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ABSTRACT
Barrett’s esophagus (BE) is the only known precursor to esophageal adenocarcinoma
(EAC), a malignancy with increasing incidence and unfavorable prognosis. This study
endeavors to identify BE biomarkers capable of diagnosing low-grade dysplasia (LGD)
in BE, as well as biomarkers that can predict the progression from BE to EAC to be
subsequently integrated into diagnostic and prognostic algorithms. Datasets containing
gene expression data frommetaplastic and dysplastic BE, as well as EAC tissue samples,
were collected from public databases and used to explore gene expression patterns that
differentiate between non-dysplastic (ND) and LGD BE (for diagnostic purposes) and
between non-progressed and progressed BE (for prognostic purposes). Specifically,
for the diagnostic application, three RNAseq datasets were employed, while for the
prognostic application, nine microarray datasets were identified, and 25 previously
described genes were validated. A thresholding function was applied to each gene to
determine the optimal gene expression threshold for group differentiation. All analyzed
genes were ranked based on the F1-score metrics. Following the identification of genes
with superior performance, different classifiers were trained. Subsequently, the best
algorithms for diagnostic and prognostic applications were selected. In evaluating the
value of gene expression for diagnosis and prognosis, the analyzed datasets allowed
for the ranking of biomarkers, resulting in eighteen diagnostic genes and fifteen
prognostic genes that were used for further algorithm development. Ultimately,
a linear support vector machine algorithm incorporating ten genes was identified
for diagnostic application, while a radial basis function support vector machine
algorithm, also utilizing ten genes, was selected for prognostic prediction. Notably,
both classifiers achieved recall and specificity scores exceeding 0.90. The identified
algorithms, along with their associated biomarkers, hold significant potential to aid
in the early management of malignant progression of BE. Their strengths lie in their
development usingmultiple independent datasets and their ability to demonstrate recall
and specificity levels superior to those reported in the existing literature. Ongoing
experimental and clinical validation is essential to further substantiate their utility
and effectiveness, and to ensure that these tools can be reliably integrated into clinical
practice to improve patient outcomes.
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INTRODUCTION
Barrett’s esophagus (BE) is characterized by the replacement of the normal squamous
epithelium lining the lower esophagus with specialized columnar cells (intestinal
metaplasia) (Choi & Sanagapalli, 2022; Killcoyne & Fitzgerald, 2021; Klavan et al., 2018;
Spechler & Souza, 2014). This transformation occurs because of chronic gastroesophageal
reflux disease (GERD) (Choi & Sanagapalli, 2022; Spechler & Souza, 2014) and exposure to
stomach acid (Klavan et al., 2018). Approximately 10% of patients with GERD are likely
to progress to a diagnosis of BE over 5 years (Malfertheiner et al., 2012). Individuals with
BE have a significantly increased risk of developing esophageal adenocarcinoma (EAC).
Typically, the progression of EAC starts with GERD, followed by abnormal columnar cells
characteristic of BE, which, over time, can progress to dysplasia and eventually become
EAC. Despite BE’s role as a precursor to EAC, the exact risk factors associated with BE are
still not fully understood but include age (≥60–70 years), male gender (Fabian & Leung,
2021), tobacco use (Cook et al., 2012; Sinha, Abdulkader & Gupta, 2016), obesity (Kamat et
al., 2009), and hiatal hernia (Andrici et al., 2013).

The clinical relevance of BE relies on its role as the sole known precursor lesion for
EAC (Mittal et al., 2021; Spechler & Souza, 2014). This specific type of esophageal cancer
constitutes already around two-thirds of all cases of esophageal cancer in high-income
countries (Sung et al., 2021), with 85,700 new EAC cases estimated worldwide in 2020.
Over the next two decades, a staggering 65% increase (equivalent to approximately 55,600
additional cases annually) is predicted (Morgan et al., 2022). EAC is a major problem
because of its association with poor survival rates, one of the lowest in oncology. Post-
diagnosis, EAC presents a 23% 5-year survival and a median survival of only 15 months
(Then et al., 2020), highlighting the need for efficient methods for EAC management. This
low survival is mainly due to late diagnosis, limited treatment options, poor prognosis,
high rate of early metastasis, and difficulties in early detection (Fabian & Leung, 2021).

Due to the low progression rate of BE to EAC (estimates 0.1–0.5, reviewed by Hamade
et al. (2019)), most BE patients never progress to cancer. However, GERD is becoming
increasingly prevalent, with a global estimate of 783 million prevalent cases in 2019 (Li,
Hoefnagel & Krishnadath, 2023). Factors like population growth, aging, lifestyle changes,
and improved living standards contribute to the rising incidence of GERD (Zhang et al.,
2022a; Zhang et al., 2022b). As BE is a complication of GERD and a significant risk factor for
EAC, the increasing prevalence of GERD cases represents a menace to future management
of EAC. The increased prevalence of GERD leads to a higher incidence of BE cases and
pressures for BE screening and diagnosis, resulting in a significant economic burden for
patients, families, health services, and society.

Currently, BE serves as a critical warning sign and its surveillance is essential for effective
risk stratification. BE screening and surveillance methods involve endoscopic sampling
of biopsies from four quadrants according to the Seattle biopsy protocol (Lee et al., 2018;
Spechler et al., 2011) followed by histological analysis to classify detectable BE lesions as
non-dysplastic (NDBE), indefinite for dysplasia (IND), low-grade dysplasia (LGD), or
high-grade dysplasia (HGD) (Mittal et al., 2021). Limitations to the success of current
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strategies include but are not limited to, difficulties with endoscopic identification of
dysplasia, biopsy sampling error, low inter-observer reproducibility in histologic assessment
of dysplasia among pathologists, lack of reliable biomarkers, access to specialized care and
patient compliance (Eluri & Shaheen, 2017). Variability in the endoscopic and histologic
assessment are commonly known issues: BE endoscopic/pathological management is
time-consuming and depends on the clinical experience of the physicians involved in
the endoscopic examination and/or histological analysis—who are mostly available in
BE reference centers. For example, one meta-analysis reported up to 25% and 24% of
EACs were respectively missed during surveillance or when the analysis was restricted
to NDBE patients (Visrodia et al., 2016). Regarding histological analysis, the inter-
observer agreement among pathologists has been reported as only 58% when it comes
to distinguishing normal esophagus from BE and was even lower (less than 50%) when
diagnosing LGD in BE patients (Runge, Abrams & Shaheen, 2015; Sharma, 2004). The lack
of agreement can become particularly problematic when many cases of BE are classified as
IND (60% of dysplastic cases in a study byAlshelleh et al., 2018) and when the interobserver
agreement is even poorer than for LGD (Thota et al., 2016).

There is emerging evidence that the addition of biomarkers to risk stratification models
could increase BE diagnostic accuracy compared to current surveillance methods (Shaheen
et al., 2022). These biomarkers range from the incorporation of more clinical variables
(Galipeau et al., 2007;Vaughan, Onstad & Dai, 2019) tomolecular features such as genomic
instability (Maley et al., 2004; Merlo et al., 2010; Mokrowiecka et al., 2012; Paulson et al.,
2009; Trindade et al., 2019), gene expression patterns (Cardoso et al., 2016; Selaru et al.,
2022), epigenetics (Jin et al., 2009; Moinova et al., 2018), and proteomics (Abdo et al.,
2018). In addition to biomarkers, the recent emergence of artificial intelligence (AI) tools
opens the prospect of improving the effectiveness of BE diagnosis and surveillance. A recent
meta-analysis revealed that deep learning algorithms applied to endoscopy images in the
surveillance of BE-related neoplasia are highly accurate (pooled sensitivity and specificity
of 90.3% and 84.4%, respectively) in detecting early HGD/EAC (Tan et al., 2022), despite
the absence of data for LGD. However, most diagnostic and prognostic tools (biomarkers,
AI), still lack substantial validation in large patient cohorts, refraining from their usage
in clinical practice (Fouad et al., 2014). In addition, the new tools available do not reach
yet maximum performance. For example, when predicting the neoplastic progression
to HGD/EAC, both TP53 staining and Tissue Cypher test demonstrate high specificity
(86% and 82%, respectively) but to the detriment of low sensitivity/recall (49% and 55%,
respectively) (reviewed by Honing & Fitzgerald (2023)).

While it is not yet clear whether regular surveillance surely leads to earlier detection
of dysplasia and consequently to a decrease in mortality from EAC (Mejza & Małecka-
Wojciesko, 2023) surveillance is still the only recommended strategy for BE and EAC
management. There is room for new diagnostic and prognostic tools to support clinicians
when diagnosing BE dysplasia and segmenting patients based on the risk of BE progression
to EAC.

The current study explores the diagnostic and prognostic value of gene expression
patterns from BE tissue samples from public datasets in the context of BE. Envisioning its

Miskinyte et al. (2025), PeerJ, DOI 10.7717/peerj.19613 3/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.19613


clinical applicability, it aims to identify biomarkers that can accurately identify dysplasia
within BE lesions (diagnostic application) and biomarkers that can predict the progression
to EAC (prognostic application). It is also intended to understand the individual and
combined predictive value of each selected biomarker in both contexts through their
implementation using machine learning algorithms.

MATERIALS AND METHODS
Dataset search
An exhaustive search for public datasets containing gene expression data related to
BE, including normal esophageal epithelium, NDBE, BE with different degrees of
dysplasia (LGD and HGD) and EAC was performed in the following databases: PubMed
(https://pubmed.ncbi.nlm.nih.gov/), Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/), Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra),
and European Genome-Phenome Archive (https://ega-archive.org/). For the diagnostic
application, the aim was to distinguish between NDBE and LGD BE. For the prognostic
application, non-progressed BE (nonP-BE) and progressed BE (P-BE) data was studied.
P-BE was defined as a BE adjacent to EAC. A summary of the methodology used is
represented in Fig. 1 and described in detail below.

Data pre-processing
In this study, raw RNA-seq data from projects GSE193946, GSE58963, and E-MTAB-4054
were obtained from the Sequence Read Archive (SRA) and the European Genome-
Phenome Archive (EGA). We processed the data using a Docker environment equipped
with Kallisto version 0.46.1 (docker image: jlnetosci/kallisto:v0.46.1), which facilitated
the pseudo-alignment of the reads against the Homo_sapiens.GRCh38.cdna.all.release-
107 reference transcriptome from Ensembl. Post-alignment, the transcript abundance
estimates generated by Kallisto were imported into the R programming environment
using the tximport package. This allowed transcript-level data to be transformed into
gene-level counts, which were subsequently analyzed for differential expression. The
combined data was filtered for low-expressed genes using the filterByExpr function in
EdgeR (Robinson, McCarthy & Smyth, 2009), resulting in a dataset of 20,608 genes for
downstream analysis. Samples were then normalized using the Trimmed Mean of M-
values (TMM) normalization method and differential expression analysis was performed
using EdgeR. For downstream analysis, including feature selection and classifier training,
log-transformed CPM normalized values were used, which were subsequently corrected
for batch effects using the ComBat function from the sva package (Leek et al., 2012).

In this study, microarray data was sourced from the Gene Expression Omnibus (GEO)
database using the GEOquery package available in the R software. The data included
accessions GSE1420, GSE36223, GSE13083, GSE37200, GSE34619, GSE26886, GSE39491,
GSE100843, and an additional dataset from Watts et al. (2007). Data was loaded and
normalized using both the affy and oligo packages in R, depending on the array platform.
The CEL files were read and processed using the frma function for robust multi-array
average (RMA) normalization. Probe-level data was annotated and collapsed to gene-level
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Figure 1 Methodology summary.Datasets of interest were downloaded from public databases, such
as PubMed, GEO (Gene Expression Omnibus), SRA (Sequence Read Archive), and EGPA (European
Genome-Phenome). For the diagnostic application, i.e., the distinction between non-dysplastic (ND) BE
and low-grade dysplasia (LGD) BE, RNAseq datasets were used. Low-expression genes were excluded, re-
sulting in a pre-selection of 45 genes. For the prognostic application, i.e., the distinction between non-
progressed Barrett’s Esophagus (nonP-BE) and progressed-BE (P-BE), microarray datasets were identi-
fied, and 25 previously described genes were selected (Killcoyne & Fitzgerald, 2021) **. A Thresholding
Function was applied to each gene to define the best gene expression threshold for group distinction. All
analyzed genes were ranked by F1 score, and additional feature selection methods were applied for diag-
nostic genes*, determining the top genes for diagnosis and prognostic application. Due to their biological
functions, two extra genes—TP53 and CDH1—were added to both diagnostic and prognostic data sets,
summing 18 diagnostic and 15 prognostic genes. Different algorithms—logistic regression (LR), naive
Bayes (NB), K-nearest neighbours (KNN), linear support vector machines (LSVM), and radial basis func-
tion support vector machines (RBF SVM)—were trained using different numbers of genes.

Full-size DOI: 10.7717/peerj.19613/fig-1

data using Bioconductor annotation packages hugene10sttranscriptcluster.db, hgu133a.db,
hgu133plus2.db, and hgu133a2.db along with the WGCNA package. Finally, the resulting
gene expression data was merged into a single dataset for downstream analysis, with
additional annotations indicating BE progression status. For prognostic application, 25
genes selected in previous work to distinguish nonP-BE from P-BE (Cardoso et al., 2016),
were used in this study—ACTN1, C1S, CCN1 (alias CYR61), CDH1, CEBPB, CEBPD,
COL4A1, CTSB, DKK3, DUSP1, IER3, JUN, LAMC1, PLPP3, RBPMS, SNAI1, SNAI2,
SPARC, TNS1, TRMT112, TP53, TWIST1, VWF, WWTR1 (alias TAZ ) and ZEB1. Box
plots representing normalized expression values were generated using the ggplot2 (v3.4.0)
and ggsignif (v0.6.4) R packages. Statistical analysis was performed using one-way ANOVA,
followed by a post hoc Tukey’s ‘Honest Significant Difference’ test, both from the R stats
package (v4.1.1). When ANOVA assumptions were not met, a Kruskal–Wallis Rank Sum
Test (R stats package v4.1.1) was performed, followed by a post hoc Dunn’s Kruskal-Wallis
Multiple Comparisons test (FSA R package v0.9.3). The significance threshold was set at
p-value < 0.05.

Threshold selection and determination of individual predictive power
For the distinction between NDBE and LGD (diagnostic) or nonP-BE and P-BE
(prognostic) a Thresholding function was applied to the expression levels of each selected
gene to determine an expression threshold. Performancemetrics such as accuracy, recall (or
sensitivity), precision (or positive predictive value—PPV), specificity, negative predictive
value (NPV), and false positive rate (FPR) were calculated for each threshold, considering
the known class of the samples. For the diagnostic application, other feature selection
methods (Lasso, mutual information (MI) criteria, recursive feature elimination (RFE),
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SelectKBest) were also applied to narrow down the most informative features that appeared
at least twice in one of the methods. The threshold that yielded the highest F1-score was
selected. Based on this metric, genes were ranked and the top 16 (diagnostic) and top 13
(prognostic) were considered for downstream analysis. Two additional genes—TP53 and
CDH1—were also included in the downstream analysis of both prognostic and diagnostic
gene sets.

Algorithmic analysis and evaluation of performance metrics
Gene expression values were used for algorithm training. Several classes of classifiers,
with shown applicability to microarray and RNAseq data (Jabeen, Ahmad & Raza, 2018;
Peixoto et al., 2023; Pirooznia et al., 2008), such as logistic regression (LR), naive Bayes
(NB), K-nearest neighbours (KNN), and support vector machines (SVM) (with linear
and radial basis function kernels), were implemented with default hyperparameters in
Python programming language (v3.10.0), using the scikit-learn package (v1.0.1). We
specifically chose LR (linear, interpretable), NB (probabilistic, fast), KNN (distance-based,
non-parametric), SVM (linear margin-based), SVM (RBF kernel, nonlinear margin-based)
models as they cover probabilistic, distance-based, linear and non-linear margin-based
approaches which are widely used because of good performance on small, imbalanced
gene-expression cohorts in the microarray/RNA-seq literature. A leave-one-out cross-
validation procedure was used to evaluate the diagnostic or prognostic value of all possible
combinations of genes (from n= 2 up to all selected diagnostic or prognostic genes).
This involved leaving out one sample at a time for validation while using the remaining
samples to create a balanced training set. The Synthetic Minority Oversampling Technique
(SMOTE) was employed from the imbalanced-learn (v0.8.1) package. For LR, KNN,
and SVM, features were standardized (scaled and centered) using scikit-learn’s standard
scaler module by subtracting the mean and scaling to the unit variance. Performance
metrics such as accuracy, precision (PPV), recall (sensitivity), NPV, and precision and
specificity were calculated and recorded for each full iteration of the validation strategy. The
top-performing algorithms were chosen by maximizing performance metrics (accuracy,
specificity, precision, recall, NPV, and F1-score, Table 1). The most frequent models, with
the highest F1-score, were chosen to further select the best classifiers for both diagnostic
and prognostic applications. The most frequently occurring genes (frequency ≥ 50 %)
within the selected classifiers were chosen as features. Subsequently, the performance
metrics were calculated using a decremental number of features, and the median value and
standard deviation of each group of decremental subsets of genes were computed.

In-vitro gene expression analysis
Cell culture
Cell lines derived from metaplastic tissue (BAR-T and BAR-T10—from R. Souza, Baylor
University Medical Center, Dallas, TX; Jaiswal et al., 2007; Zhang et al., 2010), dysplastic
tissue (CP-B, CP-C and CP-D—from P. Rabinovitch, University of Washington, Seattle,
WA; Palanca-Wessels et al., 2003), and EAC tissue (OE33, KYAE-1- from W. Dinjens,
Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands, and ESO26—Boonstra
et al., 2010), were cultured in T75 flasks or 10-cm dishes (for metaplastic cells) until they
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Table 1 Best algorithm performance by metric maximization.

Application Rank by N. algorithms Type of algorithm Recall Precision F1 - score Specificity NPV Accuracy

Recall 4,871 KNN (n = 196)
LSVM (n = 2,426)
LR (n = 124
RBF SVM (n= 2,125)

0.99 0.78–0.98 0.88–0.99 0.48–0.95 1.00 0.82–0.98

Precision 3,050 KNN (n= 2,290)
LSVM (n= 472)
LR (n = 259)
NB (n = 21)
RBF SVM (n= 8)

0.65–1.00 0.97 0.79–0.99 0.95–1.00 0.60–1.00 0.77–0.98

F1-score 1881 KNN (n = 288)
LSVM (n= 1,115)
LR (n = 444)
RBF SVM (n= 34)

0.92–1.00 0.93–1.00 0.96 0.86–1.00 0.88–1.00 0.95–0.98

Specificity 231 KNN (n= 223)
LSVM (n= 8)

0.65–0.95 1.00 0.79–0.97 0.99 0.60–0.91 0.77–0.97

NPV 4871 KNN (n = 196)
LSVM (n = 2,426)
LR (n = 124)
RBF SVM (n= 2,125)

1.00 0.78–0.98 0.88–0.99 0.48–0.95 0.99 0.82–0.98
Diagnostic

Accuracy 212 KNN (n = 38)
LSVM (n= 157)
LR (n = 16)
RBF SVM (n= 1)

0.95–1.00 0.95–1.00 0.97–0.99 0.90–1.00 0.91–1.00 0.96

Recall 13 LR (n = 7),
LSVM (n = 5),
RBF SVM (n= 1)

0.97 0.69–0.70 0.81 0.79–0.80 0.98 0.85–0.86

Precision 582 RBF SVM (n= 449)
KNN (n = 24)
LSVM (n = 17)
NB (n = 92)
LR (n= 348)

0.88–0.95 0.99 0.93–0.98 1.00 0.94–0.98 0.96–0.98

F1-score 12,971 RBF SVM (n= 5,794)
KNN (n = 2,465)
LSVM (n = 2,230)
NB (n = 2,134)
LR (n= 348)

0.92–0.95 0.97–1.00 0.96 0.99–1.00 0.96–0.98 0.98

Specificity 8,430 KNN (n = 586)
LSVM (n = 569)
LR (n = 38)
NB (n = 1,953)
RBF SVM (n= 5,284)

0.83–0.95 0.98–1.00 0.9–0.98 0.99 0.92–0.98 0.94–0.98

NPV 13 LR (n = 7),
LSVM (n = 5),
RBF SVM (n= 1)

0.97 0.69–0.70 0.81 0.79–0.80 0.98 0.85–0.86
Prognostic

Accuracy 2,404 KNN (n = 264)
LSVM (n = 370)
LR (n = 28)
NB (n = 415)
RBF SVM (n= 1,327)

0.94–0.95 0.98–1 0.97–0.98 0.99–1 0.98 0.98

Notes.
LR, logistic regression; LSVM, linear support vector machine; RBF SVM, radial basis function support vector machine; KNN, K-nearest neighbors; NB, Naïve Bayes.
Selected algorithms are highlighted in grey.

reached 80% to 90% confluence. They were then detached with 0.25% Trypsin-EDTA,
neutralized with complete culture medium, and collected in 15 mL Falcon tubes by
centrifugation at 300×g for 5 min at room temperature. The supernatant was discarded,
and the pellet was washed twice with 1× PBS to remove residual medium and trypsin.
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After washing, the pellets were transferred to two mL Eppendorf tubes and immediately
frozen at −80 ◦C for long-term storage.

RNA extraction
Cell pellets from the cell linesmetaplasia, dysplasia and EACwere used to extract RNAusing
the RNeasy Mini Kit (#74104, Qiagen, Hilden, Germany), following the manufacturer’s
instructions.

For formalin-fixed paraffin-embedded (FFPE) tissue samples, RNA was isolated from
two consecutive sections per sample, each approximately 20 mm2 and five µm. Tissue
samples were deparaffinized using the deparaffinization solution (#19093, Qiagen, Hilden,
Germany) prior to RNA extraction with the RNeasy FFPE Kit (#73504, Qiagen, Hilden,
Germany), according to themanufacturer’s instructions (with onemodification: proteinase
K incubation was performed overnight). Samples and data from patients included in this
study were provided by the Biobanks: Valdecilla (PT20/00067) and by the Biobank of
the Aragon Health System (National Registry of Biobanks B. B.0000873) (PT20/00112),
integrated in the Platform ISCIII Biobanks and Biomodels and they were processed
following standard operating procedures with the appropriate approval of the Ethics and
Scientific Committees.

All procedures involving human tissue samples were approved by the National Ethics
Committee for Clinical Research—Comissão de Ética para a Investigação Clínica (CEIC),
under approval number 2022_EO_24.

Reverse transcription—quantitative real-time polymerase chain
reaction (RT-qPCR)
For 1-Step RT-qPCR, reactions were performed in triplicate, using the TaqPath 1-step
RT-qPCR Master Mix (#A15300, Thermo Fisher Scientific, Waltham, MA, USA) with
a final reaction volume of 10 µL. Each reaction containing one µL of template, 0.25
µM of probe and 0.5 µM of each primer (Primers and probes used for RT-qPCR are
listed in Table S2). Data acquisition and analysis were conducted using the QuantStudio
Design & Analysis Software v1.5.1 software, using the cycling program: UNG incubation at
25 ◦C—2min, Reverse Transcription at 50 ◦C—15 min, followed by Polymerase activation
at 95 ◦C—2 min and 40 cycles of Amplification at 95 ◦C—3 s and 58 ◦C—30 s. To
normalize gene expression levels, the geometric mean of the reference genes (PGK1, ELF1,
and RPL13A) was subtracted from cycle threshold (Cq) of the target genes.

RESULTS
Diagnosis and prognosis dataset selection
For the development of the diagnostic application, 13 RNAseq-based datasets were
identified, of which only three had publicly available clinical data—GSE58963 (MacCarthy
et al., 2014), E-MTAB-4054 (Maag et al., 2017), GSE193946 (Zhang et al., 2022a; Zhang
et al., 2022b)—and were therefore included in the present study. The BE data contained
in each dataset is represented in Table 2. In total, data from 61 samples—comprising 21
NDBE, 40 LGD BE and 27 HGD—were included in the study.
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Table 2 Characterization of datasets for the diagnostic and prognostic applications.

Dataset Diagnostic
(RNAseq)

Prognostic
(Microarray)

NDBE LGD HGD nonP-BE P-BE*

GSE1420 (Moinova et al., 2018)
– – – 0 16

Watts et al. (2007) andMaag et al. (2017) – – – 18 0

GSE36223 (Mokrowiecka et al., 2012)
– – – 23 0

GSE13083 (Morgan et al., 2022)
– – – 7 0

GSE37200 (Nancarrow et al., 2011)
– – – 0 46

GSE34619 (Odze, 2007)
– – – 10 0

GSE26886 (Ostrowski et al., 2007)
– – – 20 0

GSE39491 (Palanca-Wessels et al., 2003)
– – – 40 0

GSE100843 (Panda et al., 2021)
– – – 17 3

GSE58963 (Mejza & Małecka-Wojciesko, 2023)
7 7 7 – –

E_MTAB_4054 (Merlo et al., 2010) 14 8 – – –

GSE193946 (Mittal et al., 2021)
0 25 20 – –

TOTAL N. samples 21 40 27 135 65

Notes.
nonP-BE, non progressed Barrett’s esophagus; P-BE, progressed Barrett’s esophagus; NDBE, non-dysplastic Barrett’s esophagus; LGD, low-grade dysplasia; HGD, high-
grade dysplasia.
*P-BE was defined when a BE was adjacent to EAC.

For the prognostic application, 16 microarray datasets were identified, but only those
generated on an Affymetrix platform were included in the downstream analysis to facilitate
data merging. A total of nine microarray datasets were analyzed, including three previously
analyzed by Cardoso et al. (2016)—GSE1420 (Kimchi et al., 2005), (Watts et al., 2007), and
GSE13083 (Stairs et al., 2008) and six new ones, namely GSE36223 (Ostrowski et al., 2007),
GSE37200 (Silvers et al., 2010), GSE34619 (Di Pietro et al., 2012), GSE26886 (Wang, Ma &
Kemmner, 2013), GSE39491 (Hyland et al., 2014), and GSE100843 (Cummings et al., 2017).
In total, data from 200 samples—representing 135 nonP-BE and 65 P-BE—were included
in the study as shown in Table 2.

Identification of differentially expressed genes in a diagnostic and
prognostic setting
In this study, we aimed to identify diagnostic biomarkers that can distinguish between
ND-BE and LGD-BE. For this purpose, we utilized three RNAseq datasets (as listed in
Table 2). Low-expression genes were excluded from each dataset, resulting in the inclusion
of 20,608 genes in our analysis. After normalization, we conducted differential expression
analysis between LGDBE and NDBE (Fig. S1A), and HGDBE and NDBE (Fig. S1B) using
EdgeR’s quasi-likelihood approach. This approach accounted for disease staging and batch
effects from the three different datasets as factors in the model (Table S3, Fig. S1C).
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Following the differential expression analysis, we identified 30 biomarkers through a
systematic selection process. First, we selected differentially expressed genes (DEGs) with an
absolute log fold change (logFC) of ≥ 1 between LGDBE and NDBE, with a false discovery
rate (FDR) of <0.05. From these DEGs, we filtered for genes that showed the same direction
of expression change in the HGDBE vs. NDBE comparison (FDR < 0.05), resulting in 14
genes (Fig. S1A). Second, we identified DEGs in the HGDBE vs.NDBE comparison with an
absolute logFC of≥2 (FDR<0.05). Among these genes, we selected those that also exhibited
the same direction of expression change in the LGDBE vs. NDBE comparison (considering
p-value < 0.05 for significance), resulting in 16 genes (Fig. S1B). This two-step filtering
strategy ensured that the selected biomarkers not only had significant differential expression
but also consistent expression patterns across different stages of disease progression. Given
the strong batch effect observed (see Fig. S1), there was a risk of losing biologically relevant
genes in the LGDBE vs. NDBE comparison due to this variation. To mitigate this problem,
we also performed separate analyses of the EMTAB_4054 (Table S4) and GSE58963
(Table S5) datasets. We employed the glmRobust pipeline to independently identify
differentially expressed genes between the LGDBE and NDBE groups within each dataset.
From these separate analyses, we identified an additional 13 genes with an absolute logFC
greater than 1 and an FDR < 0.05. These genes were consistently found in both datasets and
exhibited the same direction of expression change (Fig. S2). Moreover, these genes showed
consistent directional changes in the previous HGDBE vs. NDBE comparison. Thus, they
were also included in the biomarker list (Table S6). Given their established role in the
biology of BE and EAC, we also included two additional genes—TP53 and CDH1—in the
downstream analysis, resulting in a total of 45 candidate genes for distinguishing between
NDBE and LGD.

For the prognostic set of biomarkers, we re-analyzed 25 genes that we had previously
identified to have prognostic value (Cardoso et al., 2016), namelyACTN1, C1S, CCN1 (alias
CYR61), CDH1, CEBPB, CEBPD, COL4A1, CTSB, DKK3, DUSP1, IER3, JUN, LAMC1,
PLPP3, RBPMS, SNAI1, SNAI2, SPARC, TNS1, TP53, TRMT112, TWIST1, VWF, WWTR1
(alias TAZ ) and ZEB1. For validation purposes, we added six independent datasets to the
three datasets we originally analyzed. We observed significant differential gene expression
(adj. p-value < 0.05) between P-BE and nonP-BE categories for most of the genes of
interest, except for CDH1, DKK3, SNAI2, and WWTR1.

Application of a thresholding function for the selecting genes with the
highest predictive value
To each selected gene, we applied a Thresholding function, to determine a gene expression
threshold for distinguishing different levels of gene expression between groups of samples
with distinct diagnosis (NDBE vs. LGD-BE) or with distinct prognosis (nonP-BE vs. P-BE).
We defined the best individual threshold of gene expression for each selected gene, 45
for diagnosis and 25 for prognosis, reflecting the individual predictive value of each gene.
Genes were then ranked by the harmonic mean of recall and precision (F1-score) to ensure
accurate selection. This procedure identified the top 15 genes for predicting the malignant
progression of BE lesions with F1-score above 0.67 (Table S7). From the top 45 diagnostic
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genes, including CDH1 and TP53, genes with higher expression values (log2CPM above
1) were filtered. To further refine a list of candidates, we used several feature selection
methods: Lasso, MI criteria, RFE, and SelectKBest. Additionally, feature correlation
analysis was conducted to identify and eliminate highly correlated features (Pearson’s
correlation coefficient > 0.9). Hence, for diagnostic purposes, we further narrowed down
the selection to genes that were chosen at least twice in one of the feature selection methods
and F1-score above 0.7, which identified the top 16 genes for diagnosing dysplasia in the
context of BE (Table S8).

Building on our identification of the top diagnostic and top prognostic genes using
the Thresholding function and various feature selection methods, the ROC curve results
(Fig. 2) further validate their predictive power using a logistic regression classifier. In both
diagnostic (Fig. 2A) and prognostic (Fig. 2B) contexts, most of the genes have area under
the curve (AUC) values above 0.50 (random chance line), with some reaching individual
values of 0.90, demonstrating a substantial predictive value of the selected genes in both
diagnostic and prognostic applications.

SVM algorithms were the best for both diagnostic and prognostic
applications
The diagnostic and prognostic gene groups were utilized to train the most effective
diagnostic and prognostic algorithms. Various classifiers—logistic regression (LR), naive
Bayes (NB), K-nearest neighbors (KNN), linear support vectormachine (LSVM), and radial
basis function support vector machine (RBF SVM)—were examined using increasing
combinations of genes, ranging from n= 2 up to the total number, for diagnostic and
prognostic applications.

The algorithmswere ranked based on their performancemetrics for each application (see
Table 1). However, no algorithms optimized all performance metrics for both applications.
Nevertheless, the LSVMalgorithms emerged as the best for diagnostic purposes,maximizing
the F1-score and accuracy (refer to Fig. 3A and Table 1).

For the prognostic application, a similar trend was observed, where the RBF SVM
type performed best according to the F1-score and accuracy metrics (refer to Fig. 3B and
Table 1).

The study found that among the selected types of algorithms, those with an F1-score
above 0.96 included 1,115 LSVM for diagnostic and 5,794 RBF SVM for prognostic.
The analysis identified the most frequent genes (over 50 %) across the best-performing
algorithm class (Tables S9 and S10). Ultimately, ten genes were selected for identifying LGD
BE using a LSVM algorithm: IGHV3-43, SLC38A4, PLLP, CELA3A, IGHV4-31, TMPRSS5,
TP53, NR4A1, ATF3, IFI27. For identifying P-BE, ten genes were selected using an RBF
SVM algorithm: SNAI1, C1S, DUSP1, CEBPB, COL4A1, ZEB1, CEBPD, CCN1, LAMC1
and TWIST1.

The performance of each selected algorithm (LSVM for diagnosis and RBF SVM for
prognosis) was evaluated using the most frequent genes (10 for diagnosis and 10 for
prognosis) as features. To test different random states while avoiding algorithm bias,
100 runs were performed for each algorithm with the same features. Table 3 presents
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A

B

Figure 2 Gene-specific ROC curves for diagnostic and prognostic predictions. Receiver operating char-
acteristic (ROC) curves for individual genes depicting their predictive value in two contexts: (A) Diagnos-
tic (dysplasia) and (B) prognostic (progression) using a logistic regression classifier. The area under the
curve (AUC) values for each gene are indicated in the legends. Notably, the predictive values of TP53 and
CDH1 genes are also included, although they were manually added to the sets.

Full-size DOI: 10.7717/peerj.19613/fig-2
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A

B

Figure 3 Precision and recall for the selected classifier type with increasing combinations of genes of
interest to predict BE dysplasia (diagnostic) and BEmalignant progression (prognostic). This illustrates
the performance of the chosen classifier types in the predicting dysplasia (A) and progression (B) when
different numbers of genes of interest are combined (colored dots). The individual predictive value for
the best threshold of each previously selected gene is also represented (black dots) for diagnostic (see Fig.
3A) and prognostic (see Fig. 3B). Colors represent different numbers of combined genes. LSVM (A), and
RBFSVM (B). Red dots represent manually added CDH1 and TP53 genes.

Full-size DOI: 10.7717/peerj.19613/fig-3
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Table 3 Performance of the selected algorithms with the selected genes as features after 100 runs.

A. Diagnostic B. Prognostic

Mean Standard deviation Mean Standard deviation

Accuracy 0,946 0,014 Accuracy 0,977 0,003
Precision 0,932 0,012 Precision 0,977 0,008
Recall 0,991 0,017 Recall 0,952 0,005
F1 score 0,960 0,010 F1 score 0,965 0,004
TP 39,630 0,677 TP 61,900 0,302
FP 2,900 0,541 FP 1,430 0,498
TN 18,100 0,541 TN 133,570 0,498
FN 0,370 0,677 FN 3,100 0,302
NPV 0,981 0,033 NPV 0,977 0,002
Specificity 0,862 0,026 Specificity 0,989 0,004
FPR 0,138 0,026 FPR 0,011 0,004
MCC 0,882 0,030 MCC 0,948 0,007
Cohen’s k 0,878 0,030 Cohen’s k 0,948 0,006

Notes.
TP, True Positive; FP, False Positive; TN, True Negative; FN, False Negative; NPV, Negative Predictive Value; FPR, False
Positive Rate; MCC, Matthews correlation coefficient; Cohen’s k, Cohen’s kappa score.

the mean values and respective standard deviations (SD) for each performance metric.
All performance metrics were above 0.90, except for specificity for the LSVM diagnostic
algorithm. The low standard deviations (below 0.05) indicated an increase in the predictive
value of each algorithm when the selected genes were combined.

Finally, the performance of the two algorithms was evaluated by gradually decreasing
the number of selected genes (Fig. 4). The diagnostic algorithm showed a decrease in
performance after the removal of just one gene (Fig. 4A). In contrast, the prognostic
algorithm showed noticeable changes only after the removal of four genes (Fig. 4B).

In-vitro validation of key diagnostic and prognostic biomarkers
We conducted a validation study of the panel of biomarkers to distinguish between different
stages of BE progression. Specifically, we performed RT-qPCR analysis to compare the
expression levels of these biomarkers in differente cell lines: metaplasia (BAR-T and
BAR-T10), dysplasia (CP-B, CP-C and CP-D), and EAC (OE33, KYAE-1 and ESO26).
Each biomarker was tested with three technical replicates in each cell line.

For dysplasia diagnosis, we analyzed the expression of biomarkers in both metaplasia
and dysplasia cell lines (Fig. 5). In evaluating EAC prognosis, we compared the expression
levels between metaplasia and EAC cell lines (Fig. 6). Normalized expression values against
reference genes (PGK1, ELF1 and RPL13A) highlighted significant differences in key
markers. For instance, biomarkers such as IFI27 and ATF3 differentiated metaplasia from
dysplasia with statistically significant p-values (p= 0.009 and p= 0.003, respectively),
revealing their potential utility in dysplasia diagnosis. Similarly, CEBPB, SNAI1 and CCN1
(alias CYR61) genes showed significant expression changes between metaplasia and EAC
(p-values of 0,031, 0.022 and 0.038, respectively). This supports their relevance for EAC
prediction. The observed differential expression patterns suggest that these biomarkers
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A

B

Figure 4 Metrics performance of the best algorithm in distinguishing ND-BE and LGD BE (diagnos-
tic) and nonP-BE from P-BE (prognostic) when decreasing the number of genes included in the train-
ing.Mean of each performance metric (solid lines) and its respective standard deviation (ribbons) for the
diagnostic algorithm, linear support vector machine (LSVM) (A) and for the prognostic algorithm, radial
basis function support vector machine (RBF SVM) algorithm (B) NPV—negative predictive value.

Full-size DOI: 10.7717/peerj.19613/fig-4

serve as valuable molecular tools for early detection of dysplasia and the risk of progression
to EAC, facilitating timely clinical intervention.

Interestingly, some of the top-performing genes, namely IGHV3-43, IGHV4-3 1, IGHV3-
53, and PGC, showed no detectable expression in cell lines. Since these genes ranked high
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Figure 5 Boxplots of diagnostic genes expression levels. Boxplots showing normalized expression levels
of diagnostic genes across cell lines representing metaplasia (BAR-T and BAR-T10) and dysplasia (CP-B,
CP-C, and CP-D). Gene expression levels were normalized to reference genes (PGK1, ELF1, and RPL13A).
Blue and green dots represent individual expression values from metaplastic and dysplastic cell lines, re-
spectively. *Genes were additionally validated in FFPE samples from patients diagnosed with BE, with and
without dysplasia.

Full-size DOI: 10.7717/peerj.19613/fig-5

according to the diagnostic algorithm, we hypothesized that their expression originates
from immune cells, typically absent in cell lines. To investigate this further, we specifically
tested these genes in tissue samples from BE patients with and without dysplasia. Contrary
to cell lines, the expression of these genes was detectable in patient samples, supporting the
notion that immune cells- may play a critical role in BE progression (Fig. 5).

DISCUSSION
BE is the only known precursor to EAC, a malignancy with rising incidence and poor
prognosis. This underscores the need for more effective management methods, including
assertive early diagnosis of dysplasia and prognostic prediction within BE surveillance
programs. While tools incorporating biomarkers are continuously emerging, few have
reached clinical validation and implementation. Even fewer combine biomarkers with
AI and those under clinical validation or use, do not provide simultaneous detection of
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Figure 6 Boxplots of prognostic genes expression levels. Boxplots showing normalized expression levels
of prognostic genes across cell lines representing metaplasia (BAR-T and BAR-T10) and esophageal ade-
nocarcinoma (OE33, KYAE-1, and ESO26). Gene expression levels were normalized to reference genes
(PGK1, ELF1, and RPL13A). Blue and green dots indicate individual expression values from metaplastic
and adenocarcinoma cell lines, respectively.

Full-size DOI: 10.7717/peerj.19613/fig-6

dysplasia and prognostic assessment. Moreover, none can simultaneously achieve high
sensitivity (recall) and high specificity.

In this study, we developed two algorithms to assist with the diagnosis of dysplasia, the
prognosis of BE, and ultimately the management of EAC. The genes of interest for dysplasia
detection (diagnostic algorithm) were newly identified from the raw data of three different
RNAseq datasets. Conversely, the algorithm developed for prognosis was based on a gene
set identified in a previous study (Cardoso et al., 2016). For both applications, genes were
ranked based on their F1 score, sensitivity (aka recall or true positive rate) and precision
(aka positive predictive values) in predicting conditions such as LGD BE and P-BE.

In high-risk disease detection cases such as dysplasia, recall is a more important
evaluation metric than precision because it can correctly identify all relevant positive
cases (i.e., samples containing dysplasia or at high risk of progressing to EAC). However,
precision, which is the fraction of positive cases among all cases classified as positives by the
model, is also crucial because it emphasizes the correctness of positive predictions made
by the model (i.e., measures how many cases are incorrectly classified as positive). In a
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situation where false positives have significant implications, such as subjecting BE patients
without dysplasia or with a low risk of progression to unnecessary treatments or screening
intervention, precision matters. Since both high precision and high recall were desirable
for the present study, the ranking was based on the F1 score, which combines precision
and recall using their harmonic mean. Maximizing the F1 score implies maximizing both
precision and recall simultaneously.

Performance metrics for each gene at its best threshold were high (see Tables S7 and S8).
However, specificity and NPV were higher for the prognostic genes, showing their great
potential to exclude patients who are not at risk for malignant progression.

To better explore the potential predictive value of the selected biomarkers, we trained
machine learning algorithms testing all possible combinations of biomarkers in each
gene set. The average metrics of the newly trained algorithms with combinations of
biomarkers showed increased predictive power (Table 1) compared to the predictive
power of individual genes (Tables S7 and S8), which is expected in the context of complex
gene interactions. Finally, envisioning the clinical applicability of both algorithms, we
evaluated the minimal number of biomarkers necessary to maintain high-performance
metrics (LSVM for diagnosis and RBF SVM for prognosis) in each gene set. Both algorithms
were tested with a decreasing number of genes, and as depicted in Fig. 4, a reduction in
performance metrics was observed when removing one gene from the diagnostic set and
four genes from the prognostic’s gene set.

For diagnostic application, ten genes—IGHV3-43, SLC38A4, PLLP,CELA3A, IGHV4-31,
TMPRSS5, TP53, NR4A1, ATF3, IFI27—were identified as the top candidates for dysplasia
detection, particularly for distinguishing between NDBE and LGD BE. These genes are
associated with different aspects of cancer biology, such as metabolism, cell invasion,
and oncogenic processes, suggesting their potential as biomarkers in the context of BE
dysplasia (Jadhav & Zhang, 2017; Kastelein et al., 2013a; Li et al., 2021; Shulgin et al., 2021).
Moreover, transcription factors such as NR4A1 and ATF3, have been previously associated
with BE with LGD (Maag et al., 2017).

For the prognostic application, an RBF SVM algorithm was selected, which uses the
expression pattern of ten genes (SNAI1, C1S, DUSP1, CEBPB, COL4A1, ZEB1, CEBPD,
CCN1, LAMC1 and TWIST1). Four of these genes—SNAI1, COL4A1, ZEB1, and TWIST—
have been associated with epithelial-to-mesenchymal transition (Lamouille, Xu & Derynck,
2014). COL4A1, ZEB1, and TWIST1 have also been described as potential screening
biomarkers of BE malignant progression. COL4A1 is upregulated in EAC versus BE (Li
et al., 2023a; Li et al., 2023b; Nancarrow et al., 2011; Qi et al., 2021) and is associated with
poor EAC prognosis (Qi et al., 2021), and it predicts the response to immune checkpoint
inhibitors in EAC (Li, Hoefnagel & Krishnadath, 2023). Increased expression of ZEB1 has
been associated with the repression of CDH1 (Zhang et al., 2019), which is associated
with BE progression to EAC (Darlavoix et al., 2009; Falkenback et al., 2008; Feith et al.,
2004; Kalatskaya, 2016; Yao et al., 2021). TWIST1 up-regulation was observed in at-risk BE
samples years before the emergence of anymicroscopic signs ofmalignancy (dysplasia/EAC)
(Cardoso et al., 2016).
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The genes TP53 and CDH1 were included in both gene sets to train the classifiers.
TP53 is known for its role in BE malignant progression (Paulson et al., 2022; Pinto et al.,
2022), improved prediction of BE neoplastic progression (Redston et al., 2022), increased
risk of dysplasia when abnormally expressed, and improved intra-observer agreement in
dysplastic diagnosis (Januszewicz et al., 2022). CDH1 has severely reduced or disorganized
expression during BE dysplastic progression (reviewed byKalatskaya (2016)) and an almost
undetectable expression in poorly differentiated EAC (Darlavoix et al., 2009; Falkenback
et al., 2008; Feith et al., 2004; Kalatskaya, 2016; Yao et al., 2021). While TP53 alone is
insufficient for diagnostic and for prognostic applications, it has been shown to have
predictive value in combination with other biomarkers in the diagnostic setting. These
findings confirm the previously studied role of TP53 in the pathogenesis of BE dysplasia
(Kastelein et al., 2013b; Li, Hoefnagel & Krishnadath, 2023). Because TP53 mutations are
often associated with a higher risk of progression in BE patients (Redston et al., 2022),
further validation of this biomarker at the molecular level, including its mutational status
and RNA expression levels, is warranted.

All metrics of both algorithms are higher when compared to currently available tools
for risk stratification, such as TP53 immunohistochemistry (0.49 recall/sensitivity, 0.86
specificity (Kastelein et al., 2013b) and TissueCypher (0.55 recall/sensitivity, 0.82 specificity
for high-intermediate risk class 55%/82%) (Eluri et al., 2015; Iyer et al., 2022; Jin et al.,
2009;Moinova et al., 2018). Tools for dysplasia detection, such asWats3D and Cytosponge-
TFF3 are still under prospective evaluation. Wats3D provides an incremental yield of 7%
for any dysplasia subtype but is negative for dysplasia in 62.5% of cases where an endoscopic
biopsy confirmation to compare with the gold standard revealed dysplasia (Codipilly et
al., 2022). The Cytosponge-TFF3 test when combined with a multidimensional biomarker
panel and fitted into a regression model was shown to be able to predict patients with
dysplasia with good accuracy but further validation is still needed (Ross-Innes et al., 2017).
Interestingly, in our top 45 genes for diagnostic application (Table S6), we have identified
another trefoil factor, the TFF2, which is BE related gene.

A preliminary in-vitro validation of the selected diagnostic and prognostic biomarkers
was conducted by examining their expression inmetaplasia, dysplasia and EAC-derived cell
lines. This validation confirmed their differential expression, highlighting their potential in
distinguishing BE progression stages. Exceptionally, IGHV3-43, IGHV4-31, IGHV3-53, and
PGC top-ranked genes were validated in FFPE samples from patients diagnosed with BE
with and without dysplasia due to their lack of expression in the cell lines. The absence of
immune cells in cell line cultures, which focus on epithelial cells, likely contributes to these
findings. While we cannot exclude that the used cell lines may exhibit genetic differences
from the original tissue, which potentially influences their molecular profiles (Panda et al.,
2021), further clinical validation with a selected cohort of patient samples is warranted and
is currently underway.

While imaging methods, such as hyperspectral imaging (HIS) has advanced real-time
EAC detection, its utility to detect early LGD remains limited (Wang et al., 2024), molecular
biomarkers could augment such modalities to create cost-effective, multimodal tools.
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No molecular tools are currently implemented in clinical practice for identifying
LGD/HGD BE. Dysplasia is a major biomarker in BE risk stratification, but it is often
focal, making accurate characterization of collected BE biopsy challenging (Odze, 2007),
and leading to many cases of BE classified as INDBE. INDBE is a management limbo for
dysplasia, posing problems for clinicians. Most clinical tools developed for BE focus on
risk stratification (prognosis) (Abdo et al., 2018; Eluri et al., 2015; Iyer et al., 2022; Jin et
al., 2009; Kaul et al., 2020; Moinova et al., 2018; Vaughan, Onstad & Dai, 2019) and have
a high specificity (identify and correctly exclude BE patients not at risk of progression).
Simultaneously, these tools have a lower recall/sensitivity indicating their performance
drops in detecting BE patients at true risk of progression.

New tests that aim for high recall and sensitivity are vital to avoid missing unacceptable
true positive cases of LGD or HGD, as well as patients at risk of progression. However,
these tests must also maintain high precision and high sensitivity to avoid incorrectly
including patients not having dysplasia or having a low risk of progression. This balance
can improve surveillance of high-risk patients while reducing unnecessary procedures for
low-risk patients, ultimately lowering patient management costs.

Our approach, which combines machine learning algorithms with gene expression
signatures, represents a promising breakthrough in healthcare. It has the potential to
significantly enhance both the diagnosis and prognosis of dysplasia by delivering high
recall and precision into clinical practice. Importantly, the required samples can be
collected during routine endoscopy, an established procedure for patients diagnosed
with BE, thereby minimizing any additional burden on patients or healthcare providers.
Furthermore, the data processing and interpretation are fully automated by our algorithm,
generating a clear and concise report for clinicians. This streamlined integration supports
clinical decision-making while facilitating the broader adoption of molecular diagnostics
in everyday medical practice.

CONCLUSIONS
This study not only identified biomarkers and developed algorithms to detect LGD in BE
biopsies and predict the progression of BE to EAC but also paved the way for creating
new in-vitro laboratory tests for the diagnosis and prognosis of BE. Both algorithms were
developed using datasets from public databases analyzing tissue samples obtained during
routine endoscopy.

For the prediction of BE malignant progression, an LSVM algorithm featuring the
identification of LGD was trained while an RBF SVM algorithm was trained for the
prediction of BE malignant progression. Both algorithms reached high-performance
metrics. To our knowledge, no existing tools can simultaneously detect dysplasia and assess
the risk of progression with such high precision and recall.

Validation of the biomarkers and algorithms presented in this study in an independent
test and validation patient cohort is currently under consideration. Additionally, while no
other known risk factors (epidemiologic, clinical, histologic) have been combined with
the presented biomarkers, incorporating patient demographic and clinical information
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could further enhance the predictive value of the gene expression algorithms. Future
algorithm developments will address this issue, demonstrating how such combinations can
significantly boost their predictive power.
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