
Application of nanotechnology in fruit crops – from
synthesis to sustainable packaging (#104031)

1

Second revision

Guidance from your Editor

Please submit by 5 May 2025 for the benefit of the authors .

Literature review article
Please read the 'Structure and Criteria' page to understand the reviewing criteria for this
Literature review article.

Image check
Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If
uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files
Download and review all files
from the materials page.

1 Tracked changes manuscript(s)
1 Rebuttal letter(s)
7 Figure file(s)
7 Table file(s)

https://peerj.com/submissions/104031/reviews/2029018/materials/


For assistance email peer.review@peerj.com
Structure and
Criteria

2

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. STUDY DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review
When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.
Intro & background to show context.
Literature well referenced & relevant.
Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.
Is the review of broad and cross-disciplinary
interest and within the scope of the journal?
Has field been reviewed recently. It there a
good reason for this review (different
viewpoint, audience etc.)?
Introduction adequately introduces the
subject and makes audience and motivation
clear.

STUDY DESIGN

Article content is within the Aims and
Scope of the journal.
Rigorous investigation performed to a
high technical & ethical standard.
Methods described with sufficient detail &
information to replicate.
Is the Survey Methodology consistent with
a comprehensive, unbiased coverage of
the subject? If not, what is missing?
Are sources adequately cited? Quoted or
paraphrased as appropriate?
Is the review organized logically into
coherent paragraphs/subsections?

VALIDITY OF THE FINDINGS

Impact and novelty is not assessed.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.
Conclusions are well stated, linked to
original research question & limited to
supporting results.

Is there a well developed and supported
argument that meets the goals set out in
the Introduction?
Does the Conclusion identify unresolved
questions / gaps / future directions?

mailto:peer.review@peerj.com
https://peerj.com/submissions/104031/reviews/2029018/
https://peerj.com/submissions/104031/reviews/2029018/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/aims-and-scope/#literature-review-criteria
https://peerj.com/about/aims-and-scope/#literature-review-criteria


Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 – the current phrasing makes
comprehension difficult. I suggest you have a colleague
who is proficient in English and familiar with the subject
matter review your manuscript, or contact a professional
editing service.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.



Application of nanotechnology in fruit crops 3 from synthesis
to sustainable packaging
S Ramya 1 , J Auxcilia Corresp., 1 , Biswaranjan Paital 2 , D. Jeya Sundara Sharmila 3 , P. Irene Vethamoni 1 , Sheela
Venugopal 4 , N Indra 1 , K S. Subramanian 3 , Dipak Kumar Sahoo Corresp. 5

1 Department of Fruit Science, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
2 Department of Zoology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
3 Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
4 Centre for Rice, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
5 Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States

Corresponding Authors: J Auxcilia, Dipak Kumar Sahoo
Email address: auxcilia@tnau.ac.in, dsahoo@iastate.edu

Fresh fruits, rich in essential nutrients and bioactive compounds, contribute positively to
human health. However, the perishable nature of the fruit crops and their limited post-
harvest lifespan result in substantial losses on a global scale. Ensuring quality and
reducing wastage remain key challenges in fruit crop production. Thus, many
advancements have been developed, including nanotechnology, which has the potential to
increase fruit production and enhance food security. Nanoscience is rapidly advancing as
one of the key areas of applied research, oûering diverse applications in fruit crops.
Nanoparticles used in the form of nano-fertilizers, nano-pesticides, nano-coatings,
nanoûlms, and nano packaging have distinct features used for targeted site-speciûc pest
and disease management, smart nutrient supply, and delivery via biosensor(s) in
horticulture, speciûcally in fruit crops. Moreover, they are synthesized eûciently,
functioning rapidly in cost cost-eûective and environmentally sustainable manner.
Nanoparticles promote the growth of plants and resilience to stress, making them
beneûcial for improving fruit crops. It also has the potential to boost productivity, extend
shelf life, reduce post-harvest damage, and enhance the quality of crops. It also
contributes to increasing water use eûciency and defense measures in fruit crops. Such
applications are adapted to boost the development, reproductive growth, blossoming,
product quality, and reduce fruit waste. This review comprehensively highlights substantial
insights into using nanoparticles as a promising technique for increasing fruit crop
resilience and ensuring food security in the context of environmental changes, as well as
the recent application of nanotechnology at various stages of fruit production.
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31 ABSTRACT

32 Fresh fruits, rich in essential nutrients and bioactive compounds, contribute positively to human 

33 health. However, the perishable nature of the fruit crops and their limited post-harvest lifespan 

34 result in substantial losses on a global scale. Ensuring quality and reducing wastage remain key 

35 challenges in fruit crop production. Thus, many advancements have been developed, including 

36 nanotechnology, which has the potential to increase fruit production and enhance food security. 

37 Nanoscience is rapidly advancing as one of the key areas of applied research, offering diverse 

38 applications in fruit crops. Nanoparticles used in the form of nano-fertilizers, nano-pesticides, 

39 nano-coatings, nanofilms, and nano packaging have distinct features used for targeted site-

40 specific pest and disease management, smart nutrient supply, and delivery via biosensor(s) in 

41 horticulture, specifically in fruit crops. Moreover, they are synthesized efficiently, functioning 

42 rapidly in cost cost-effective and environmentally sustainable manner. Nanoparticles promote the 

43 growth of plants and resilience to stress, making them beneficial for improving fruit crops. It also 

44 has the potential to boost productivity, extend shelf life, reduce post-harvest damage, and 

45 enhance the quality of crops. It also contributes to increasing water use efficiency and defense 

46 measures in fruit crops. Such applications are adapted to boost the development, reproductive 

47 growth, blossoming, product quality, and reduce fruit waste. This review comprehensively 

48 highlights substantial insights into using nanoparticles as a promising technique for increasing 

49 fruit crop resilience and ensuring food security in the context of environmental changes, as well 

50 as the recent application of nanotechnology at various stages of fruit production. 

51 Subject: Biology (Biotechnology, Food Science and Technology, Plant Science, Agricultural 

52 Science)

53 Keywords: Fruit crops; Horticulture; Nanocoatings; Nanofertilizers; Nanopackaging; 

54 Nanopesticides; Nanosynthesis; Precision farming
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59 INTRODUCTION

60 Fruit crops play a crucial role in the global economy, contributing to agricultural trade, 

61 employment, and rural development. As consumer demand for fresh and processed fruits 

62 continues to rise, countries with favorable climates and production capabilities benefit from high 

63 export revenues (Gergerich et al., 2015). The fruit industry supports farmers and supply chain 

64 workers and drives logistics, food processing, and biotechnology advancements. Beyond 

65 economic significance, fruits are essential to human nutrition due to their rich composition of 

66 vitamins, minerals, fiber, and antioxidants (Abobatta, 2021). The growing awareness of health 

67 benefits has increased the preference for organic and minimally processed fruits, further shaping 

68 global agricultural practices and trade policies. Despite their importance, the international fruit 

69 industry faces numerous challenges, such as climate change, weather patterns, pest infestations, 

70 post-harvest losses, and market fluctuations, threatening fruit production and profitability 

71 (Bhattacharjee et al., 2022). Additionally, the overuse of chemical pesticides and fertilizers has 

72 raised environmental concerns (Sah et al., 2024), leading to stricter regulations and consumer 

73 demand for sustainable farming practices (Beyuo et al., 2024). To address these challenges, 

74 conventional management strategies include integrated pest management, efficient post-harvest 

75 handling, and storage technologies, which help to reduce losses and maintain fruit quality. In 

76 recent years, frontier technologies such as nanotechnology have led to innovative solutions for 

77 mitigating these hazards (Manzoor et al., 2024). Nanotechnology is an emerging strategy for 

78 increasing fruit productivity with limited inputs in contemporary fruit cultivation (Kamatyanatti 

79 et al., 2019). Nanoscience is the study of materials at the nanoscale (109 meters) from 1-100 

80 nanometers (Singh, 2017). Nanomaterials have unique physical and chemical properties that 

81 differ from those of conventional materials larger than 100 nanometers (Kumar N et al., 2024). 

82 Nanoparticles have unique chemical and physical qualities that promote plant growth, 

83 development, and stress tolerance (Fig. 1), making them helpful in improving fruit crops 

84 (Manzoor et al., 2024). Nanomaterial seed coatings have attracted significant interest in fruit 

85 crops due to their ability to enhance plant growth, increase crop yields, and improve resource 

86 efficiency. Nanomaterial coatings help seeds adhere better to the soil, reduce wastage during 

87 planting, and boost planting efficiency (Mehta et al., 2024).  Recently, nanoparticles have 

88 improved plant tolerance against biotic and abiotic stresses. Nanoparticles play a crucial role in 

89 enhancing plant yield characteristics under stress conditions. It significantly affects various 
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90 physiological processes, including stress response mechanisms, hormone metabolism, osmolyte 

91 biosynthesis, ethylene production, and signaling pathways (Rasheed et al., 2022). 

92 Nanomaterials provide numerous beneficial functions in biological systems; nevertheless, 

93 their toxicity can also be demonstrated to be detrimental (Paital, 2020; Jena et al., 2022; Yadav et 

94 al., 2023). Therefore, green synthesis of nano-particles and nano-herbals is now being used to 

95 open a new horizon in all fields, including horticulture, either to protect the crops or to use their 

96 products as neutraceuticals, crop protectors, herbicides, pesticides, etc. (Wesley et al., 2014; 

97 Paital, 2020; Ilango et al., 2022; Patel et al., 2023, 2025; Mishra et al., 2024; Subaramaniyam et 

98 al., 2025). So, organizing information and their critical evaluation of the role of nanomaterials on 

99 organisms is essential. Pests, such as insects, mites, nematodes, and diseases, significantly 

100 impact crop profitability (Kroumova et al., 2013; Sahoo et al., 2014, 2017, 2021; Reddy, 2015; 

101 Yoon et al., 2018). Using pesticides frequently has led to insect and disease resistance, 

102 accumulating residues in produce, and environmental damage (van Bruggen, Gamliel & Finckh, 

103 2016; Patel et al., 2024). As a result, alternative pest and pathogen control strategies are required. 

104 Nanotechnology has the potential to effectively manage insects and pathogens through targeted 

105 pesticide delivery and early detection systems (Rana et al., 2024). The most frequent 

106 nanomaterials in fruit production include packaging, nano-insecticides, nano-fertilizers, nano-

107 fungicides, and precision fruit culture  (Rana et al., 2021). Nanoparticles are highly stable and 

108 biodegradable, making them suitable for producing nanocapsules to carry insecticides, fertilizers, 

109 and other agrochemicals. Nanoparticles� slower release of functional molecules limits their use 

110 in many applications (Hassan, Al-Hchami & Alrawi). Nanoparticles perform differently than 

111 bulk particles due to their smaller size, higher charge, larger surface area, and increased stability 

112 and solubility (Shrestha, Wang & Dutta, 2020). Recently, focus has been given heavily to 

113 producing bio-based edible coverings to improve the post-harvest processing longevity of fruits. 

114 Added to that, nanotechnology has been recognized as an excellent approach   

115 &  2023) for increasing coating qualities, a better moisture barrier, and superior 

116 mechanical, optical, and microstructural capabilities, as well as the progressive and controlled 

117 discharge of bioactive substances. Some nanotechnology-based plant extracts are frequently used 

118 to extend the post-harvest shelf life of fruits.
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119 Fruits coated with edible nanocoating have an extended shelf life as they effectively 

120 retain moisture and preserve their freshness. This is due to the coating's protective layering, 

121 which keeps gases and water vapour from entering or exiting the fruit and preserves its texture, 

122 colour, and firmness (Sharma et al., 2024). These coatings improve barrier qualities on the outer 

123 covering of fruits, creating a favorable microenvironment by optimizing the concentration and 

124 impeding the ripening process. A diverse spectrum of nano-based precision and tiny equipment, 

125 which includes nano-sensors (Mishra et al., 2017), nano-based gadgets, machines, and robotics, 

126 is used in modern fruit production. These nanomaterial-based biosensors are also used in high-

127 tech fruit production. Nano-biosensors play a vital role in transforming farming by developing 

128 diagnostic tools. These sensors are accurate, reliable, and economical in dealing with various 

129 agricultural, food, and environmental concerns (Dar, Qazi & Pirzadah, 2020). Some agricultural 

130 sensor uses include identifying heavy metal ions, contaminants, microbial load, and pathogens, 

131 and monitoring temperature, traceability, and humidity. Consequently, nanotechnology has 

132 enhanced most fruit crops� quality and packaging aesthetics. With the current context of the 

133 improved crop growth and yield using nano-fertilizers, nano-pesticides, nano-biosensors for soil 

134 health, the targeted pest and disease management using nanoparticle-based biocides and nano-

135 carriers for bio-pesticides, for post-harvest preservation and shelf-life extension of fruits using 

136 nano-coatings, antimicrobial packaging, ethylene control methods, for quality enhancement of 

137 the processed fruit and their products using nano-emulsions for flavor and nutrient enhancement, 

138 improved texture and stability, for the detection of contaminants and quality monitoring using 

139 nanosensors, etc., nano-science can lead to the reduced chemical usage and with less 

140 environmental impacts in one hand and increase in precision and efficiency with improved 

141 product quality and safety on the other hand. So, the use of nano-technology in the challenges 

142 and considerations, including safety and toxicity in fruits and fruiting crops, reduced cost and 

143 scalability, regulatory approval, etc, needs to be reviewed on a priority basis. Therefore, it is 

144 suggested that nanotechnology holds transformative potential for managing fruiting crops, pre- 

145 and post-harvest quality handling of fruits, and their derived products, specifically for extending 

146 shelf life. This review article thoroughly highlights significant insights into the application of 

147 nanoparticles as a promising method for enhancing fruit crop resilience and ensuring food 

148 security amid environmental changes, along with the recent use of nanotechnology at different 

149 stages of fruit production.
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150 METHODS OF LITERATURE REVIEW

151 A thorough search was carried out across major databases such as PubMed, Science Direct, Web 

152 of Science, Scopus, Agricola, and Google Scholar,  with relevant terminologies (Oza et al., 

153 2024; Doshi et al., 2024)  such as �fruit crops and nanotechnology� were added with additional 

154 terms such as challenges, harvest, post-harvest, shelf life, texture, packaging, quality, scalability, 

155 safety, environmental impacts, regulatory, transport, fertilizer, pesticide and soil health. The 

156 inclusion criteria concentrated on peer-reviewed studies published in the recent decade, with a 

157 specific emphasis on the use of nanotechnology in fruit production and post-harvest 

158 management. Key data, including aims, techniques, and outcomes, were gathered and organized 

159 into categories. Articles merely containing the search words but out of the scope of the topic 

160 were rejected. Articles in English that fall under the topic were screened, and > 200 articles were 

161 selected for the review in an unbiased method. Articles were selected irrespective of specific 

162 laboratory, person, or country of publication. Each study was critically appraised for quality and 

163 relevance, identifying gaps, limitations, and areas for further research.

164 SYNTHESIS OF NANOMATERIALS

165 Nanomaterials, nanoparticles, and nanoemulsions play a significant role in transforming 

166 agricultural practices, especially in fruit crops (Avestan, Naseri & Najafzadeh, 2018; Hmmam et 

167 al., 2021; Basumatary et al., 2021; Khan et al., 2023; Singh et al., 2024; Thakur et al., 2024; 

168 Daler et al., 2024). The synthesis of nanoparticles involves techniques like sol-gel processes, 

169 chemical vapor deposition, and biological methods using plant extracts or microorganisms for 

170 eco-friendly production (Atanda, Shaibu & Agunbiade, 2025). Nanomaterials, produced through 

171 mechanical milling or self-assembly methods, are also integrated into the packaging to extend 

172 fruit shelf life and reduce post-harvest losses (Leta, Adeyemi & Fawole, 2024). Furthermore, 

173 nanosensors, synthesized via thin-film deposition techniques, aid in monitoring plant health and 

174 soil conditions, enabling precision agriculture (Filho et al., 2021).

175 Nanoemulsions, synthesized through high-energy techniques like ultrasonication or low-

176 energy methods like phase inversion temperature, offer innovative solutions for fruit crops 

177 (Sneha & Kumar, 2022). These nanoemulsions act as edible coatings enriched with antioxidants 

178 and antimicrobial agents to maintain fruit quality, delay spoilage, and enhance marketability 
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179 (Thakur et al., 2024). Their controlled release properties improve the delivery of essential 

180 bioactive compounds, such as nutrients and protective agents, ensuring improved fruit texture, 

181 appearance, and nutritional value (Akonjuen & Aryee, 2023). By addressing challenges like 

182 microbial contamination and water loss, these nanotechnology-based solutions significantly 

183 contribute to sustainable agriculture and the global fruit supply chain (Ahmad et al., 2024) (Fig. 

184 2, Table 1).

185 NANOMATERIAL � SEED COATING

186 The application of nanomaterials in seed priming is an emerging research area aimed at 

187 enhancing seed germination and seedling growth. Nanomaterials influence germination, yield, 

188 and stress tolerance by modulating gene expression, optimizing plant metabolism, and improving 

189 nutrient uptake, thereby promoting better plant development (Zaman, Ayaz & Park, 2025). 

190 Nanoscale coatings offer a range of benefits by forming a protective layer around seeds, ensuring 

191 secure germination and early development. One of the primary advantages of using nanomaterial 

192 seed coatings is their capacity to protect seeds from environmental stressors such as pests, 

193 diseases, and harsh weather (Zhao et al., 2024). Acting as a barrier, these materials safeguard 

194 seeds during their most vulnerable stages, leading to higher germination rates and the 

195 development of healthier, more resilient plants. Moreover, nanomaterials can be used to 

196 encapsulate essential nutrients, growth-promoting agents, or beneficial microorganisms, enabling 

197 their precise and controlled release to seedlings. This targeted delivery ensures that plants obtain 

198 the necessary resources for vigorous growth and robust development. By enhancing nutrient 

199 absorption and promoting beneficial microbial interactions, these coatings contribute to 

200 improving crop vitality and yield (Mahra et al., 2025). In addition, nanomaterial coatings help 

201 seeds adhere better to the soil, reducing wastage during planting and boosting planting 

202 efficiency�a critical factor in horticulture where optimal seed spacing and placement are 

203 essential for successful crop development. While the potential benefits of nanomaterial seed 

204 coatings are substantial, it is crucial to use them responsibly, considering both safety and 

205 regulatory guidelines (Zaim et al., 2023). When applied appropriately and within regulatory 

206 frameworks, nanomaterial seed coatings could transform the practices by improving crop quality, 

207 increasing yields, and promoting sustainable, efficient cultivation methods.

208 NANOFERTILIZERS �SALUTARY ROLE IN FRUIT CROPS
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209 Nanofertilizers, an emerging innovation in agriculture, offer a proper solution to improve 

210 nutrient efficiency, productivity, and sustainability in fruit crops (Kumar et al.; Zagzog & Gad; 

211 Roshdy & Refaai, 2016; Davarpanah et al., 2016; El-Hameed et al., 2017; Abdel-Hak et al., 

212 2018; Abdelaziz et al., 2019; Ranjbar, Ramezanian & Rahemi, 2019; Mozafari et al., 2019; 

213 Shalan, 2020; Elsheery et al., 2020; Zahedi et al., 2021; M. et al., 2022). Nano fertilizers have 

214 several advantages over conventional fertilizers, as these substances are harmless and less 

215 harmful to the natural world and humans (Sharma et al., 2021). Nano-fertilizers can be derived 

216 from various plant parts using physical, chemical, mechanical, or biological techniques, or they 

217 can be synthesized from modified forms of traditional fertilizers (Gade et al., 2023) to improve 

218 soil fertility, productivity, crop quality standards, and lower expenses while raising profits (Fig. 

219 3). Nano-fertilizers can prepare one or more plant nutrients to boost growth and production while 

220 performing better (Harith Burhan Al Deen Abdulrhman et al., 2021), using less fertilizer and 

221 releasing nutrients more slowly than conventional fertilizers (Table 2).

222 Nanoparticles enhance the efficiency of nutrient uptake and the overall quality of fruits 

223 (Zahedi, Karimi & Teixeira da Silva, 2020). Additionally, it has been put forth that balanced 

224 fertilization of agricultural produce can be accomplished by nanotechnology. Nanoparticles 

225 boost plant development by resisting infectious diseases and plant solidity by preventing bending 

226 and causing deeper rooting of crops  (Dharam Singh et al., 2017). This technology has enabled 

227 the exploitation of small nanomaterial particles carried on the fertilizer to build the so-called 

228 smart fertilizer, which enhances the efficiency of nutrient use and reduces the costs of protecting 

229 the environment by intelligently controlling the speed of nutrient release (Tarafdar et al., 2015) 

230 to match the absorption pattern of crops and improving the solubility of insoluble nutrients in the 

231 soil, it reduces its adsorption and stability and increases its availability.

232 NANOPARTICLES � THEIR ROLE IN MITIGATING ABIOTIC STRESS OF FRUIT 

233 CROPS

234 Abiotic stress has globally imposed environmental issues, which have a significant impact that 

235 leads to a reduction in the production and productivity of fruits (Dilnawaz, Misra & Apostolova, 

236 2023). Nanotechnology plays a substantial role in mitigating abiotic stress in fruit crops, as 

237 nanoparticles have shown positive effects on plants under abiotic stress conditions (Zarafshar et 
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238 al., 2015; Nava et al., 2017; Cosme Silva et al., 2017; Zahedi et al., 2019, 2021; Orooji et al., 

239 2020; Wang et al., 2021; Mahmoud et al., 2021; Mahmoudi et al., 2022; Hassan et al., 2022; 

240 Tejada-Alvarado et al., 2023), as they can be used to assist plants in coping with abiotic stress 

241 management (Khalid et al., 2022). Nanoparticles infiltrate plants through their roots and leaves, 

242 causing biochemical, morphological, molecular, and physiological changes in crops during 

243 stress. Nanoparticles have significant effects on various physiological processes, including stress 

244 response mechanisms, hormone metabolism, osmolyte biosynthesis, ethylene production, and 

245 signaling pathways involving nitric oxide, abscisic acid (ABA), and calcium. They also regulate 

246 signal transduction pathways during drought and salinity stress, activating stress-responsive 

247 genes to enhance plant survival (Rasheed et al., 2022). Nanoparticles play a crucial role in 

248 improving plant yield under drought and salinity conditions. They help mitigate water loss by 

249 maintaining water balance, ultimately improving abiotic stress tolerance. Nanoparticles also 

250 regulate stomatal conductance and transpiration rates by influencing leaf anatomy and promoting 

251 stomatal closure (Acosta-Motos et al., 2017). Additionally, Nanoparticles protect photosynthetic 

252 machinery, enhance photosynthesis, and activate antioxidant systems to repair damage caused by 

253 reactive oxygen species (ROS) in chloroplasts and photosystems. Furthermore, they stimulate the 

254 electron transport chain and increase chlorophyll content in plant cells (Forni, Duca & Glick, 

255 2016; Manzoor et al., 2022) (Table 3). Overall, the application of nanoparticles is essential for 

256 helping plants withstand drought and salinity, maintaining their normal functions, promoting 

257 environmental health, and sustaining crop yield.

258 NANOPESTICIDES - PROPITIOUS EFFECT ON FRUIT CROPS

259 Nanotechnology is used extensively in plant protection to enhance crop yield (Moulick et al., 

260 2020). Conventional crop protection methods often involve using large quantities of fungicides, 

261 herbicides, and insecticides. Approximately 90% of pesticides are ultimately lost in the 

262 environment or do not effectively reach their intended targets for pest control (Tudi et al., 2021). 

263 Having active chemicals at the right concentration in a formulation is of the utmost importance 

264 for protecting plants from pests and preventing crop loss. Agricultural research has focused on 

265 developing innovative plant protection formulations called Nanoformulation, or pesticide 

266 encapsulation, that have transformed plant protection technology (Bhagat, Samanta & 

267 Bhattacharya, 2013; Rao & Paria, 2013; Hua et al., 2015; Young et al., 2018; Zhao et al., 2018; 
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268 Sharma et al., 2021; Wu et al., 2023). Nanoformulation, often known as pesticide encapsulation, 

269 has transformed the plant protection sector. Nanoencapsulation of pesticides involves coating 

270 active ingredients with nano-sized materials; the materials (Yadav et al., 2021) that are 

271 encapsulated are called the coated nanomaterials' internal phase, and the materials that are 

272 encapsulated are called the core material's external phase (pesticides).

273 Pesticide encapsulations provide a controlled release of active ingredients into root areas or 

274 inside plants, all without impacting efficacy (Maluin & Hussein, 2020). Conventional pesticide 

275 or herbicide formulations, on the other hand, limit pesticide water solubility while also injuring 

276 other organisms, resulting in increased resistance to target organisms. For a sustainable agro-

277 environmental system, nanomaterials in pesticide formulations provide advantageous properties 

278 such as improved durability, flexibility, stability under heat, solubility, crystallinity, and 

279 biodegradability (Chaud et al., 2021). Using active substances in a timely and controlled manner 

280 reduces the need for pesticides for pest and disease control (Table 4), an essential aspect of IPM. 

281 Sustainable agriculture requires minimal use of agrochemicals to prevent environmental 

282 degradation and harm to non-target species; thus, nano-pesticides sparingly minimize 

283 agricultural production costs (Shang et al., 2019).

284 NANOCOATINGS

285 Increased consumer awareness regarding fresh fruits' health and nutritional advantages has led to 

286 a consistent rise in their demand. However, due to their high moisture content, fruits are highly 

287 perishable, creating an ideal environment for the growth of pathogenic and spoilage microbes. 

288 This diminishes their shelf life and compromises safety and quality (Mohammad & Ahmad, 

289 2024). Nanocoatings, thin films (<100 nm) applied to a substrate to enhance its properties and 

290 performance, offer notable benefits over traditional coatings. These include resistance to stains, 

291 antibacterial and antioxidant properties, odor management, and even distribution of active 

292 agents. In the fruit industry, nano-coating is frequently utilized in packaging applications. By 

293 integrating active bioactive ingredients, nanocoatings provide active food packaging with 

294 antibacterial and antioxidant features (Gago et al., 2020). Specific types of food packaging are 

295 coated with nanoparticles to enhance shelf life, security, and package quality (Fig. 4). Active 

296 packaging coatings, a promising technology in food packaging, utilize preservatives and 

297 nanocoatings to serve as antimicrobial, antifungal, and antibacterial agents, as well as protective 
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298 coatings and self-cleaning surfaces for food contact (Souza et al.; Li et al., 2011, 2021; 

299 Kittitheeranun, Dubas & Dubas, 2012; Arnon et al., 2014; Nadim et al., 2015; Salvia-Trujillo et 

300 al., 2015; Deng et al., 2017; Robledo et al., 2018; Prakash, Baskaran & Vadivel, 2020; Melo et 

301 al., 2020; Miranda et al., 2021, 2022; Kalia et al., 2021; Jafarzadeh et al., 2021; Ngo et al., 2021; 

302 Odetayo et al., 2022; Shi, Xiang & Jiahu, 2024) (Table 5). Using edible films containing 

303 nanocoatings to coat fruit products has made significant strides in recent years, enhancing food 

304 safety.

305

306 NANOCOMPOSITE MATERIALS 

307 Nanocomposite materials encompass one-dimensional, two-dimensional, and three-dimensional 

308 components mixed at the nanometer scale. In contrast to conventional packaging materials, 

309 nanocomposites offer added advantages such as increased strength, enhanced biodegradability, 

310 and superior management of gaseous molecules (Rovera, Ghaani & Farris, 2020), crucial for the 

311 development of high-performing packaging materials (Kalia & Parshad, 2015). Typically, a 

312 nanocomposite material (Table 6) consists of three distinct components: the matrix material, 

313 filler, and filler interface material (Sharma et al., 2022), with at least one component at the 

314 nanoscale (Yang et al., 2010; Emamifar et al., 2010; Esmailzadeh et al., 2016; Fortunati, 

315 Mazzaglia & Balestra, 2019; Vieira et al., 2020a,b; He et al., 2021; Kalia et al., 2021; La et al., 

316 2021; Sun et al., 2021; Ezati, Riahi & Rhim, 2022).

317 NANOPACKAGING

318 Nanotechnology has shown great promise in the food processing industry to improve post-

319 harvest technologies that help prevent neglect and lower losses  (Liu, Zhang & Bhandari, 2020). To 

320 address the worldwide issue of fresh product security, the farming sector should prioritize 

321 protecting fruits and vegetables (Ijaz et al., 2020). Controlling pre-harvest and post-harvest 

322 conditions can improve the shelf life of fresh fruit (Palumbo et al., 2022). The primary reason for 

323 adopting nano in food packaging is to improve the protective barrier qualities of packaging 

324 materials (Ghosh et al., 2025). Nano-based alimentary packaging materials also provide 

325 antibacterial properties, operate as oxygen scavengers,  and act as moisture barriers (Rai et al., 

326 2019).

327 BIO-BASED PACKAGING
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328 Bio-based packaging uses biodegradable films to regulate moisture transfer and gas exchange 

329 during the packaging of food goods. This improves safety and preserves nutritional and sensory 

330 quality. Such packaging supplies are considered more environmentally friendly than other 

331 standard packaging films (Chandra et al., 2020). Bio-based packaging protects food products 

332 from environmental factors such as microbes, relative humidity, and gas conditions. 

333 Biodegradable packaging films possess the ability to be broken down by living organisms, 

334 distinguishing them from other packaging options. This package type is seen as more 

335 environmentally friendly. Bio-based packaging encompasses improved, active, and smart 

336 packaging (Fig. 5) (Kuswandi, 2017).

337 ACTIVE PACKAGING

338 Nanomaterials are utilized in active packaging to improve product protection by directly 

339 interacting with the food or environment. Nano-silver, nano-copper oxide, nano-magnesium 

340 oxide, nano-titanium dioxide, and carbon nanotubes are expected to have potential use in 

341 antimicrobial food packaging (Agriopoulou et al., 2020).  It is an oxygen-scavenging packaging 

342 with enzymes between polyethylene layers. Active packaging can prevent microbial 

343 development after opening and rewrapping using an active film (for example, antimicrobial film, 

344 Oxygen scavenging films, and UV-absorbing films).

345 IMPROVED PACKAGING

346 Nanocomposites, which contain up to 5% w/w nanoparticles and clay nanoparticles (Arash et al., 

347 2023), improve barrier properties (80-90% reduction) in packaging materials (e.g., nanocoating, 

348 nanolaminates, clay nanoparticles).

349 SMART PACKAGING

350 Nanomaterials in smart packaging detect biochemical or microbiological changes in food, such 

351 as pathogens and spoilage gases (Onyeaka et al., 2022). Reactive particles in packing materials 

352 can provide information about the product's status (such as Nanosensors). Nanosensors act upon 

353 external stimuli to communicate, inform, and identify products, ensuring their quality and safety.

354 PRECISION FARMING IN FRUIT CROPS

355 Nanomaterial engineering is a leading research field for sustainable agricultural development. 

356 Nanomaterials in precision agriculture minimize expenses, boost efficiency, and promote 

357 sustainable growth (Shang et al., 2019). Precision fruit culture is becoming increasingly crucial 

358 for assessing and tracking the growth of trees, soil parameters (moisture, nutrients, pH, EC, and 
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359 so on), disease detection, pesticide penetration, and environmental impact using nanosensors. 

360 Precision fruit culture enhances fruit quality while ensuring the health of soil and plants, 

361 promoting ecological sustainability and environmental security (Longchamps et al., 2022). 

362 Nanomaterial engineering is used in high-tech fruit cultivation to provide a more specific surface 

363 area for the sustainable development system. The primary use of nano-fruit cultivation is to 

364 produce high-quality fruit with cheap input costs while maintaining ecological sustainability. In 

365 this culture, nanosensors, nanotechnology-based GPS, supercomputers, and remote sensing 

366 devices are used  (Mittal et al., 2020).

367 NANOSENSORS

368 Nanosensors enable plants to communicate, making it more straightforward to understand 

369 dynamic changes in plants� environment and physiological states. Nanosensors have been 

370 created to suit the demands of agricultural development. These sensors provide accurate and real-

371 time monitoring of individual plants on a micro-scale with excellent temporal resolution (Giraldo 

372 et al., 2019). They also help to translate optical, wireless, and electrical signals into plant 

373 signaling molecules (Vurro et al., 2024). Nano-sensors and nano-biosensors have potential uses 

374 in the food industry, including monitoring food processing, quality assessment, packaging, 

375 storage, shelf life, food safety, microbial contamination, toxins, and residual contamination. 

376 Nanosensors are often designed for specific applications in food and agriculture (Srivastava, Dev 

377 & Karmakar, 2018). Nano-biosensors have the potential to be an extremely useful instrument for 

378 intelligent delivery systems, enhancing soil health, irrigation safety, pesticide detection, and 

379 plant pathology. Nano-biosensors can also detect seed viability, fruit shelf life, and plant nutrient 

380 requirements (Fig. 5). Furthermore, they play a crucial part in protecting crops and advancing the 

381 idea of sustainable agriculture. Nanoparticles, including gold, silver, and magnetic nanoparticles, 

382 graphene oxide, carbon nanotubes, and wireless nanosensors, have been used to improve sensing 

383 (Oerke et al., 2005; Fernández-Baldo et al., 2010; Shojaei et al., 2016; Tereshchenko et al., 2017; 

384 Dhiman et al., 2019) (Table 7). Commercializing nanosensors requires substantial intellectual 

385 property and patent rights to ensure long-term viability.

386 CONCLUSION

387 Presently, a lot of technological innovation is being developed and utilised at various phases of 

388 fruit production. One such innovation is nanotechnology which has the potential to increase fruit 
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389 yield with diminished farm risks and has a more comprehensive application such as nano-

390 fertilizers, nano-pesticides, nano-coatings, post-harvest dips, packaging, increasing water use 

391 efficiency, and plant defense measures, all of which play essential roles in boosting the 

392 development of plants, improving reproductive growth, and blossoming, thus increasing 

393 efficiency, the quality of the product, shelf-life, and reducing fruit waste. Nanomaterials are 

394 utilized for targeted site-specific pest and disease management, targeted and slow nutrient supply 

395 (smart delivery), and pest and disease detection in fruit crops via biosensor delivery (Fig. 6) . 

396 Nanomaterials are quick, inexpensive, and environmentally friendly. They may be developed 

397 quickly, with minimal effort, and without affecting the environment. The application of 

398 nanoparticles in fruit production has the potential to revolutionize it, enhancing productivity 

399 while minimizing resource input. The application of nanoparticles in fruit production holds 

400 considerable promise for enhancing sustainable and precise fruit production in developing 

401 countries.

402

403 FUTURE PERSPECTIVES AND CHALLENGES

404 Nanotechnology offers tremendous potential to transform fruit cultivation by enhancing 

405 productivity, quality, and sustainability. The recent innovations in nanotechnology include nano-

406 fertilizers, nano-pesticides, nano-coatings, nanosensors, nanopackaging, and other nanomaterials 

407 like carbon nanotubes, silica nanoparticles, and biodegradable nano-coatings derived from 

408 polymers such as chitosan. Nanotechnology also facilitates the early detection of pests and 

409 diseases using nanosensors and enhances plant resistance through advanced delivery systems. 

410 Post-harvest management includes nano-coatings that prolong the shelf life of the fruits, smart 

411 packaging, and technologies that regulate the ripening process. Additionally, nanotechnology 

412 promotes sustainable agriculture by reducing inputs, improving water use efficiency, and stress 

413 management in fruit crops. Integrating nanosensors with smart farming enables real-time soil, 

414 water, and nutrients monitoring. However, challenges such as high production costs, regulatory 

415 barriers, and environmental safety need to be addressed to ensure safe and effective 

416 implementation of nanotechnology in fruit crops. By overcoming these limitations, 

417 nanotechnology provides innovative solutions to enhance fruit crop productivity and 

418 sustainability by addressing the growing demands of global food systems.

419
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944 Legends to figures and tables

945

946 Fig. 1. Role of nanotechnology in fruit crops.

947 An overview of the role of nanotechnology in fruit crops are depicted in the figure. A tree graph 

948 representing the significance of nanotechnology in fruit cultivation. It has been reviewed that 

949 nanotechnology has multidimensional use in the agriculture fields, starting from farming to post-

950 harvest management of crops. As a result an increased productivity shall be obtained in cropping 

951 plants. Various nano-based products are utilized in fruit crops. Disease management and safety 

952 storage of post-harvested crops are the most challenging issues in agriculture. So, the use of 

953 nano-products such as nanofertilizers, nano pesticides, and nanofungisides is used even in post-

954 harvest packaging.

955 Fig.2. Methods of synthesis of nanoparticles  used in fruit crops

956 Nanoparticles employed in fruit crops are manufactured utilizing physical, chemical, and 

957 biological processes, with benefits in terms of scalability, stability and environmental 

958 compatibility. Their size defines their mode of application, which might be foliar spraying, soil 

959 integration, or seed coating. These nanoparticles work through various  processes, which 

960 includes regulated release of active chemicals, increased nutrient absorption, and targeted disease 

961 and pest management.

962

963 Fig. 3. Role of nanofertilizers and shelf-life in fruit crops.

964 Several pieces of evidence fortifying the idea of the use of nano-fertilizers are clear. Less amount 

965 of use with cheap price and high efficiency are the main advantages. Positive impacts of 

966 nanofertilizers on tree growth and development, as well as soil health, have been documented. It 

967 increases the resistance capacity of plants along with better growth. Factors affecting the shelf 

968 life of fruits after harvest can also be influenced by nanomaterials. Usually, ripened fruits are 

969 more prone to damage during transport, sorting, and grading. Microbial activity and 

970 environmental factors can also enhance the degrading process. Nanomaterials can be used at 

971 each stage to protect the post-harvested fruits.
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972 Fig. 4.  Role of nanocoatings and nano-packaging in fruit crops.

973 Post-harvested fruits are more damaged under several conditions, and packaging and coating of 

974 fruits with compatible materials now are a challenge from a health point of view. So, nano-

975 coatings are now used to increase the self-life of ripened fruits. It also protects fruits against 

976 microbial damage. Nano-based packaging in fruit crops also is proposed to be used. Nano-based 

977 packaging enhances the self-life of post-harvested fruits, especially at their ripening stage. So, 

978 rapid involvement and more research in this field are warranted.

979 Fig.5. Types of biobased nanopackaging system and the working model of nano-based fruit crop 

980 management. 

981 Several modes of packaging are adapted to protect fruits from post-harvest damage. The use of 

982 nano-materials is suggested to improve post-harvest management. Working of Nanosensors in 

983 fruit crops. Sensors transmit information about the tree's condition, which is analyzed and passed 

984 along to the decision support system.

985 Fig.6. A schematic presentation of application of nanotechnology in management of fruiting 

986 crops and their associated products.
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Table 1: Method of synthesis, mode of delivery, and role of nanoparticles in Fruit Crop
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1 Table 1: Method of synthesis, mode of delivery, and role of nanoparticles in Fruit Crop 

Method of Synthesis Size Range Mode of 

Application

Fruit Crop Mode of Action References

Co-precipitation 

method (Copper 

Nanoparticles)

10�50 nm Foliar spray, 

soil 

amendment

Banana

(Musa sp.)

Resistance against fusarium wilt, 

improved yield

Kumar et al. (2024)

Electrochemical 

method (Silver 

Nanoparticles)

10�50 nm Edible coating Mango

(Mangifera indica)

Reduced microbial spoilage, 

extended shelf life

Hmmam et al. (2021)

Co-precipitation 

method (Iron 

Nanoparticles)

20�100 nm Invitro Apple

(Malus domestica)

Improved growth and nutrient 

uptake 

Avastan et al. (2018)

Wet chemical method 

(Zinc Oxide 

Nanoparticles)

20�80 nm Foliar spray Strawberry

(Fragaria ananaasa)

Inhibited fungal growth, 

improved quality

Singh et al. (2024)

Solvo thermal method 

(Titanium Dioxide 

Nanoparticles)

5�20 nm Edible coating Peach

(Prunus persica)

Improved UV protection and 

shelf life

Khan et al. (2023)

Ionic gelation method 

(Chitosan 

Nanoparticles)

50�200 nm Edible 

coatings, foliar 

spray

Pineapple

(Annanas  comosus)

Reduced microbial activity, 

prolonged freshness and 

extended shelf life

Basumatary et al. 

(2021)

Sol - gel method 5�100 nm Soil Grapes Enhanced nutrient uptake, stress Daler et al. (2024)
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2

(Silicon 

Nanoparticles)

amendment (Vitis vinifera) tolerance

Nanoemulsions 50�200 nm Edible coating Citrus Fruits

(Citrus sp.)

Prolonged freshness, microbial 

reduction

Thakur et al. (2024)
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TABLE 2: Beneûcial role of nanofertilizers in various fruit crops.
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1 TABLE 2� Beneficial role of nanofertilizers in various fruit crops.

Fruits V������ N���	����
����� P��
������ References

Apple

(Malus domestica)

Red 

delicious

Nano calcium Quantitative and 

qualitative character

Ranjbar et al.  (2020)

Grapes

(Vitis vinifera)

Flame 

seedless

Nano fertilizers 

(amino-

minerals, 

orgland active-

Fe, Boron-10, 

Amino-Zn, 

Super �Fe)

Improved berry 

colouration and high 

fruit quality

Wassel et al. (2017)

Grapes

(Vitis vinifera)

Flame 

seedless

carbon nano-

tubes (CNTs) 

from total 

nitrogen

Increased leaf area, 

leaf fresh weight and 

leaf dry weight, 

shoot length, shoot 

diameter and number 

of leaves per shoot 

of grapevines

Abdel-Hak et al. 

(2018)

Apple

(Malus domestica)

Anna Ag and Zn 

nanofertilizer

Increased total 

chlorophyll content, 

fruit set percentage,  

fruit yield, fruit's 

physical and 

chemical 

characteristics 

Muhsin et al. (2022) 

Mango

(Mangifera indica)

Kiette Nanoboron Increased shoot 

length, thickness, 

leaf area, and 

number of leaves per 

shoot.

Abdelaziz et al.(2019)
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2

Grapes

(Vitis vinifera)

Crimson 

seedless

Nano-powder 

potassium 

sulfate

Leaf area, internode 

length 

Shalan (2020)

Pomegranate

(Punica granatum)

Malase 

Saveh

Nano-Se Higher leaf NPK 

content

Zahedi et al. (2019)

Strawberry 

(Fragaria ananassa)

Queen 

elisa

Nano-silicon 

oxide

Salt tolerance Mozafari et al. (2019)

Strawberry

(Fragaria ananassa)

Chandler Nano zinc Increased number of 

leaves

Kumar et al. (2017)

Mango

(Mangifera indica)

Ewais Nano-ZnO and 

Si

Salt stress tolerance Elsheery et al. (2020)

Mango

(Mangifera indica)

Zebda & 

Ewasy

Nanozinc Highest number and 

weight of fruits, total 

tree yield, and 

percentage of TSS in 

fruits, Reduced 

malformation

Zagzog & Gad (2017)

Pomegranate

(Punica granatum)

Ardestani Nano-iron and 

Nano-Boron

Number of fruits, 

iron content of 

leaves, total sugars, 

and the total yield

Davarpanah et al. 

(2016)

Datepalm

(Phoenix dactlylifera)

Zaghloul Nano NPK Higher fruit yield, 

bunch weight, total 

soluble solids, total 

sugars and pulp 

percentage

Roshdy &  Refaai ( 

2016)
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Table 3: Role of Nanoparticles in mitigating abiotic stress in fruit crops
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1Table 3� Role of ������������� in mitigating abiotic stress in fruit crops

2

Fruits ������������� ���������� References

Strawberry

(Fragaria ananaasa)

Se-NPs Tolerance to salinity, and 

subsequently yield, which were 

attributed to their ability to 

protect photosynthetic pigments

Zahedi et al. (2019)

Pomegranate

(Punica granatum)

Se-NPs Fruit cracking caused by drought 

stress was reduced 

Zahedi et al. (2021)

Banana

(Musa sp.)

Chitosan - NPs Improve plant resilence to 

chilling injury � suitable in cold 

affected regions, Serves as 

osmoprotectant

Wang et al. (2021)

Mango

(Mangifera indica)

Chitosan - NPs Retards the senescence process Silva et al. (2017)

Sweet Orange

(Citrus sinensis)

Sio2 - NP Tolerant to salt stress Mahmoud et al. 

(2022)

Strawberry

(Fragaria ananaasa)

Fe3O4 NPs Decreased level of H2O2 Orooji et al. (2020)

Grapefruit

(Citrus x paradisi)

ZnO - NPs Photocatalytic activity Nava et al. (2017)

Pineapple

(Annanas  comosus)

Ag - NPs Increase the content of pigments Tejada � Alvarado et 

al. (2023)

Pear

(Pyrus pyrifolia)

SiO2 - NPs Si and K content increased Zarafshar et et al. 

(2015)

Loquat

(Eriobotrya japonica)

SiO2 - NPs Chilling tolerance Wang et al. (2020)

Olive

(Olea europaea)

Nano - Si Tolerant to water stress Hassan et al. (2022)

Plum

(Prunus domestica)

Chitosan- 

Arginine NPs

Chilling tolerance Mahmoudi et al. 

(2022)
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TABLE 4: Eûects of employing nanopesticides in fruit crops.

PeerJ reviewing PDF | (2024:07:104031:2:0:NEW 19 Apr 2025)

Manuscript to be reviewed



1 TABLE 4� Effects of employing nanopesticides in fruit crops.

Fruits ��� !" !# $�%&'!#" ( 

de

)�"*&+!% Mode of 

action

References

Sweet orange

(,-./01 sinensis)

Pineapple Nano-ZnO Citrus canker Fruit canker 

incidence 

reduced from 

63 to 7%

S56/76 et 

al. (2020)

Grapefruit

(,-./01 

paradisi)

Ruby Nano-CuO Citrus canker Fruit infection  

reduced to 

25% from 60%

Y809: et al. 

(201;<

Citrus 

(,-./01 sp.)

Tankan Nano-

Calcium 

cabronate 

(CaCo3)

Oriental fruit 

fly

Insecticide - 

Damage 

caused  by 

Oriental fruit 

flies decreased

Hua et al. 

(2015)

Guava

(Psidium 

guajava)

Insect 

pheromone 

nanogel

Fruit fly Improved 

insects catch in 

the fly for 

insecticide 

formulation 

apparatus for 

nanogel 

formulation 

Bhagat et al. 

(2013)

Apple

(Malus 

domestica)

Nano-

sulphur

Apple scab Fungicide - 

Inhibited 93% 

of the fungal 

growth 

R68 et al. 

(2013)

Strawberry

(Fragaria x 

ananaasa)

Nano-

chitosan

Anthracnose Fungicide Wu et al. 

(202=<
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1 TABLE >? Nanocoatings and their properties in fruit crops.

Fruits Nanomatrix and Bioactive 

compound

Property References

Apple - Fuji 

(Malus domestica)

Sodium alginate @ 

Lemongrass oil

Antimicrobial activity ABCDEBFGHIJECCK et al. 

(2015)

Strawberry

(Fragaria x 

ananaasa)

Chitosan @ Thymol Antimicrobial activity LKMCOQK et al. (2018)

Papaya � Red 

tainung (TBHEUB 

papaya)

Hydroxylpropyl 

methylcellulose @ carnauba 

wax

Reduce moisture loss Miranda et al. (201WX

Pineapple 

(Ananas comosus)

Sodium alginate @ citral Increase in 

antimicrobial activity

Prakash et al. (2020)

Mandarin � Nova

(TEZHI[ reticulata)

Carnauba wax @ oleic acid Antimicrobial activity Miranda et al. (2021)

Pear � Barlett

(Pyrus pyrifolia)

Chitosan @ Cellulose 

nanocrystal and oleic acid

Increased adhesion , 

delayed ripening

\O]^ et al. (201_X

Mangoes 

(Mangifera indica)

Sodium alginate @ chitosan Firmness, microbial 

protection

AKI`B et al. (2015)

Citrus

(TEZHI[ sp.)

Carboxymethy cellulose @ 

Chitosan

Enhanced fruit 

glossiness and 

prevented weight loss

Amon et al. (201aX

Mango

(Mangifera indica)

Polystyrene sulfonate 

sodium salt @ Poly 

diallyldimethyammonium 

chloride

Improved 

hydrophilicity of the 

surface

bEZZEZcOOHB]I] et al. 

(2012)

Strawberry

(Fragaria x 

ananaasa)

Nanocomposite Zinc Oxide-

Chitosan coatings @ 

Polyethylene films

Increase quality and 

shelf life of fruit and  

antimicrobial activity

dBeBH`BQOc et al. 

(2021)

Banana � Aloe vera and Moringa Improved efficiency Odetayo et al. (2022)
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Cavendish (Musa 

sp.)

plant extract edible coatings 

@ chitosan nanoparticles

and increased the 

storage life of banana 

Strawberry

(Fragaria x 

ananaasa)

Methylcellulose-based 

edible coating

Maintenance of fruit 

quality during storage

fBQEg et al. (2015)

Strawberry

(Fragaria x 

ananaasa)

Chitosan tripolyphosphate 

nanoparticles suspension

Acts as an antibacterial 

agent

Melo et al. (2020)

Blueberry

(hBUUE]EIg 

corymbosum)

Chitosan Delays mould and yeast 

formation

iE et al. (2021)

Mango

(Mangifera indica)

Nano-hitosan Firmness of fruits f^K et al. (2021)

Apple

(Malus domestica)

nano- Zno Increased shelf life by 6 

days

iE et al. (2011)

Peach

(Prunus persica)

Bacillus circulans @ Nano -  

ZnO 

Enhanced shelf life AcE et al. (202aX

Guava

(Psidium guajava)

Urticadiocia leaf extracts  @ 

Nano- ZnO, CuO

Enhanced shelf life of 

guava

bBCEB et al. (2021)

2
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Table 6. Nanocomposite-based packaging in fruit crops.
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1 Table 6. Nanocomposite-based packaging in fruit crops.

jklmno pqnkmr s Nanoparticles pmtkuvmonqnmt 

effect

Reference

Strawberry

(Fragaria x 

ananaasa)

LDPE w Silver and titanium 

dioxide nanoparticles

Aspergillus flavus xyz{ et al. (2010)

Orange juice (|}~��� 

sp.)

Polyethylene w Silver and 

titanium dioxide 

nanoparticles

Aspergillus flavus Emamifar et al. 

(2010)

Pineapple Juice 

(Ananus comosus)

Polyethylene w Silver 

nanoparticles

Bacillus subtilis Fortunati et al. (201��

Kiwi

(Actinidia deliciosa)

Polyethylene w Silver 

nanoparticles

Bacillus subtilis Fortunati et al. (201��

Grapes

(�}~}� vinifera)

Polyethylene w Silver 

nanoparticles

Bacillus subtilis Fortunati et al. (201��

Apples

(Malus domestica)

Nanoparticles Enterobacterae 

rogenes

Esmail�y��� et al. 

(201��

Strawberry

(Fragaria x 

ananaasa)

Cellulose nanocrystals w 

Silver

Escherichia coli He et al. (2021)

Cherries

(Prunus avium)

Sodium alginate w Silver �y���z���y aureus     

�  Escherichia coli

��z et al. (2021)

Papaya

(|y�}�y papaya)

HPMC w Silver |� gloeosporioides �}�}�y et al. (2020)

Banana

(Musa sp.)

Chitosan w ZnO Bacillus subtilis �y et al. (2021)

Guava

(Psidium guajava) 

Chitosan w ZnO �y���z���y aureus �y�}y et al. (2021)

Banana Carboxymethyl cellulose w �}�~��}y E�y~} et al. (2022)
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(Musa sp.) TiO2 monocytogenes

2
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Table 7. Types of nanosensors used in fruit crops.
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1 Table �� Types of nanosensors used in fruit crops.

������ Nanosensors ��������� References

Grapes

( ¡¢¡£ vinifera)

ZnO-based films Grapevine virus A-type (GVA) 

proteins (GVA-antigens)

¤¥¦¥£§¨§¥©ª« et al. 

(201¬­

Citrus

(®¡¢¦¯£ sp.)

cdTe quantum dots 

Nanocarbon dots

Fluorometric immunoassay - 

Citrus tristeza virus

°§«±²¥¡ et al. 

(2016)

Apple � Malus 

domestica

Pears � Pyrus 

pyrifolia

Grapefruit � 

®¡¢¦¯£ x 

paradisii

Carbon based 

screen printed 

electrode

Plum pox virus Fernande³´µ²¶·« et 

al. (2010)

Apple - Malus 

domestica

IR thermography 

(DIRT) 

Apple scab Oerke et al. (2005) 

Citrus

(®¡¢¦¯£ sp.)

Microfluidic 

electrochemical 

immunosensor 

(nanochip)

Yellow shoot disease 

(Huanglongbing)

¸§¡¹²© et al. 

(201º­

2

3
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Figure 1
Fig. 1. Role of nanotechnology in fruit crops.

An overview of the role of nanotechnology in fruit crops are depicted in the ûgure. A tree
graph representing the signiûcance of nanotechnology in fruit cultivation. It has been
reviewed that nanotechnology has multidimensional use in the agriculture ûelds, starting
from farming to post-harvest management of crops. As a result an increased productivity
shall be obtained in cropping plants. Various nano-based products are utilized in fruit crops.
Disease management and safety storage of post-harvested crops are the most challenging
issues in agriculture. So, the use of nano-products such as nanofertilizers, nano pesticides,
and nanofungisides is used even in post-harvest packaging.
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Figure 2
Fig.2. Methods of synthesis of nanoparticles used in fruit crops

Nanoparticles employed in fruit crops are manufactured utilizing physical, chemical, and
biological processes, with beneûts in terms of scalability, stability and environmental
compatibility. Their size deûnes their mode of application, which might be foliar spraying, soil
integration, or seed coating. These nanoparticles work through various processes, which
includes regulated release of active chemicals, increased nutrient absorption, and targeted
disease and pest management.
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Figure 3
Fig. 3. Role of nanofertilizers and shelf-life in fruit crops.

Several pieces of evidence fortifying the idea of the use of nano-fertilizers are clear. Less
amount of use with cheap price and high eûciency are the main advantages. Positive
impacts of nanofertilizers on tree growth and development, as well as soil health, have been
documented. It increases the resistance capacity of plants along with better growth. Factors
aûecting the shelf life of fruits after harvest can also be inûuenced by nanomaterials. Usually,
ripened fruits are more prone to damage during transport, sorting, and grading. Microbial
activity and environmental factors can also enhance the degrading process. Nanomaterials
can be used at each stage to protect the post-harvested fruits.
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Figure 4
Fig. 4. Role of nanocoatings and nano-packaging in fruit crops.

Post-harvested fruits are more damaged under several conditions, and packaging and
coating of fruits with compatible materials now are a challenge from a health point of view.
So, nano-coatings are now used to increase the self-life of ripened fruits. It also protects
fruits against microbial damage. Nano-based packaging in fruit crops also is proposed to be
used. Nano-based packaging enhances the self-life of post-harvested fruits, especially at
their ripening stage. So, rapid involvement and more research in this ûeld are warranted.
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Figure 5
Fig. 5. Types of biobased nanopackaging system and the working model of nano-based
fruit crop management.

Several modes of packaging are adapted to protect fruits from post-harvest damage. The use
of nano-materials is suggested to improve post-harvest management. Working of
Nanosensors in fruit crops. Sensors transmit information about the tree's condition, which is
analyzed and passed along to the decision support system.
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Figure 6
Fig. 6. A schematic presentation of application of nanotechnology in management of
fruiting crops and their associated products.
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