structures. Through these operations, we gain insights into how the model
makes regression predictions for microbe-drug association based on features. Compared
to traditional RF, BRF exhibits less dependency on data while offering well performance
while maintaining theoretical consistency. In conclusion, CNNBRFMDA demonstrates
excellent performance in predicting potential microbe-drug associations, along with strong
interpretability. CNNBRFMDA is applicable to drugs (microbes) that have not been
proven to be related to microbes (drugs). Therefore, we can use CNNBRFMDA to predict
potential microbe-drug association. Most importantly, predicting potential microbe-drug
associations using the computational model is cost-effective, fast, and efficient, which can
minimize clinical trial failures.

The method of randomly selecting samples from unlabeled microbe-drug pairs to
construct the negative sample set, as employed in our study, can introduce biases that
might affect the predictive accuracy of our model. This approach assumes that all unlabeled
pairs are negative, which may not always be the case. Some of these unlabeled pairs
could be true but undiscovered associations, leading to false negatives. This mislabeling
can potentially skew the model’s learning, making it biased towards false assumptions
about non-associations. Such biases can reduce the generalizability of the model to new,
unseen data and might limit its effectiveness in accurately predicting true microbe-
drug interactions. In our study, to address data imbalance and improve the accuracy of
model predictions, we adopted the Density-aware Stratified Sampling (DAS) method for
reselecting negative samples. The core of this method is to consider the density information
of samples for more targeted sampling, ensuring that the negative samples selected are
representative in the feature space. The specific process is as follows: We first calculate the
feature vectors for each unlabeled microbe-drug pair. Utilizing these feature vectors, we
calculate the density for each sample, defined as the number of neighboring samples within
a predefined radius. This step helps to identify samples across varying density regions of the
feature space. After calculating densities, we sort all samples based on their density values.
Instead of selecting a fixed number of high-density samples, we employ systematic sampling
to ensure a diversity of densities is included. Systematic sampling involves selecting samples
from the sorted list at fixed intervals, which helps capture a representative sample across
the entire spectrum of density distributions, from low to high. This approach ensures that
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the negative samples selected are not only numerically balanced with positive samples
but also represent a variety of density distributions, closely mirroring real-world data
distributions. By employing systematic sampling, we minimize bias in sample selection,
thus enhancing the model’s generalization ability to new, unseen data. The final results
of the CNNBRF-DAS model, after conducting five-fold cross-validation ten times on the
MDAD dataset, showed the mean AUC of 0.9062 with a standard deviation of ±0.0034.
Similarly, on the abiofilm dataset, the model achieved the mean AUC of 0.9177 with a
standard deviation of ±0.0023 through the same validation process.

In addition, we need to expand known microbe-drug associations. Considering the
algorithmic characteristics of CNNBRF, we are optimistic about achieving significant
breakthroughs in predicting potential associations with continued data expansion and
further enhancement of our tools. Looking ahead, an exciting avenue for our research
lies in extending our model to predict resistance trends. This will necessitate integrating
longitudinal data to capture the dynamics of microbial resistance over time, including
microbial genomic and phenotypic data alongside information on drug exposure. Although
comprehensive data sets required for such predictions are currently scarce, advances in
bioinformatics bolster our confidence that developing models capable of predicting
resistance trends is within reach.

CONCLUSIONS
We proposed a novel model named CNNBRFMDA to predict potential microbe-drug
associations. In this model, we employed a convolutional neural network to extract
features from microbe-drug pairs. Considering that the high dimensionality of the
feature vectors for microbe-drug pairs might contain a lot of unnecessary information,
we applied dimensionality reduction to the feature vectors. Subsequently, we used an
innovative method, BRF, to predict potential microbe-drug associations. Additionally, we
evaluated the performance of CNNBRFMDA on the MDAD and abiofilm datasets using
five-fold cross-validation, and plotted the Precision-Recall curves. The results showed
that CNNBRFMDA outperformed other models such as CNNNRFMDA, BRFMDA,
NIRBMMDA, LAGCNMDA, and RFMDA. Furthermore, two case studies involving
Ciprofloxacin andmoxifloxacin demonstrated that CNNBRFMDA is an effective predictive
model. Despite its promising predictive performance in case studies, CNNBRFMDA still
has room for improvement. Firstly, the predictive accuracy of the model could be enhanced
by collecting more features of microbes and drugs to enrich the similarity features between
them. Secondly, using deeper convolutional neural networks could further extract the deep
features of microbe-drug pairs.
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