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The intermountain basins become the most dominant depositional environment in
southeastern China after the tectonic uplift in the ‘Mid’ to Late Cretaceous, preserving a
considerable dinosaur record including fossil skeletons, eggs and tracks, especially in the
Maastrichtian. The Shanghang Basin is one of the sporadic red-stratified basins distributed
in western Fujian, China, and has previously been discovered as the home of large
troodontid Fujianipus, and an ichnofauna representing the almost sole record of dinosaur
fauna with structural integrity during the mid-Cretaceous in southeastern China. New
material of the Longxiang ichnofauna, including possible large didactyl trackways (>50
cm), a new ichnospecies under Tridentigerpes and many more ornithopod trackways, has
been newly distinguished. This early ornithopod-dominated ichnofauna is unique in
southeastern China and can be compared with the contemporaneous dinosaur fauna of
Mongolia or the Early Cretaceous fauna of NW China. The influence of various factors,
including the timing and extent of short-term cooling and humidifying events across
southeastern and northwestern China, the geographical boundaries within the
mountainous region of southeastern China, and the possible regional immigration of the
fauna from the north, may have shaped the occurrence of this ichnofauna.

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)



PeerJ

Dinosaur track assemblages from mid-Cretaceous of
Fujian Province, southeastern China: ichnotaxonomy
and faunal comparison

Abstract

The intermountain basins become the most dominant depositional environment in southeastern
China after the tectonic uplift in the ‘Mid’ to Late Cretaceous, preserving a considerable
dinosaur record including fossil skeletons, eggs and tracks, especially in the Maastrichtian. The
Shanghang Basin is one of the sporadic red-stratified basins distributed in western Fujian, China,
and has previously been discovered as the home of large troodontid Fujianipus, and an
ichnofauna representing the almost sole record of dinosaur fauna with-structural-integrity during
the mid-Cretaceous in southeastern China. New material of the Longxiang ichnofauna, including
possible large didactyl trackways (>50 cm), a new ichnospecies under 7ridentigerpes and many
more ornithopod trackways, has been newly distinguished. This early ornithopod-dominated
ichnofauna is unique in southeastern China and can be compared with the contemporaneous
dinosaur fauna of Mongolia or the Early Cretaceous fauna of NW China. The influence of
various factors, including the timing and extent of short-term cooling and humidifying events
across southeastern and northwestern China, the geographical boundaries within the
mountainous region of southeastern China, and the possible regional immigration of the fauna
from the north, may have shaped the occurrence of this ichnofauna.

Introduction
During the Cretaceous, after the end of the subduction stage on the eastern side of the Cathaysia
block, the tectonic stage in southeastern China shifted from a syn-orogenic shortening stage to a
post- enic stage (Li et 14). This stage was mainly represented by NW-SE extension in
the Lﬁalanginian to Eamtian. Subsequently, the collision of the South China continental
crust andgdsg West Philippp==y Plate transformed the region into an isotropic compressional event
in the Laf®Rptian to Early*&ibian (Charvet, 1994; Li et al., 2014). During the compressional
phase, tectonic uplift induced by Minchenorogeny (Gu, 2005), the mountains included the area
covered by Paleo-Yunmengze Lake and the associated inland river system, i.e. most of Hubei,
northern and northwestern Hunan, and part of Henan and southwestern Jiangxi (Chen, 1979,
_ Compilation Committee of Geological Atlas of China, 2002; Wan et al., 2010). The high and
wide Zhe-Min-Yue Mountains (i.e. Zhejiang, Fujian and Guangdong) made it difficult for the
paleo-Pacific moisture flow to reach the above regions, causing these areas to develop into
tropical-subtropical hot plains, hills and desert landscapes (Chen, 1979), where gypsum and
halite were deposited (Wan et al., 2010). To the east and south of this region are dominated by
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plains and hills belonging to Zhejiang, Fujian, Jiangxi and Guangdong regions, where dinosaurs
lived in thes all and sporadic foothill grasslands and intermountain basins (Chen, 2000; Li et
al., 2013). The “Mid” to Upper Cretaceous faulted basin deposits in this region are mainly
composed of brick-red siltstone and mudstone, also containing gypsum layers, with
conglomerates and sandy conglomerates at the base (Zhou, 2007). Considerable dinosaur
records, including fossil skeletons, eggs and tracks, are preserved in the Late Cretaceous red-
stratified deposits of Zhejiang, Jiangxi and Guangdong, especially in the Jinqu Basin of Zhejiang
(Du et al., 2015; Yu, 2013), the Ganzhou Basin of Jiangxi (Lii et al., 2016, 2017; Xing et al.,
2020) and the Nanxiong Basin of Guangdong (Xing et al., 2017, 2020).

In western Fujian, west of the Zhenghe-Daipu Rift, there are about 36 Cretaceous red-
stratified basins spatially distributed in a northeast-trending belt. The Shanghang Basin in
weste jian is dominated by the Chishi Group (Junkou Fermatien, Shaxian Fermation and
Chonﬁ ermation), of which the Shaxian Formation is the most widely distributed (Fujian
Institute of Geological Survey, 2016). The Shanghang Basin is one of the small basins in
southwestern Fujian Province, where the Cretaceous red beds are a sequence of purplish-red
coarse-fine clastic assemblages. In November 2020, the Dinosaur Laboratory of China
University of Geosciences, Beijing, in cooperation with the Yingliang Stone Natural History
Museum, started to search for dinosaur fossils in the red beds of Fujian Province. This is the first
time that dinosaur tracks have been found in Fujian Province (Niu and Xing, 2023). In January
2021, the lead author of this paper found a third footprint site at the Kejiayuan Cultural Centre in
Longxiang Village (Fig. 1). In April 2021, a detailed investigation of the newly exposed
footprint levels of the main tracks was carried out.

Geological setting

Fujian Province in southeastern China is situated on the southeastern margin of the Eurasian
Plate. During the Late Jurassic to Early Cretaceous, intense volcanism occurred, leading to the
formation of a widely distributed, thick terrestrial volcanic-sedimentary rock system in the
eastern part of the province. In the latest Early Cretaceous to Late Cretaceous, the intensity of
volcanism decreased, resulting in volcanic or nonvolcanic terrestrial red-bed basin deposits (L1,
1997; Xi et al., 2019).

In the late Albian to Late Cretaceous, extensive layers of purplish-red sedimentary rocks were
developed in west-central Fujian, divided into the lower Shaxian Formation and the upper
Chong'an Formation (L1, 1997; Xi et al., 2019). The Shaxian Formation's strata are prone to
weathering and erosion, forming gentle hills, while the Chong'an Formation if™pminated by
coarser-grained conglomerates, which form the basis of Danxia landforms (Lu ¢t al., 2019). The
lithology of the Shaxian Formation consists mainly of purplish-red medium-thick bedded
calcareous, fine sandstone and muddy siltstone, interspersed with purplish-red sandstone, and
complex-composed conglomerate, while regionally interbedded with tuff, tuff lava, and marl,
which is composed of terrestrial red clastic rocks. It is exposed in several areas in northern and
western Fujian, forming faulted red basins with thicknesses ranging from several hundred meters
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to over two thousand meters, including a thickness of about 1,913 meters in the Shanghang
Basin.

According to the 1:200,000 regional geological survey report of Shanghang Area (G-50-27),
the dinosaur tracks from Longxiang Village, Shanghang County (Fig. 1), are located at the
siltstone layer in the lower part of the Shaxian Formation in the Shanghang Basin (Fig, 2). The
sediments in this area generally include thin gypsum layers and calcareous clasts, with local
occurrences of Cu-bearing sandstones (Chen, 2008).

Hu (1990) suggested that the depositional age of the Shaxian Formation in the red bed of
Shanghang is between 80 and 105 Ma, based on magnetic stratigraphy. The 2°°Pb/?38U dates of
the Shaxian Formation in the Shanghang Basin vary from 87 to 101 Ma, with a weighted average
0f 96.0 £ 4.1 Ma (Chen et al., 2020). Therefore, the Shaxian Formation in the Shanghang Basin
can be assigned to the Early Late Cretaceous

Based on palynology (Zheng and Li, 1986; Liang et al., 1992) and paleosoil evidence (Li et
al., 2009; Yin and Li, 2014), the Shaxian Formation is a riverine and lacustrine detrital deposit
that formed in an inland basin under a dry hot oxidizingsapvironment (Li, 1997). Based on the
evidence of stratigraphic magnetic characterization, Li#*®al (2019) suggested that hematite in the
red strata of the Shaxian Formation and Chong'an Formation is indicative of a high-temperature
climatic environment.

Materials & Methods

Materials

At least three dinosaur tracksites were discovered in Longxiang Village, which are numbered as
Longxiang site I (LXI; GPS: 25° 2'15.69"N, 116°23'58.29"E), Longxiang site II (LXII; GPS: 25°
2'38.20"N, 116°23'35.37"E) and Longxiang site I1I (LXIII; GPS: 25° 1'48.36"N,
116°24'32.25"E) (Fig. 1). Among the Longxiang tracks, 274 tracks in LXI has been already
reported in Niu and Xing (2023). All the tracks in LXIU, LXID, LXIN, LXII and LXIII are now
available in situ, except LXIE. The specimen from LXIE (YLSNHMO07318) was found at the site
of the landslide on the east side of the previously described Longxiang tracksite (25° 2'13.76"N
116°24"2.70"E), with light purple-red silty claystone, and the slab is now preserved in Yingliang
Stone Natural History Museum, Nan’an, China.

Site LXI is the main tracksite, divided into the upper (LXIU), lower (LXID) , northern (LXIN)
and eastern (LXIE) parts, with a total area of approximately 1,600 m?. There are currently more
than 700 tracks exposed on the site, including 79 trackways and more than 100 isolated tracks
(trackways see Table 1). The LXIU site covers an area of about 320 m?, with 17 trackways and
eight relatively clear isolated tracks, making a total of about 229 tracks (Fig. 3). Site LXID
covers an area of about 170 m?, with a large number of planting pits, seven trackways and one
relatively clear isolated track, totalling about 81 tracks (Fig. 4). The LXIN tracksite covered an
area of about 290 m?, with a large number of planting pits, 54 tracks and 31 relatively clear
isolated tracks, totaling about 398 tracks (Fig. 5). The LXIE site only including one slab
(YLSNHMO07318), with one trackway of two tracks (Fig. 6). Site LXII is located approximately
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950 m northwest of Site I and preserves only three isolated tracks (Fig. 7). Site LXIII is located
approximately 1250 m southeast of Site I and preserves only six isolated tracks (Fig. 8). The vast
majority of the tracks at these sites are relatively well preserved, with only a small number
(<10%) preserved in the form of scattered, structurally ambiguous shallow pits. The tracks in
poor preservation condition are not considered in this paper.

The electronic version of this article in Portable Document Format (PDF) will represent a
published work according to the International Commission on Zoological Nomenclature (ICZN),
and hence the new names contained in the electronic version are effectively published under that
Code from the electronic edition alone. This published work and the nomenclatural acts it
contains have been registered in ZooBank, the online registration system for the ICZN. The
ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
LSID for this publication is: urn:lsid:zoobank.org:pub:71833CE3-6955-4C16-BE29-

919523663 1FD. The online version of this work is archived and available from the following
digital repositories: PeerJ, PubMed Central SCIE and CLOCKSS. E

Methods

All the exposed footprints were photographed, outlined with chalk, and traced on large sheets of
transparent plastics. In addition, a representative area of well-preserved tracks was mapped
manually using a simple chalk grid. Latex molds of representative tracks were made. Detailed
tracings of selected tracks were made on transparent acetate film. Latex molds, plaster replicas,
and most tracings were reposited at China University of Geosciences, Beijing.

The whole exposed surface was photographically recorded using a remote controlled four axis
quadcopter (DJI Inspire 1: weight: 3400 g; max service ceiling above sea level: 4500 m; max
flight time: 15 min; max wind speed resistance: 10 m/s and with DJI GO App, i10S 8.0 or later)
with a 12 mega—pixel camera (model X5, with a 15 mm lens). After taking off from the ground,
the DJI Inspire 1 was controlled by remote and it provide real-time HD video through a mobile
APP (DJI GO version 3.1.23).

Digital 3D models were created of the in situ track-bearing surface following photogrammetry
methods outlined by Romilio (2020). Digital photographs were taken from multiple viewpoints
of the in situ tracks with an Apple iPhone XS Max (focal length 4.25 mm). Virtual 3D models
were created following the step-by-step process outlined by Romilio (2020), which included
adding photographs to Agisoft Metashape Professional (v.1.6.3), repositioning and centring
models using Meshlab (Cignoni et al., 2008), and visualising the surface topography using
Paraview (v. 2020.06; Ahrens et al. 2005) and CloudCompare (v. 2.10.2;
http://www.cloudcompare.org/) filters.

Maximum Length (ML), maximum width (MW), pace length (PL), stride length (SL), pace
angulation (PA) rotation of tracks (R) were measured according to the standard procedures
of Leonardi (198%™ind Lockley and Hunt (1995). For the trackways of quadrupeds, gauge
(trackway width) was quantified for pes and manus tracks using the ratio WAP/P'ML (Marty et
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al., 2010). The distance between the pes and manus imprints (MPL) was measured from the
proximal margin of the manus to the distal margin of the pes following the method of Xing et al.
(2014a). Hip heights and speed estimations of the theropod, sauropod and ornithopods
trackmakers were derived from the trackways following the methods of Alexander (1976),
Thulborn (1990), and Gonzalez Riga (2011) respectively (see below).

Results
Sauropod track
Description
The sauropods trackways at the Longxiang tracksite are mainly distributed in the site LXIU and
LXIN (Fig. 3, 5).

The site LXIU contains medium-large sized sauropod trackway, with a specimen number of
LXIU-S1, containing 48 tracks in 24 pairs of manus-pes sets (Fig. 9). The sauropod trackway at
the LXIU site is medium-large in size with a specimen number of LXIU-S1 which contains 48
tracks in 24 pairs of manus-pes sets, scale of Belvedere and Farlow (2016), with distinguishable
manus and pes tracks retaining only general outlines. These tracks can only be assigned to
previously defined ichnogenera, rather than forming a new one. Due to the tight spacing between
the manus and pes of LXIU-S1, it is more difficult to accurately recognise the boundaries
between the two, so only the general morphology of the two was taken into account when
making regular measurements. Their total length was 55.4 cm and the width was 33.2 cm for an
elliptical impression, with an L/W ratio of 1.7. Judging from some of the tracks with a relatively
clear separation between the manus and pes tracks, the pes tracks averaged 40.8 cm in length,
~74% of the total length, and 33.2 cm in width, with an L/W ratio of 1.2; the manus tracks
averaged 16.6 cm in length and 25.9 cm in width, with an L/W ratio of 0.7.

Almost all of the manus tracks lie anterior to the pes. Taking the best-preserved examples, S1-
LP8/RMS8 and S1-RP10/RM10, the manus prints are oval-shaped and the marks of the digit
II-1V and metacarpophalangeal regions are indistinct. Digit I and V are observable, but without
detail. The pes tracks are oval-shaped, and the digits I-IV are indistinct, with the smoothly
curved metatarsophalangeal region. The manus and pes impressions are rotated approximately
27° and 26° outwards from the trackway axis. The mean pace angulation of the pes is 127°.

Poor preservation results in a large variation in the size of the manus and pes tracks in
trackway S1. The heteropody (ratio of manus to pes size) ranges from 1.6 to 13.3, with a mean of
4.4, a median of 3.0, and only 21% reaches 5. The range of width of S1 pes tracks reaches 62.2%
of the width of the smallest (S1-RP5). Given the presence of the aforementioned variations, it is
more likely that the cause of the variance in track size within a trackway is as follows:

Once the hindlimb of the trackmaker has left the substrate, the previously deformed sediment
undergoes reflux to varying degrees, contingent on the dissimilarities in the nature of the local
substrate and the forces exerted on the ground during travel. The relatively elongated pes track
(e.g., S1-LP2, RP13) may have originated from the closer proximity of its centroid to that of the
relevant manus, or from the deeper depth at which the trackmaker stepped into the sediment. In
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the adjacent deformations, the deformed sediment undergoes gradual recovery at varying
velocities in response to both flow and pressure gradients. In instances where the ridge of
sediment separating the two is not sufficiently stable, the lesser deformation will tend to be filled
in first in order to reduce the surface energy of the entire depression (Cross and Hohenberg,
1993; Israelachvili, 2011). In other words, the partially capped manus track undergoes further
shrinkage and shallowing during the restoration of deformation. The degree of shrinkage may be
related to the level of overlapping of the manus-pes tracks and the initial depth of the pes.

Additionally, an isolated left pes track, designated LXIU-SI1, is present on the northernmost
side of the LXIU site (Fig. 10). This sauropod track is located on the periphery of the LXIU site
and exhibits superior preservation in comparison to S1 at the same site (level 2 in Belvedere and
Farlow, 2016). The dimensions of LXIU-SI1 were slightly larger than the mean value of the pes
track in LXIU-S1, measuring 50.1 cm in length and 38.0 cm in width. In comparison to the
tracks in LXIU-S1, LXIU-SI1 did not retain the associated manus track. However, it did retain
four more discernible digit traces (I-IV). The widths of the digit II to digit IV are comparable,
and the anteroposterior width of the digit I region is comparable to that of the remaining three
visible digits. However, the widths are approximately twice that of the others.

Site LXIN also contains a medium to large-sized sauropod trackway, LXIN-S1(Fig. 11). It
contains 16 tracks with seven manus-pes sets and two separate pes tracks. The preservation
status of the tracks is level 1 on the Belvedere and Farlow (2016) scale. The manus and pes
tracks of LXIN-S1 were separated, with the pes tracks averaging 65.3 cm in length and 51.2 cm
in width, and an L/W ratio of 1.3; the manus tracks averaging 36.6 cm in length and 48.8 cm in
width, and an L/W ratio of 0.8. Almost all the manus tracks in site LXIN are anteromedial to the
pes. In the best preserved examples S1-RP2 and RM2, the manus impressions are oval and the
marks of the digits I, II, IV and V are visible but not detailed (Fig. 12). The metacarpophalangeal
regions are distinct. The pes prints are oval and the digits I-IV are indistinct. The
metatarsophalangeal region is smoothly curved. RM3 has a well-developed digit V. RP3,
corresponding to RM3, has distinct digits I and II. These features are not seen in the other manus
impressions, probably because the substrate in this region are wetter and softer, leaving the
tracks with more detail. The manus and pes impressions are rotated approximately 61° and 43°
outwardly. The pace angulation of the pes is 108°.

Almost all LXIN-S1 tracks had distinct outer sediment rims. Including these rims, the length
of the pes track is approximately 80.1 cm with an L/W ratio of 1.2, and the length of the manus
track is 59.7 cm in length with an L/W ratio of 0.9. The area of the track, including the rims, can
be up to 1.5 to 2 times the original area for pes and 2 to 2.5 times the original area for manus.
The heteropody is 1.8, reduced to 1.5 if the rims are included.

Site LXIII preserves an isolated sauropod pes track LXIII-SI1(Fig. 13). SI1 is surrounded by
very distinct sediment displacement rims. The pes prints are oval, with a length of 34.6 cm and
an L/W ratio of 1.1. The marks of digits I-IV are indistinct and the metatarsophalangeal region is
smoothly curved. Unlike other sauropod pes tracks in the Longxiang area, the heel of SI1 is quite
narrow, with a width of about 1/2 of the digit region. In the absence of other related tracks, it is
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not possible to determine whether this character is a stable morphological feature or an
ectomorphic variation.

Comparison and discussion

The pes and manus morphology and trackway configurations of the LXIU-S1 and LXIN-S1
quadruped trackways are typical of sauropods (Lockley, 1999, 2001; Lockley and Hunt, 1995).
Most sauropod trackways in China are wide- (or medium-) gauge and are, therefore, referred to
the ichnogenus Brontopodus (Lockley et al., 2002).

The average ratio of the WAP (the width of the angulation pattern of the pes) to the length of
the pes of the LXIU-S1 and LXIN-S1 is both 1.0. A value of 1.0 separates narrow-gauge from
medium-gauge trackways, whereas the value 1.2 is arbitrarily fixed to distinguish between
medium-gauge and wide gauge trackways (Marty 2008). Therefore, LXIU-S1 and LXIN-S1 are
medium-gauge trackways.

The preservation of LXIU-S1 is somewhat limited. For instance, one of its principal
identifying characteristics, heteropody, is challenging to ascertain a reliable value for. With
regard to the distribution of data and morphology, the mean heteropody is 1.8, and the interval 2-
3 encompasses eight tracks, representing one-third of the total number of tracks. This may be
considered a relatively stable feature, with the heteropody of LXIU-S1 falling between 1:2 and
1:3. This is slightly lower than the 1:1.8 observed in LXIN-S1. Both LXIU-S1 and LXIN-S1
tracks are characterised by outer rotation, but the latter is significantly higher than the former.
All of them are lesser heteropody than in Brontopogussebirdi (1:3) and the narrow-gauge
ichnotaxa Breviparopus (1:3.6) or ParaBrontopoduEA or 1:5) (Lockley et al., 1994), but
closer to both Polyonyx gomesi (Santos et al., 2009) and Gyeongsangsauropus pentadactylus
with a low heteropody of 1:2 (Kim and Lockley, 2012; Xing et al., 2024a). Polyonyx or
Polyonyx-like trackways are wide-gauge, with pes prints bearing four claw marks and
asymmetric manus prints with a large digit I trace (Santos et al., 2009). These are all
characteristics not seen in any of the LXIN-S1 sauropod tracks. However, as noted above the
similarities to Gyeongsangsauropus pentadactylus for LXIN-S1 are much greater.

LXIU-S1, however, indeed shows some similar features to Brontopodus-type trackways,
including: 1) wide/ medium -gauge; 2) pes tracks that are longer than wide, and large and
outwardly directed; 3) U-shaped / ovalmsgnus traces; and 4) a high degree (1:3 in Brontopodus
birdi; 1:1.86 in Brontopodus plagnensﬁf heteropody (Farlow et al., 1989; Lockley et al., 1994;
Santos et al., 2009; Mazin et al., 2017). Due to the limitations of preservation, we tend to assign
LXIU-S1 to the Brontopodus -type trackway.

In the LXIN-S1 trackways, the most typical features are: 1) medium-gauge; 2) low degree of
heteropody (1: 1.8), 3) manus prints rotated approximately 61° outward from the trackway axis,
more than 1.4 times the outward angle of the pes prints; 4) individual pes prints with identifiable
digit I-II traces; and 5) the distance between the posterior margin of the manus and the anterior
margin of the pes (MPL) is 0.6—0.7 times the length of the pes prints. In comparison, the
MPL/P’ML in the Gyeongsangsauropus pentadactylus type trackway is ~0.6 (based on Kim and
Lockley, 2012: Fig. 5), 0.3 in the type of Brontopodus birdi (based on Kim and Lockley, 2012:
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Fig. 6) and 0.8-1.0 in the type of cf. G. pentadactylus (Xing et al., 2021a)

The diagnosis for Gyeongsangsauropus pentadactylus is the following (emended after Kim
and Lockley, 2012, Xing et al., 2024a): Medium-gauge sauropod trackway of small to medium-
size (pes print length about 40-50 cm), characterized by wide pentadactyl manus tracks, with
very wide blunt manus digits. Manus tracks strongly rotated outwards from the midline of
trackway (about 30°—60° in holotype, 85°—~125° in another trackway). Pentadactyl pes tracks
with outwardly rotated digit claws I-II1, also rotated outward (about 30°-50°). Manus is wider
than long and pes is longer than wide. Moderate heteropody with manus-pes area ratio about 1:
2. Among these features, LXIN-S1 is similar to Gyeongsangsauropus pentadactylus in terms of
gauge, size, manus rotated outwards, and heteropody, but the important features, the morphology
of each digit, cannot be compared due to preservation reasons. We temporarily transfer LXIN-S1
to cf. Gyeongsangsauropus.

The question of whether large angles or significant rotation of manus prints is a valid
diagnostic feature needs to be treated with caution, as there are quite a few factors that influence
this feature. Lallensack et al. (2019) analyzed sauropod trackways from the global record and
found that strong lateral or postero-lateral rotation (supination) of the manus is restricted to
trackways of small- and medium-sized individuals (pedal impression length <60 cm), this feature
is also correlated with low speed and narrow gauge. Lallensack et al. (2019) also conclude that
pronation occurs when the forelimb is actively contributing to the progression, at higher speed or
when performing a wider gauge with the center of mass (COM) shifted anteriorly. There may
also be relationships between the rotation of the pes and manus in trackways (Xing et al., 2021b).
Speed Estimation
For sauropods, Alexander (1976) first suggested that hip height be estimated as h=4 X foot
length, whereas, later, Thulborn (1990) estimated hip height as h=5.9 % foot length. Gonzalez
Riga (2011) estimated hip height as h=4.586 x foot length. Relative stride length (SL/h) may be
used to determine whether an animal was walking (SL/h < 2.0), trotting (2 < SL/h <2.9), or
running (SL/h > 2.9) (Alexander, 1976; Thulborn, 1990). Based on the formula of Thulborn and
Gonzalez Riga, the SL/h ratios of the LXIU-S1 and LXIN-S1 sauropod trackway are between
0.67-0.87, 0.49—-0.63, and accordingly suggest walking. Using the equation to estimate speed
from trackways (Alexander, 1976), the locomotion speed of the trackmaker of LXIU-S1 is
between 2.27-3.02 km/h, LXIN-S1 is estimated as 1.66—2.23 km/h, and are consistent with most
Chinese Brontopodus-type trackways (Xing et al., 2016a, b), for which speed estimates are
always low.

It is notable that the relative stride length values of LXIU-S1 are highly consistent with those
of BTY-S1 from the Tuchengzi Formation (across the J-K boundary) in western Liaoning (Xing
et al., 2021c¢). In other words, the LXIU-S1 and LXIN-S1 specimens demonstrate that the
outward rotation of the manus and pes tracks, as well as the degree of MPL, can exhibit notable
differences in the gait during low-velocity movements.

Trackmaker and the analogy of sauropod quadruped gaits
The gleno-acetabular distance (GAD) has been proposed as an independent trackway parameter
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for estimating the body size of the sauropod trackmaker (trunk length) by Lallensack et al.
(2019). This method is adapted for estimating trunk length when the trackmaker is in a stable
gait (limb phase) (Lallensack et al., 2022), without influenced by the limb lengths in the direction
of trackway orientation. Furthermore, the actual gait of sauropods has been re-evaluated in order
to determine which pair of manus and pes tracks should be selected for GAD measurement
(Lallensack and Falkingham, 2022; Stevens et al., 2022).

Based on the above study, we selected only the limb phase of 25% and 50% as two plausible
gait end members to measure the GAD of the sauropod trackway at sites LXIU and LXIN.
Among them, LXIU-S1 has adjacent manus and pes tracks, with strong reduction of the manus
track by deformation. Therefore, for LXIU-S1, we only use the more clearly-delimited segment
from LXIU-S1-RP9/RM9 to LP13/LM13 in the southwest for estimation. Since the pes tracks of
LXIU-S1 cover the correlative manus track, the measured value of this trackway is theoretically
smaller than the actual value. It should also be noted that in LXIU-S1 there is a marked change
in orientation between RP11 and LP11, so in this case we used two measurement methods for the
25% limb phase of LXIU-S1: 1) using RP11 as the boundary, dividing LXIU-S1 into two
segments and considering the orientation in each part of the trackway as constant; 2) using the
four adjacent manus-pes sets as a cluster to define the orientation of the posterior stride.

For LXIU-S1, the interval of its GAD was 1-1.63 m. When estimating the midline of the track
using the different methods, the mean of the maximum estimates were all about 1.53 m (limb
phase=25%), with a variance of about 0.0080, and the mean of the minimum estimates were all
about 1.09 m (limb phase=50%), with a variance of about 0.0035. For the LXIN-S1 trackmaker,
the GAD interval was 1.75-3.19 m. The mean of the maximum value was 3.14 m with a variance
of about 0.0078- 0.0080, and the mean of the minimum value was 1.83 m with a variance of
about 0.0060. The greater variance in the LXIN-S1 data is due to: 1) apparent turning point; 2)
increased stride length (RP12/LP13).

The wide/medium gauge of the Brontopodus/Gyeongsangsauropus-type trackways, especially
the wide gauged trackways, are commonly attribute to titanosaurian sauropods by their
compulsive abducent femur posture (Wilson and Carrano, 1999; Lockley et al., 2002; Henderson,
2006; Mannion and Upchurch, 2010). This posture is co-occurred with the ante-displacement
with the COM (Henderson, 2006), and is hypothesised to be the consequence of adaptation to
gigantism, as opposed to being merely phylogenetic-related in Macronaria (Blazquez et al., 2024
(preprint)). Furthermore, the discovery of early medium-sized wide-gauge trackways in the
Lower-Middle Jurassic can be attributed to the basal Eusauropoda (Xing et al., 2016). However,
it is also probable that these trackways could be the consequence of intense orientation-turning in
their path (medium-gauge instead).

Both Lallensack and Falkingham (2022) and Stevens et al. (2022) demonstrate a tendency for
sauropods to utilise a symmetrical, diagonal-supported walking gait. The diagonal-supporting
gait is similar to the wide-gauge, classically hypothesised to be correlated with demand for
stability maintaining of gigantic trackmakers (Henderson, 2006).

The hippopotamus is the most typical of the extant mammals that can use a torting gait
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(Hildebrand, 1989). They differ from other extant large-sized quadrupeds, and is the only known
compulsory diagonal-supporting quadruped (e.g. elephants and giraffes; see Fig. 1 in Lallensack
and Falkingham, 2022). With the exception of hippos, rather than graviportal elephants, which
are more commonly analogised with sauropods, rhinos are also capable of utilising this gait at
low-speed running (Henderson, 2006; Hutchinson, 2021; Lallensack and Falkingham, 2022). The
body size, body mass and total track area of rhinoceroses are comparable to that of
hippopotamuses (the track size estimation is from Van den Heever et al., 2024), yet the overall
gait performance differs markedly (Hutchinson, 2021).

We hypothesise that this extreme obligate gait in hippopotamus terrestrial locomotion is likely
to be related to its significantly shorter limbs relative to body mass (or possibly trunk length), in
addition to the gravitational constraints it faces in common with other giant mammals
(Hutchinson, 2021). First, the sub-ellipsoidal, elongated trunk is associated with the presence of
its amphibius-adapted habit, with a specialisation logic approximating Sauropterygia (Endo et al,
2019; Gutarra et al., 2023). For hippos and rhinos, which have similar other body parameters, the
proportion of trunk length relative to the legs clearly distinguishes the two, and this particular
proportion for hippos is also rare in the full range of extant large-sized terrestrial quadrupeds
(Christiansen, 1999). Second, given that modern giant mammals all use a narrow-gauge, the
simultaneous usage of a diagonal-supporting gait during walking may limit the location of the
pes drop point in the presence of a large limb length. To illustrate, narrow-gauged trackways for
extant mammal trackmakers have been observed to avoid collisions between the front and hind
limbs during walking. This has led to the hypothesis that terrestrial mammal trackmakers with
longer hindlimbs are more likely to choose a lateral-supporting gait to ensure walking efficiency.
However, the need to maintain trunk stability is not as pronounced in extant mammalian clades
(Vermeij, 2016), as it is not as extreme as in the case of titanosaurian sauropods, which have
undergone a extreme process of gigantism (the phylogenetic relationship of paraceratheriids to
extant rhinos see Bai et al., 2020).

It can be reasonably deduced that the underlying causes of the disparate tortting gaits observed
in sauropods and certain other gigantic mammals are likely to be inconsistent. Sauropods exhibit
a distinctive array of intra-clade body plan variations with regard to their mechanical locomotion,
when compared to the extant gigantic mammals. For example, large mammals exhibit
considerable variation in their relative trunk length (GAD-associated) in comparison to limb
length (Hutchinson, 2021), as previously discussed. Conversely, the typical sauropod
trackmakers display a notable discrepancy in the relative length of their forelimb and hindlimb
along with the antedisplacement of COM (e.g. see the reconstructions of macronarian
Brachiosaurus and diplodocoids Diplodocus by Henderson, 2006). It is similarly conceivable that
these factors facilitated the advent of the hypothetical specialised gaits utilised by the makers of
wide-gauged trackways via the disparate COM and hindlimb postural adaptations. However, this
hypothesis requires further investigation in the future. However, since the GAD's estimation of
trunk size is independent of the functional reasons for the generation of torting gait, it does not
affect the possibility of using the aforementioned approach to constrain the trackmaker's trunk
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size.

Besides, handful of questionable trackways of large Paleocene-Eocene mammals are likelty
wide-gauged as sauropods (e.g., Henderson, 2015; Wroblewski and Gulas-Wroblewski, 2021).
Wroblewski and Gulas-Wroblewski (2021) argue that some wide-gauge mammal trackways are
possible parallel pairs of narrow-gauge ones. However, the relative size of their tracks suggests
that the body width of their makers was probably wider than the width of the inner part of their
trackways, and also that if they are treated as parallel trackways, their gait angulation does not
seem to match the non-cursorial morphology of their trackmaker's autopods. Therefore, we
suggest that the wide-gauged trackways of early mammals should be further considered together
with sauropods.

Theropod tracks

The theropod tracks at Longxiang Site are distributed in the three main layers of LXI and LXIII
(Fig. 3-5, 8), and can be divided into at least five different forms, including Grallator
morphotype, Eubrontes morphotype, Tridentigerpes morphotype, and two different morphotypes
of didactyl tracks, including one possible large didactyl track. Given the many Given that many
of the scattered tracks are not well preserved (e.g. LXIN-TI17 to TI23), only the best preserved
tracks were selected for measurement. The rest of the tracks can be found in the distribution map.

Grallator morphotype

Typical tracks of Grallator morphotype is only shown in LXIU-TI7, an isolated footprint at the
LXIU site (Fig. 10). LXIU-TI7 is 12.9 cm in length, with a length/width ratio of 1.8. The
mesaxony of TI7 is distinct (1.08), and has relatively wide divarication angles between digits I1
and IV (66°). The metatarsophalangeal pad trace of digit IV is round and blunt, positioned near
the axis of digit III. Each digit impression ends in a sharp claw mark, while no clear phalangeal
pads can be observed.

LXIU-TI7 shows typical Grallator morphotype features in elongate tridactyl mesaxonic
morphology, similar to Grallator type tracks reported from China (Lockley et al., 2013; Xing et
al., 2024b). However, it is weaker in length/width ratio and mesaxony, and higher in divarication
of the digits II-IV than reported for the typical North American Grallator (2.64 and 1.22 in
mesaxony, see Lockley, 2009), and seems to be in accordance to the trait of Chinese Grallator-
type tracks (Xing et al., 2024b). Xing et al. (2024b) believed that a large number of Grallator
morphotypes from the Late Mesozoic, especially which in Early Cretaceous of China can be
classified as G. ssatoi. G. ssatoi is the first valid species of Grallator in China (Yabe et al.,
1940), which is distinguished from North American Grallator by its lower length/width ratio and
mesaxony (1.6 and 0.8), as well as higher divarication angle (~ 57°) (Xing et al. 2024b).

Eubrontes morphotype

Description. Tracks belongs to Eubrontes morphotype including three trackways and 13 isolated
footprints are from the LXIN site, and four isolated tracks in LXIII (Fig. 5, 8).
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Three trackways from the LXIN site including LXIN-T1, T3, and T5 (Fig. 14-16). All three
trackways preserve three continuous footprints, of which TS5 is the best preserved, with the
footprint preservation state being level 2 on the scale of Belvedere and Farlow (2016). The digit
imprints are quite clear and sharp, and claw marks and some digit pads can be identified.
Trackway LXIN-T5 shows functionally tridactyl, digitigrade and mesaxonic pes imprints that
have an average length of 32.4 cm and length/width ratio of 1.2. Digit II is the shortest and digit
IIT and digit IV are similar lengths. There is a wide divarication angle (59°) between digit II and
digit IV. Each digit impression ends in a sharp claw mark. The tracks are rotated slightly
outwards towards the axis of the trackway. The average pace angulation is 127°. The mean
mesaxony of LXIN-T5 is 0.49. In the best-preserved T5-R1, it can be observed that digit II has
two digit pads. The metatarsophalangeal pads of digit II are fairly well-developed, with a size
almost as large as the phalangeal pad of digit I[V. However, this feature is not preserved in the
other two footprints in the trackway. The metatarsophalangeal area of L1 does not have a two-
part demarcation, it is situated in alignment with the track axis. R2 does not preserve the heel, or
the heel is quite unclear, and three separate digits are preserved.

LXIN-T1 contains three consecutive tracks with an average length of 31.5 cm and a
length/width ratio of 1.2 (Fig. 14). Distinct external morphological changes can be found in
trackway T1-L1 (Fig. 17), with the curved impression of number IV, possibly signalling its entry
and exit. Digits II to IV are sandwiched between the semicircular heel track and have an overall
shuttlecock-shape, with a possible large, rounded trace of digit I proximally. The morphologies
of T1-R1 and L2 are comparatively conventional, with a mean mesaxony of 0.54, which is
overall quite close to the LXIN-TS5 traces (Fig. 16). LXIN-T3-L1 and L2 only preserve digit III
and IV, while the former is poorly preserved in R1.The overall L/W ratio of T3 is 1.3, similar to
that of L1 and T5 (Fig. 15).

Of the 17 isolated Eubrontes-type tracks from LXIN, those similar to the well-preserved
LXIN-T5 include T12, TI3 and TI12 (Fig. 17), which range in length from 26.4 cm to 36.8 cm,
with mesaxony greater than 0.45 and L/W ratios between 1.1 and 1.6. Distinct external
morphological changes can be found in isolated tracks TI1 and TIS, reflected in a pronounced
curvature of the digit or a deformity of the heel. There was an overlap between T16 and TI17, with
the former destroying the track of the latter.

The LXIII site preserves four tridactyl theropod tracks (Fig. 13), of which LXIII-TI1 shows
functionally tridactyl, digitigrade and mesaxonic pes imprint that have an average length of 28.9
cm and length/width ratio of 1.0. Digit II is the shortest, and digit III is shorter than digit IV.
Digit I1I accounts for 64% of the total length of the footprint. There is a wide divarication angle
(76°) between digit II and digit IV. The divarication angle between digits II and III (37°) is
almost equal to the one between digits III and IV (39°). Each digit impression ends in a sharp
claw mark. The mean mesaxony of LXIII-TI1 is 0.51.

The other three tridactyl theropod footprints from site LXIII are all less than 25 cm in length.
TI2 lacks the heel, TI4 is 15.8 cm in length, has a length/width ratio of 1.1, and a mesaxony of
0.53, and the overall morphology is similar to the EFubrontes morphotype.
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Comparison and discussion. The average mesaxony of LXIN-T1, and T5 is about 0.54 and 0.49
(Fig. 14, 15), which is typical for the morphofamily Eubrontidae (Lull, 1953). LXIN-T5-R1 track
shows convergent traits with type Eubrontes tracks, such as the presence of a distinct
metatarsophalangeal pad trace posterior to digit II. This characteristic is common in Eubrontes
tracks, including type Eubrontes AC 151 (Olsen et al. 1998), This feature alsasdistinguishes type
Eubrontes from most other Eubrontes, from common ichnogenus Kayentap the Early—
Middle Jurassic (Lockley et al. 2011; Xing et al. 2020), and from such Cretaceous ichnogenera
as Asianopodus.

Based on the pes length/width ratio of 1.2, medium mesaxony of 0.49, and relatively small
divarication angle (about 59°) between digit II and IV. Digit III is 70% of the total pes length.
Digit II is 76% of the length of digit III. The metatarsophalangeal pads of digit II are fairly well
developed, with a size almost as large as the phalangeal pad of digit IV. LXIN-T1 is relatively
similar to Eubrontes nobitai (Xing et al. 2021d), but the mesaxony of LXIN-T5 was significantly
higher than that of E. nobitai which was 0.37. Xing et al. (2021d) reviewed most of the records
of Eubrontes in China. The Lower Cretaceous of China has yielded a considerable record of
theropod tracks of the generalized Grallator- Eubrontes plex pe, which are typical in
Jurassic formations of North America and China (Lockley et #2013, Xing et al., 2021d). This
has extended the stratigraphic and palaeobiogeographic range of these generalized theropod
trackmakers into Cretaceous East Asia (Xing et al., 2018a). The records of LXIN-T5 extend this
assembly to the early Late Cretaceous.

Speed estimates. For large theropods, Thulborn (1990) suggested that hip height h=4.9 x foot
length. The stride length/hip height ratios of the LXIN-T1 and T35 trackway are 1.34, 1.14,
respectively, indicating a trotting state. The speed of these trackmakers is 5.69 and 4.39 km/h
respectively. The body length of the LXIN-T1 and T5 track maker is approximately 4_1-4.2 m,
further calculated using the average hip height to body length ratio of 1:2.63 (Xing et 009c¢).

Tridentigerpes morphotype

Theropoda Marsh 188 E

Tridentigerpes Xing et%® 2021e

Type ichnospecies 7. huashibanleei Xing et 520216

Tridentigerpes longyanensis ichnosp. nov.
Etymology. Ichnospecies name after the locality of the fossil site in Longyan City, Fujian
Province.
Holotype. A complete natural mold of four footprint trackway was catalogued as LXIN-T2. The
resin mold is stored in the Yingliang Stone Natural History Museum, Nan’an, Fujian, China. E
Type horizon and locality. Longxiang tracksite IN (LXIN), Shaxian Formation, Longyan City,
Fujian Province, China.
Referred materials. Trackways LXIU-T2, LXID-T1and T3, LXIN-T4 from Longxiang LI
tracksites.
Diagnosis. A relatively medium-sized tridactyl footprint with pes length/width ratio of 0.8, weak
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mesaxony of 0.35, and large divarication angle (about 91°) between digit II and IV. Digit III is
70% of the total pes length. The posterior margin of footprints has a short area connected to form
a small heel. Step length is about 5.4 x footprint length, and the mean pace angulation is high
(about 166°). T. longyanensis is different from the type ichnospecies 7. huashibanleei by (1)
narrower digit [I-IV divarication, (2) stronger mesaxony, and (3) higher length/with ratio; and,
different from T. pinuelai, by (1) noticeably strong digits, and (2) smaller digit [I-IV divarication.
Description. The Tridentigerpes morphotype of Longxiang can be clearly divided into two
morphotypes. morphotype A includes LXID-T3, LXIN-T2 and T4 (Fig. 4, 5), and morphotype B
includes LXIU-T2, LXID-T1 (Fig. 3, 4).

Morphotype A. The tracks in morphotype A, including LXID-T3, LXIN-T2 (holotype) and T4,
characterized by their large divarication angles between digit Il and IV of ~90° and the primarily
absence of metatarsophalangeal pads. These resulting in exceptionally low L/W ratio of ~0.8 to
0.9, and the concomitant weak mean mesaxony of 0.3 to 0.4 (Fig. 18 —20).

The LXIN-T2 contains four consecutive tracks, of which R1 and L2 are better preserved (Fig.
18). The average length of these tracks is 23.7 cm, with an average width of 28.3 cm. The L/'W
ratios of LXIN-T2 tracks present a mean value of 0.8, with particularly wide digit divergence
angles between digits Il and IV (mean 91°, range 82°-97°). Three of these tracks have been
preserved as tridactyl, and the II-IIT angles of all three tracks are smaller than those of III-IV.
The mean mesaxony of LXIN-T2 is 0.35, with digit III occupying between 62% and 74% of the
length of the track (N=3). The tracks exhibit a rotation of approximately -15° with respect to the
trackway axis.

T2-R1 is in the most well-preserved among the LXIN-T2 tracks (Fig. 17), yet no phalangeal
pads could be identified. All the digits of R1 are sub-fusiform, with deep claw marks, and
occupy 62%-74% of the length of the track (N=3). The digit II and III traces of R1 are notably
wider than those of digit IV, which are narrow and connected to the posterior margin at a small
heel.

The overall morphology of LXIN-T4 is comparable to that of LXIN-T2 (Fig. 19). The LXIN-
T4 also comprises four consecutive tracks, with a mean length of 24.3 cm and a mean width of
28.7 cm and mean L/W ratio of 0.9. The principal distinction between the two is the presence of
a distinctive, very short heel in the posterior margin of the tracks. In LXIN-T4-R1, which lacks
the posterior margin of the track, the digit III occupies 80% of the length of the track.

Of the other 17 isolated tracks from LXIN, TI14 and TI15 also lack heel traces (Fig. 17), or
the heel is rather indistinct as in T4-R1.

The LXID-T3 contains three continuous and poorly preserved tridactyl tracks, which
demonstrate the possible heel state of type B (Fig. 20). The T3-R2 track in this trackway has
digits I to IV, occurs over a track length of 15.4 cm and a width of 26.4 cm, resulting in a L/'W
ratio of 0.6. The mesaxony of R2 is 0.26, and the divarication angle between digit Il and IV is
approximately 97°. Additionally, R2 exhibits a distinct sedimentary ridge between digit III and
IV. In T3-R1 and L1, the large metatarsophalangeal region is well-preserved, displaying a
notable degree of development and bearing a resemblance to the tracks of large ornithopods
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559 rather than those of theropods. L1 is in a superior state of preservation, and it can be observed
560 that a distinct median line is present in each digit trace, resulting in a cross-section that is V-

561 shaped. This suggests that the substrate was highly fluid. As the sediment becomes more

562 hydrated, the likelihood of the trackmakers leaving impressions of the metatarsal increases,

563 particularly in birds or bird-footed dinosaurs, such as the extant helmeted guineafowl (Numida
564 meleagris; see Gatesy et al., 1999).

565 Morphotype B. The tracks in Morphotype B, including LXIU-T2 and LXID-T1, are

566 characterized by their large divarication angles of ~100°—110° and the primarily absence of

567 metatarsophalangeal region. These resulting in exceptionally low L/W ratio of ~0.5 to 0.6, and
568 the concomitant weak mean mesaxony of <0.3 (Fig. 21, 22).

569 The LXIU-T2 trackway is representative of the type B from the Longxiang site, comprising
570 seven consecutive tridactyl tracks (Fig. 21). The preservation condition of the LXIU-T2 is

571 classified as level 2 on the scale proposed by Belvedere and Farlow (2016). The mean length of
572 the T2 tracks is 14.7 cm, with a mean width of 29.3 cm. The mean L/W ratio is 0.5, and

573 mesaxony is 0.29. The digit traces are clearly discernible and distinct, and the claw marks are
574 readily apparent. The length of digit III occupies between 87% and 92% of the length of the track,
575 as observed in three specimens. All the tracks exhibit markedly distinct divarication angles

576 between digits II and IV, with a mean value of 107° and a range of 100° to 114°. The trackway is
577 notably broad, with a pace angulation of 133° and a stride length of approximately 6.7 times the
578 track length. The tracks exhibit a rotation of approximately 9° (between -9° and 8°) from the
579 trackway axis.

580 LXIU-T2-R1 is the most well-preserved of the LXIU-T2 tracks (Fig. 23). However, no

581 phalangeal pads can be identified. The trace of digit III is notably broader in comparison to the
582 traces of digits II and IV, and the posterior margin of the footprint is not distinctly delineated.
583 The digit III of R2 is distinctly conical in shape, exhibiting the sharpest claw marks; digit II is
584 subfusiform with the deepest claw marks; digit IV is the smallest and oval in shape, with claw
585 marks only visible at the anterior margin. Comparatively, L1, L2, and R3 in T2 only preserved
586 digit II and III, and digit II of them show claw marks tangent to the median axis of the digit, as
587 an ectomorphological feature as the lifting of digit.

588 Morphologically, almost all the features and dimensions of track LXID-T1 match those of
589 LXIU-T2 (Fig. 22). LXID-T1 consists of seven tridactyl footprints with an average length of 14
590 cm and an average width of 30.7 cm. This gives an average L/W ratio of 0.5. LXID-T1 appears
591 to have a longer stride length, which is approximately 10.3 times the length of the track. The
592 tracks have an outward rotation of approximately 28° (with a range of -45° to 24°) from the track
593 axis.

594 Comparison and disﬂion. Xing et al. (2021e) provided diagnostic features of Tridentigerpes
595 including: weakly mesaxonic tridactyl tracks with unusually wide digit divarication, averaging
596 from ~107°~135° in three samples, and short digit III giving pes length width ratios of ~0.5—
597  0.80. Trackway narrow with step typically 4 time track length. Morphotype A and B generally
598 meet the above characteristics. The detailed characteristics of Morphotype B are almost
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completely consistent with Tridentigerpes huashibanleei, including length/width ratios (both are
0.5), wide digit divarication angles (both mean 107°), the mesaxony (both are 0.29), the
difference is that Morphotype B tracks seem to have a faster speed, step about 6.7 times footprint
length, different from step 4 time track length of 7. huashibanleei. In addition, 7. huashibanleei
tracks are rotated approximately 25° inward from the trackway axis, Morphotype B tracks
rotated inward and outward with small angles. Based on the above comparison, we classified
Morphotype B tracks as 7. huashibanleei ichnospecies.

Morphotype A tracks differ from 7. huashibanleei and Morphotype B tracks in that they have
higher length/width ratios (mean 0.8-0.9), a smaller heel, so that the length of digit III occupies
less of the total length of the footprint, 87%-92% in Morphotype B tracks vs. 62%—74% in
Morphotype A tracks, lower digit divarication angles (mean 91°), and higher mesaxony (mean
0.35). Morphotype A tracks have similar length/width ratios (mean 0.79 in T. pinuelai), a step
about 4.5 x footprint length, and differences in that they have narrow digit traces, higher digit
divarication angles (mean 113.5° in T. pinuelai), and possibly very short hallux traces in 7.
pinuelai.

Speed estimates. Thulborn (1990) put forth the proposition that hip height (h) =4.5xtrack length
(F1) for small theropods (track length <25 cm). From this, it is inferred that the relative stride
length (SL/h) of the LXIU-T2, LXID-T1, LXID-T3, LXIN-T2 and LXIN-T4 is 2.72 (trotting),
4.44 (running), 1.82 (walking), 2.32 (trotting), and 1.9 (walking), with estimated speeds of 12.14,
26.93, 7.86, 11.92, and 8.58 km/h respectively. The walking trackway LXIN-T2 are similar in
walking gait to trackway HSB-T2 of T. huashibanleei (Fig. 17; Xing et al., 2021e). Given the
considerable density of tracks at the LXIN site, it seems reasonable to suggest that subsequent
trackmakers slowed down when confronted with the rugged substrate in the bustling area. It is
important to note, however, the co-existence of the absence of the heel traces, low divarication
angle and the low L/W ratio is correlated with an incomplete estimation of foot length, by which
the estimated velocity would be relatively large when using the aforementioned methods.
Trackmaker and formation of Tridentigerpes. Tridentigerpes, especially T. pinuelai, has been
hypothesised a bird affinity by its slenderness of digit traces and prominent larger divarication
angle than non-avian theropods (Xing et al., 2021e), and the similar morphology can be seen in
the tracks of extant shorebirds (Lockley, 2009; Brown et al., 2021). However, the morphology of
T. huashibanleei can not be found in typical extant bird tracks for the synchronal absence of heel
trace and proximal part of the digits, and the insignificant mesaxony (Brown et al., 2021), while
it is evident that the slight mesaxony is discernible in at least a heel-included few moa tracks
(Lockley et al., 2017; Fleury et al., 2024). It is also possible that the previously interpreted digits
IT and IV of R2 and L1 may be identified as outward-rotated claw marks if the previously
uninterpreted post-digits portion of HSB-T2-R1, as represented by a line drawing, is included in
the scope of the footprint. The outward rotation of the anterior claw is a common occurrence in
tracks with long, pointed claw marks, as exemplified by those of saurischians (e.g., the well-
preserved Brontopus and the holotype of Eubrontes nobitai (Xing et al., 2021d)). If this is indeed
the case, the actual divarication angle of the specimens referred to as 7. huashibanleei is lower
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than has been previously described. In combination with the relatively short digit III, this
ichnospecies may rather indicate an ornithischian affinity (Lallensack et al., 2019).

Additionally, the potential for posterior kick-off signs observed in HSB-T2-R1 (McAllister
and Kirby, 1998) and the presence of short, pointed tracks with extremely low mesaxony, which
can be seen in buoyancy-related punting tracks (Romilio et al., 2013; Navarro-Lorbés et al.,
2023), should be considered. Based on the above, it may be hypothesized that the morphology
resembling 7. huashibanleei may also be formed in a swimming-like state with the pes in a
distinctly oblique position to the ground. The specific genesis of this state is not ung and may
be behavioural (McAllister and Kirby, 1998) or by substrate condition (Milan, 20054*Both of
these can be manifested as the distal end of digit IIl moving relatively proximally in the plane.
With regard to the large divarication angle, it may be a consequence of the oblique intersection
with the ground during footfall (Milan, 2006). However, in purely substrate-related speculation,
the large divarication angle is only observed on the upper surface of muddy substrate that is
sufficiently wet and soft to retain plastic deformation at the track (Milan, 2006). The presence or
absence of heel traces on the upper surface of the substrate is indicative of the degree of
weathering. In lower surfaces where heel traces are absent, the divarication angle is not
significantly larger than that of conventional tracks (Falkingham and Gatesy, 2014; Turner et al.,
2017).

In conclusion, this suggests that the morphology of 7. huashibanleei may represent either a
type of ornithischinan? bipedal trackmaker with a notably shorter digit III, or that there may be a
behavioural genesis that approximates swimming, or a combination of the two. Further
speculation is contingent upon further observation of the holotype. E

Didactyl tracks

The LXIU-T1 and T3 trackways in the LXIU site are didactyl trackways, which are typically
interpreted as deinonychosaurian trackways (Fig. 24, 25). The average length of LXIU-T1 is
approximately 11 cm, and it can be classified within the ichnogenus Velociraptorichnus (Fig. 24;
Niu and Xing, 2023). The T3 tracks are markedly larger, measuring ~36 cm in length. They have
been classified as a new ichnotaxon, Fujianipus, and represent the largest troodontid
deinonychosaurian track documented to date (Fig. 25; Xing et al., 2024c). These two trackways
will not be discussed further in this paper.

Possible large didactyl tracks

Description and comparison. In the site LXID, the trackway LXID-T2 comprises four
consecutive tracks and exhibits a distinctive feature among theropod tracks (Fig. 26). The depth
of the T2 tracks is notably shallower than that of the majority of tracks in the same layer. This
may indicate that the T2 tracks are likely to be undertracks, yet they still exhibit some discernible
morphological and trackway characteristics. The trackway LXID-T2 comprises functionally
didactyl, digitigrade pes tracks. The average length of the tracks is 53.4 cm, with an L/W ratio of
3.8. The trace of digit II is either absent or present as an oval imprint proximally. In contrast, the
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traces of digits III and IV are essentially parallel (with a divarication angle of approximately 15°),
and their lengths are similar, resulting in low mesaxony. The anterior margin of each digit trace
exhibits sharp claw marks. The tracks exhibit minimal rotation from the trackway axis, with an
average pace angulation of 179°.

In the most well-preserved track in the LXID-T2, T2-R1, can be observed that digit III has
four phalangeal pads, or three phalangeal pads and one rounded clow mark. The length of digit
III is 51.9 cm, while which of digit IV measures 52.1 cm. The proximal ends of digits III and IV
exhibit a minimal metatarsophalangeal area. The L1 only preserves the impressions of digit I11
and digit IV, which have a length of 50.8 and 53.6 cm, respectively. It is possible that the R2
may preserve the impression of digit II, which is ~17.6 cm in length, and the impressions of digit
IIT and digit IV are ~50.3 and 45.5 cm in length, respectively. The digit II trace is isolated, with
the digit II depression situated posteromedial to the margin of digit III. The L2 has only one
overall oval impression.

LXID-T2 is comparable to typical deinonychosaur tracks, which are currently classified into
six ichnogenera (Velociraptorichnus, Dromaeopodus, Dromaeosauripus, Menglongipus,
Sarmientichnus and Fujianipus) (Xing et al., 2024c). The length of 53.4 cm in LXID-T2 is
undoubtedly significantly larger than all current ichnogenera and unclassified species. In a recent
review, the largest and most conclusive didactyl track was identified as Fujianipus (36.4 cm),
while the probable isolated didactyl troodontid track from Nanxiong (Guangdong, China) was
found to be 39 cm in length. It is noteworthy that both the Fujianipus and Nanxiong tracks
exhibit clear troodontid affinities. In contrast, the largest record of typical dromaeosaur-type
tracks is that of cf. Dromaeopodus (29.8 cm) from the Mid Cretaceous, Gulin (Sichuan, China;
Xing et al., 2016). The R1 and L1 tracks of LXID-T2 exhibit morphological similarities to digit-
only Dromaeosauripus hamanensis (Kim et al., 2008) and D. jinjuensis from Korea (Kim et al.,
2012), with strong, elongated, parallel, and almost equal lengths of digit III and IV.

The insufficiency in the details of LXID-T2 is somewhat reminiscent of specially preserved
tracks, such as thepossibility as flattened tracks of large cf. Dromaeopodus (Xing et al., 2013;
Lockley and XiEOIS). It is also possible that the vague margins indicate that the tracks may be
undertracks. Furthermore, while the LXID-T2 tracks lack sufficient detail to provide definitive
morphological traits, their large size is also reminiscent of bipedal ornithopod tracks from the
same site. Nevertheless, the LXID-O1 tracks, which are approximately 40 cm in length, do not
exhibit the parallel and nearly equal lengths of the digits observed in the LXID-T2 tracks; the
almost straight trackway of LXID-T2 tracks (pace angulation=179°) is also larger than that of the
aforementioned LXID-O1 (pace angulation=161°), which is more akin to a theropod-type
trackway.

It is notable that, though lacking the signs of kick-of scours in classic swimming tracks
(McAllister and Kirby, 1998), the feature of low divarication angle, the lack of heel, and the
combination of rounded posterior region and awl-shaped anterior part could also be referred to
non-pointed punting-related swimming tracks (Romilo et al., 2013; Navarro-Lorbés et al., 2023).
The absence of digit IT and the proximal linkage of digit IIT and IV may related to the lateral
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rotation of the hip/pelvic girdle (Milan, 2006; Tanaka, 2021). However, like previously discussed
in 4.2.3, the complete absence of heel traces (including the posteriorly supporting digit I in the
bird-like tracks, see Tanaka (2021)) can be hardly interpreted by certain origin, so we merely
retain the possibility of a cf. Dromaeopodus affinity of LXID-T2.

Speed Estimates. Under the assumption that LXID-T?2 is of deinonychosaurian trackmaker
origin, the ratio based on hip-height/foot-length (h/F1) ratio is 4.32 for dromaeosaurids as
proposed by Tsukiji et al. (2021). In contrast, the standard equation for estimating hip height in
small/medium theropods is h = 3.06 FL*1.14 (Weems, 2006). In the case of the LXID-T?2 tracks,
the estimated average hip height could be 2.3 m or 2.85 m, depending on the equation used. Xing
et al. (2024c) proposed that the length of digit III and deinonychosaurian body length is 5.11%
on average, and the body length of LXID-T2 track maker would be estimated as at least 9.98 m.
Trackmaker. The estimated size of LXID-T2 trackmaker is not only dramatically larger than
which of the troodontid Fujianipus (~5 m), but also than the skeletal records of large members
from Dromaeosauridae, including Utahraptor ostrommaysorum from Utah (Molina-Peréz and
Larramendi, 2016), measugiag 4.65 to 6 m in length and 1.5 m in hip height; Dakotaraptor steini
from Dakota (DePalma et ##2015), measuring 4.35 to 6 m in length and 1.4 m in hip height;
Austroraptor cabazai from Argentina (Novas et al., 2008), measuring up to ~6 m and 1.5 m in
hip height; and the asian Achillobator giganticus from Mongolia (Perle, 1999), measuring 3.9 to
5 m in length and 1.25 m in hip height. All the end-members of estimated size are from Molina-
Pérez et al. (2019) and Paul (2024), the smaller records are from the former; the hip height
estimations are from Molina-Pérez et al. (2019). Among them, the overlapping of the temporal
range of the Shaxian Formation (Fujianipus) and Bayan Shireh Formation (4. giganticus)
thereby rendering a biogeographic distribution from Mongolia to southeastern China entirely
feasible for different clades within deinonychosaurians to become such considerable size (Xing
et al., 2024c).

The morphological characteristics of LXID-T2 and Fujianipus trackmaker are entirely distinct,
with the former displaying clear dromaeosaur-like traits. The discovery of additional specimens
of the LXID-T2 morphological type would constitute significant evidence of the gigantism of
dromaeosaurid deinonychosaurs, whose body size is undoubtedly at the top of the local food
chain.

It is important to note that, however, the digit [1I-body length proportion provided by Xing et
al. (2024c) does not encompass the length of the drag mark in the average-preserved footprints,
which occurs in LXID-T2. However, it should be noted that this is not necessarily representative
of the true length of digit III. With regard to track width, LXID-T2 is marginally shorter than that
of Fujianipus (Xing et al., 2024c¢), and longer than those of large Dromaeopodus, which measure
~30 cm in length (Xing et al., 2016). Furthermore, the estimation exclusively considered well-
preserved small deinonychosaurians (Xing et al., 2024c) and lacked a sufficient number of large,
complete, and referable deinonychosaurian specimens. In conclusion, when considered as a
deinonychosaurian, the LXID-T2 trackmakers are likely to be smaller than the aforementioned
estimation, but still fall within the range of large deinonychosaurian, which may reach 5 to 6 m.
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Besides, for the speed of the trackmaker, the relatively short stride lengths of LXID-T2
trackway is indicative of a trotting gait, with SL/h ratios between 1.9 and 2.35, which is
consistent with the trackways of Velociraptorichnus isp. and Fujianipus from the Longxiang site.

According to the formula proposed by Alexander, the estimated speeds of the trackways are
13.93 km/h and 17.86 km/h, respectively.

Ornithopods tracks

Description

The ornithopods left the most abundant footprints in the Longxiang area, which spreading
through all the LXI, LXIII sites (Fig. 3—6, 8), and the size of the tracks exhibited considerable
variation. The size variation in LXI sites can be divided into five intervals: less than 10 cm, 10—
20 cm (20 cm excluded), 20-30 cm (30 cm excluded), 3040 cm (30 cm excluded), and > 40 cm.
The number of preserved tracks within each interval is as follows: 2, 31, 21, 6, and 6,
respectively. Although the length appears to be continuous, a relatively clustered area of track
lengths between 12 and 26 cm can be observed in the box plots (Fig. 27). However, the
preservation condition of ornithopod tracks in this area is quite limited, with the majority being
at level 1. These tracks are shallow, blurred, or deformed, yet still recognisable as digit traces.
Some claw traces were also present; the manus and pes tracks are distinguishable, with the
former retaining only a rough outline. Of the 66 ornithopod trackways, 14 (21%) preserved
manus tracks.

Four ornithopod trackways are preserved in LXID site (Fig. 4), numbered LXID-O1-04, with
track lengths ranging from 20.8 cm to 33.1 cm (Fig. 28-31). Eight pes tracks are preserved in
LXID-O1(Fig. 28). The pes tracks of LXID-O1 are mesaxonic and functionally tridactyl, with a
mean length of 33.1 cm and an average length/width ratio of 1.2. The mean mesaxony is 0.32. In
the better-preserved O1-R3 and L5, digit I1I is observed to project the farthest anteriorly,
followed by digits IV and II. Each digit trace exhibits a pronounced ungual or claw mark. A
distinct border is absent between the heel and the three digits. The O1-R2 and L3 specimens
exhibit an extended heel, which may be part of the metatarsal impression. This is potentially
caused by the deeper deposition of the metatarsal. The mean interdigital divarication II-1V is 49°.
The average pace angulation of LXID-O1 trackway is 161°. The pes traces show outward and
inward rotation mean 7° from the trackway axis.

The LXID-02, 3 and 4 trackways preserved approximately 15, 10 and 14 tracks respectively.
All tracks were very similar in length, ranging from 20.8 cm to 22.8 cm. Out of a total of 39
tracks, only about 4 had better preserved morphological characteristics. For example, of the 10
tracks in O3 (Fig. 30), only L4 shows a distinct tridactyl pattern, the length is 19.4 cm, the
length/width ratio is 1.2 and the mesaxony is 0.44. The other tracks in O3 are irregularly
elliptical, but the L/W ratios are essentially in the range of 1.1 to 1.4. O2 preserves two possible
manus tracks (Fig. 29): R9m and R10m are located in the outer part of digit IV of the pes, with
an average length of 5.2 cm and an L/W ratio of 0.7. Due to the poor preservation of the
individual tracks, the information on the trackways is remarkable. LXID-02, 3 and 4 trackways

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)



PeerJ

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838

average 154°, 144° and 146° angulation, respectively. The tracks are predominantly outwardly
rotated, being 10°, 11° and 12° from the track axis in the three trackways respectively.

LXIU site preserves 13 ornithopod trackways and a number of isolated tracks (Fig. 3;
Supplementary Information 2), the former numbered LXIU-O1-O13, with tracks ranging from
10 cm to 44.5 cm in length. LXIU-03, 06, O9 and O13 represent the smallest ornithopod
trackways (10 cm to 12.2 cm in length) at the LXIU site (Fig. 32-35).

LXIU-0O3 preserved nine pes tracks that are mesaxonic (Fig. 32), functionally tridactyl with an
average length of 10 cm, an average length/width ratio of 1.2 and an average mesaxony of 0.25.
In the better preserved O3-R4, digit I1I projects most anteriorly, followed by digits IV and II.
The digits II and IV are almost equal in length. Each digit trace has a strong and blunt claw or
ungual mark. There is no distinct border between the heel and the three digits. The average
interdigital divarication II-IV is 55°. The average interdigital divarication II-IV is 55°. The
average toe angulation of the LXIU-O3 trace is 153°. The pes traces show an average outward
rotation of 6° from the trackway axis.

LXIU-06, O9 preserved five and four pes traces respectively (Fig. 33, 34). Both trackways
had limited preservation, with tridactyl morphology discernible in O6-L3, and numbers Il and IV
discernible in O9, the other tracks representing oval pits.

LXIU-O13 has preserved five pes tracks (Fig. 35). All except O13-L1 have very pronounced
ectomorphological distortions, most likely due to highly fluid sediments. O13-L1 is mesaxonic,
functionally tridactyl with a length of 8.2 cm, and the mean length/width ratio is 0.6, the mean
mesaxony is 0.18, representing very broad contours and extremely low mesaxony.

LXIU-01, O4, O5 and O7 represent medium sized ornithopod tracks ranging from 18 cm to
27.5 cm from the LXIU site (Fig. 36-39). LXIU-O1 has only a single step (Fig. 36), R1 is well
preserved, functionally tridactyl with a mean length of 31.6 cm, with a mean length/width ratio
of 0.9 and a mean mesaxony of 0.31. The interdigital divarication of digits II-IV is 69°. The three
digits are almost equal in width and length from the hypex, while the claws of digit III are more
acute than those of digits II and IV.

LXIU-0O4 is probably the best preserved ornithopod trackway on the LXIU site (Fig. 37). It
contains 5 tracks. All tracks are functionally tridactyl with an average length of 26 cm, the
average length/width ratio is 0.8, the average mesaxony is 0.14, the interdigital divarication of
digit ITI-IV is 51°. There is a distinct border between the heel and the three digits. The digits II
and IV are almost the same length. Each digit has a strong and blunt claw or ungual mark. The
average pace angulation of LXIU-O4 trackway is 141°. The pes traces show inward rotation, on
average 12° from the trackway axis. LXIU-O4-R1 has a slightly smaller digit III than II and IV,
and its heel is quite large, almost twice the size of the individual digits. This feature is not
present on the other tracks. The mesaxony of O4-L1 is significantly above average at 0.35. The
heel of R3 has a drag mark and preserves a large manus track located between digits III and 1V,
the track is wider than long, measuring 8.6 cm in length, with a L/W ratio of 0.7, and the track is
rotated outwardly by 43°, relative to the axis of the pes. The ratio between the area of the manus
track and the pes track is 0.22. Overall, the average length of the right track is 24.1 cm, which is
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less than that of the left track at 28.7 cm, and may be the result of a large difference between the
left and right foot sizes of this trackmaker. Even when well preserved, where each track is clearly
quartered, the features of LXIU-O4 are unstable, which is an ectomorphological distortion
caused by slippery substrates.

LXTU-OS preserved nine tracks of which three were incomplete (Fig. 38). The mean length of
the tridactyl tracks is 27 cm, with an average length/width ratio of 0.8 and a mean mesaxony of
0.21. The interdigital divarication of digit II-IV is 51°. A clear delineation between the heel and
the three digits is absent. The length of digits II and IV is approximately equal. Each digit trace
has a strong and blunt claw or ungual mark. The mean pace angulation of the LXIU-OS5 trackway
is 160°. The pes traces exhibit outward and inward rotation, with a mean deviation of 5° from the
trackway axis. O5-L2, R2, L3 and R3 are particularly well-preserved, with clear claw marks
visible on digit IV of L2 and on digits II-IV of R3 (Fig. 23). The claw marks on R3 are the most
well-preserved, with a clearly defined boundary. However, other areas of the internal deposition
have not been completely removed, which impedes further observation. O5-L1 has a large heel
that is twice the length of the other tracks in the same trackway, which may be the result of
metatarsals being involved in the formation of the impression, or it may have been formed by the
fragmentation of the track layer.

LXIU-O7 is the longest ornithopod trackway at the Longxiang site, with a length of 23 m and
preserving about 43 tracks, which is probably the longest ornithopod trackway in China (Fig. 38).
It commences with an orientation to the northwest and then turns 90° to the southwest after ~13
metres, subsequently extending progressively in a southward direction. The pes tracks of LXIU-
O7 are mesaxonic and functionally tridactyl, with a mean length of 18.3 cm (Fig. 23). The
average length/width ratio is 1.1, and the mean mesaxony is 0.24. In the well-preserved R6 and
R13, it can be clearly observed that Digit III projects the farthest anteriorly, followed by digits II
and IV. Each digit trace has a strong and blunt claw or ungual mark. A clear border between the
heel and the three digits is absent; however, at times, the boundaries between digits or between
digits and the heel area can be discerned . The mean interdigital divarication II-IV is 55°. The
mean pace angulation of the LXIU-O7 trackway is 161°. The pes tracks predominantly exhibit
outward rotation, with an average deviation of 23° from the trackway axis. Within the trackway,
O7-R11, L12, R12, and L13 represent the location of the change of direction, and the outward
rotation angles of them were 17°, -58°, 25°, and -8° separately. From R11, there is a notable
decrease in stride length from 114.8 cm to 86.8 cm, followed by a further decrease to 66.8 cm,
after which it gradually recovers. From L12, pace angulation decreases from 154° to 102°, before
recovering to 166°. In the aforementioned process, the trends of the track rotation angle and pace
angulation were found to be largely consistent. These observations indicate a reduction in the
speed of the trackmaker during changes in direction.

The trackways LXIU-02, 08, 010, O11, and O12 comprise the largest tracks observed on the
same track layer (Fig. 40-44). Of these, O8 is the largest, with an average track length of 44.5
cm, while the other trackways range from 31.1 to 39.5 cm in length. The LXIU-O2 trackway
preserves only two tracks, forming a single step (Fig. 40). The mean length of these tracks is
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31.1 cm, with an average length/width ratio of 0.9 and a mean mesaxony of 0.24. The interdigital
divarication of digit II-IV is 59°. Among them, L1 contains a manus track on the lateral side of
digits III and IV, which represents about 6 cm in length, with a L/W ratio of 0.4. However, as the
sediment filled L1, forming a unweathered natural cast, the true morphology of the specimen
remains uncertain.

The preservation of LXIU-O8 is rather limited (Fig. 41). Although the average length is
known to be 44.5 cm, a considerable number of ectomorphic distortions affect this measurement.
The average pace angulation of the LXIU-O8 trackway is 160°. The best preserved track in O8 is
08-L3, with a length of 36.9 cm, which can be assumed to represent the true size of LXIU-OS.
The length/width ratio of L3 is 1.2, and the mean mesaxony is ~0.3. O8-L1 preserves a manus
track on the lateral side of digits III and IV, which is ~7.6 cm in length, with the L/W ratio of 0.6.
Given the similarity of the pace angulation to that observed in other ornithopod trackways and
the presence of a manus track, it can be posited that this rather limited preserved trackway still
has strong ornithopod affinities. The L/W ratio of R7 and R8 reaches 1.8-1.9, which is a
relatively uncommon elongation-related distortion observed in ornithopod tracks. This may have
resulted from either sliding due to slippery sediments or as partial metatarsal impressions.

The large heel traces are also evident in LXIU-O11 and can be classified into two categories:
wide and narrow (Fig. 42). The type with wider heels is exemplified by O11-L1 and L7, both of
which exhibit a L/W ratio of 2.1. The elongated heel of L7 is approximately three times as long
as the anterior part of the track, and the proximal section is similar in width to the distal end. The
distal end preserves recognisable tridactyls. The presence of triple elongated digit traces with
identifiable claw traces anteriorly is indicative of a substrate that is slippery. This can be
observed in the case of the theropod track from the Middle Jurassic of the Turpan Basin,
Xinjiang (Xing et al., 2014b). Nevertheless, the digits of LXIU-O11-L7 have not been separated
as in theropod tracks. The type with narrower heels includes O11-R1, L2 and R6. These tracks
exhibit a markedly constricted heel, with the proximal end measuring between one-half to one-
third the width of the distal end. These morphologies are comparable to those observed in
metatarsal impressions commonly associated with tridactyl theropod tracks or basal ornithischian
tracks.

LXTIU-010 trackway preserved 20 footprints, and tridactyl morphology was observed in 90%
of the footprints (Fig. 23, 43). These tracks are functionally tridactyl, with a mean length of 35.9
cm and an average length/width ratio of 1.1. The mean mesaxony is 0.28, and interdigital
divarication II-IV is 53°. There is no clear boundary between the heel and the three digits. The
digits II and IV are almost equal in length. Each digit trace features a prominent and blunt claw
or ungual mark. The average pace angulation of the LXIU-O10 trackway is 155°. The pes traces
demonstrate outward and inward rotation, with an average deviation of 8° from the trackway axis.

The LXIN site preserves 48 ornithopod tracks and a number of isolated tracks (Fig. 5;

Supplementary Information 2), the former including LXIN-O1-048, ranging in length from 9 cm
to 48.8 cm. The preservation of the ~296 tracks is rather limited, and most of them can only be
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identified by trackway features. Only a few tracks have clear diagnostic features. Some of the
better preserved tracks and specific trackways are described below (Fig. 45-50; Supplementary
Information 2).

LXIN-O1 consists of six tracks, and only LXIN-O1-R3 has identifying features (Fig. 45). R3
has a length of 33.9 cm, with an L/W ratio of 1.2 and a mesaxony of 0.42. The interdigital
divarication of digits II-IV is 50°, and there is a distinct border between the heel and the three
digits. The digits II-IV are almost equal in length. Each digit has a strong and blunt claw or
ungual mark. The average angulation of the LXIN-O1 tracks is 167°.

LXIN-O2 consists of nine tracks and only LXIN-O2-R7 has the diagnostic characteristics (Fig.
46). O2-R7 is 18.7 cm long, with an L/W ratio of 0.8 and a mesaxony of 0.23. The interdigital
divarication of digits II-IV is 67° and there is a very clear border between the heel and the three
digits. Digits II and IV are almost equal in length, digit III is about 1/2 the length of the two
lateral digits. Each digit has a strong and blunt claw or ungual mark. The average pace
angulation of LXIN-O2 is 131°, which is the lowest for that track point, which may represent a
very slow walking gait.

LXIN-O11 and O48 are very close together and intersect to form a single very short pseudo-
trackway (Fig. 47). Only O11-L2 has some valid features, such as the presence of three relatively
well defined toes with a heel. This interlaced trackway requires special care in identification.
Overall, the group activity trackways are relatively consistent in their track lengths and
step/stride length ratios.

LXIN-O12 is a poorly preserved turning trackway (Fig. 48), and the trackmaker of this
trackway was probably influenced by the large ornithopod LXIN-O13, which began to turn as it
approached O13-L1 (detailed figure see Supplementary Information 2). From O12-L3 the
trackway turns about 90°. In contrast to the usual decrease in stride length during the change of
direction, the stride length of LXIN-O12 shows an increasing trend, gradually increasing from
53.7 cm at L1 to 83.6 cm at L3 and decreasing to 68.8 cm at the end of the turn. Due to poor
preservation of the tracks, the rotation angles could not be confirmed.

LXIN-O28 contains six tracks forming a discontinuous trackway with one missing in the
middle (Fig. 49). R2 and L2 are fairly well preserved with typical tridactyl morphology (Fig. 51).
These two functionally tridactyl tracks with a mean length at 19.3 cm, with the average
length/width ratio of 1.0 and the mean mesaxony of 0.30. The interdigital divarication of digits
II-1V 1s 50°. There is a clear boundary between the digits, whereas the boundary between the
digits and the heel is blurred. The digits II and IV are almost the same length. Each digit has a
strong and blunt claw or ungual mark. The average pace angulation of LXIN-O28 trackway is
149°. The pes traces show an average outward rotation of 16° from the trackway axis.

LXIN-O41 contains eight tracks with an average length of 25 cm, an L/W ratio of 1.2 and a
mesaxony of 0.42, with no clear boundary between the heel and the three digits (Fig. 50). The
average pace angulation of LXIN-O41 trackway is 164°. Superimposed tracks are probably
present in both the manus track of L1 and the pes tracks of R1 and R2. The superimposed manus
tracks were displaced laterally, while the superimposed pes tracks moved towards the centre of
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the trackway. Tracks of almost equal size appeared over a distance considerably smaller than the
track width. This indicates a high frequency of trampling and may suggest that the trackmaker
may have been injured. The latter possibility is more likely than the slipperiness of the ground, as
neither LXIN-O41 nor the other nearby trackways showed sliding tracks or metatarsal marks.

Only two well-preserved tracks can be found on the slab from LXIE site (Fig. 6, 13), which
are in the similar orientation and forming a short trackway LXIE-O1. In which only O1-R1 is
complete, with 21.5 cm in length,14.7 cm in length, and forming L/W ratio of 1.5. The
divarication angle of digit I[I-1V is 46°, with a mesaxony of 0.27. The incomplete L1 with only
the anterior part can compare to R1 in width and mesaxony.

Comparison and discussion

After the revisions by Lockley et al. (2014) and Diaz-Martinez et al. (2015) and Xing et al.
(2024a), the number of ichnogenera belonging to Iguanodontipodidae is quite reduced. The most
controversial is Ornithopodichnus (Kim et al., 2009), which was originally discovered in Korea
and has been used many times. The latest view considered that Ornithopodichnus is a nomen
dubium (Xing et al. 2024a), but this does not rule out the possibility that its ichnospecies can be
placed in Caririchnium and become a valid ichnospecies.

Caririchnium (Leonardi, 1984) is widely distributed in Berriasian—Albian sediments in Brazil,
Portugal, Spain, England, Switzerland, South Korea, Canada, Japan, China, and the USA, with
the upper limit of this geological period slightly earlier than the Longxiang age (Cenomanian).
The Longxiang specimens fit the diagnosis of Caririchnium: pes tracks belonging to
Iguanodontipodidae, with a large heel impression that is rounded, centred and wide (wider than
the width of the proximal part of the digit III impression); short, wide digit impressions (Diaz-
Martinez et al., 2015). Longxiang specimens have a wide range of sizes, which is common in the
Caririchnium. The ratio between the length and width of the "heel" pad varies between
ichnospecies. In general, pes tracks are as wide as or wider than long. The size is highly variable,
with common pes tracks between 30 and 60 cm long (Leonardi, 1987; Meyer and Thuring, 2003;
Xing et al., 2007; Razzolini et al., 2016), but there may be smaller or larger examples (e.g.
Lockwood et al., 2014; Xing et al., 2016, 2018b; Lee et al., 2023).

Caririchnium currently includes C. magnificum (Leonardi, 1984), C. kortmeyeri (Currie and
Sarjeant, 1979), C. billsarjeanti (Meyer and Thiiring, 2003), C. lotus (Xing et al., 2007, 2015),
and C. yeongdongensis (Kim et al., 2016), a total of five ichnospecies. Among these
ichnospecies, the morphology of the manus tracks is very distinctive and useful to differentiate
between ichnospecies: elliptical, rectangular, and cloverleaf-like subtriangular (Leonardi, 1987;
Meyer and Thuring, 2003; Xing et al., 2007; Kim et al., 2016). There is limited information on
the morphology of the manus tracks in the Longxiang specimens, but they are essentially
elliptical, making them similar to C. /otus as a whole (Xing et al., 2007, 2015).

The Caririchnium lotus in the Longxiang tracksite extends the chronological range of this
ichnogenus into the early Late Cretaceous.

The abundance of Longxiang Caririchnium illustrates a diverse range of extramorphological
distortion, which is likely caused by the presence of muddy or watery sediments. In this case,
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only a small proportion of tracks result in distinctly quartered tracks when the substrate is
moderately strengthed. Such slippery substrate condition also causes the aformentioned
elongated ‘heels’ in the tracks, and these additional traces can be devided into both wide and
narrow patterns, possibly caused by sliding or as metatarsal impressions, as in LXIU-O11 (Fig.
43). Additionally, some manus tracks are situated medially to the pes track, rather than laterally
to the midpoint of digits III-IV (e.g., LXIN-O33-R2), which may also be indicative of the
influence of a slippery substrate.

It is also noteworthy that some specific behaviour-related features are present, including the
occurrence of a large number of tracks in a limited area, forming a pattern similar to that of the
manus pes-sets of quadruped trackways (e.g. LXIN-O17-L2 and O18-L1 in Fig. 51; Stevens et
al., 2016). Some special trackways can also be observed, including LXIU-O4 (Fig. 37), which
features a difference in the size of the right and left pes tracks; LXIU-O7 and LXIN-O12, which
exhibit directional changes in the midst (Fig. 39, 48); and LXIN-O41, which contains
overlapping tracks that may have been left by injured individuals (Fig. 50). Meanwhile, in the
northwestern part of the LXIN site, the orientation of the small Caririchnium trackways is
notably distinct, forming an assemblage that extends in an east-west direction. This observation
aligns with the commonly documented hypothesis that the smaller trackmakers within this
ichnogenus exhibit gregarious behaviour (e.g. Xing et al., 2015).
Speed Estimates and trackmaker
The trackmaker of Caririchinium is typically referred to the basal ankylopollexian or
styracosternan, especially which are comparable in sizes, and shares comparable temporal and
spatial interval locally (Diaz-Martinez et al., 2015). For example, the early large Caririchinium
from Upper Jurassic of Iberian Peninsula can be linked to Oblitosaurus with 67 m in length
(Sanchez-Fenollosa et al., 2023). However, the distribution of ornithopod tracks is much more
extensive than their trackmakers (No¢ et al., 2020; Sanchez-Fenollosa et al., 2023). For example,
there is a paucity of large quadrupedal ornithopod skeletal rg==ins, while large C. magnificum
have been defined in South America (Bandeira et al., 2024)™*#%though southeastern China also
lacks contemporaneous ankylopollexian trackmakers (Xu et al., 2018), however, complete
geographic barriers did not exist between South and North China during the Cretaceous
theoretically (Cao, 2009; Ke and Meng, 2009). There are large basal ankylopollexian in China
that are contemporaneous with or earlier than the Longxiang Caririchnium, including
Lanzhousaurus from Gansu (NW; You et al., 2005), and Bayannurosaurus from Inner Mongolia
(NW; Xu et al., 2018); basal hadrosaurids including Bolong from Liaoning (NE; Wu and
Godefroit, 2012) and Equijubus from Gansu, etc. (You et al., 2003). At the same time, given that
the pes track compared in size to Camptosaurus (~5 m) pes is more than 20 cm (~25 cm in
estimation) in length, and which to Brachylophosaurus (~10 m) pes may reach 60 cm in length
(Gierlinski and Karol, 2008; Paul, 2024), it can thus be postulated that the large trackmaker of
Longxiang Caririchnium may be similar in size to the above taxa from lower Cretaceous in
China, especially the basal ankylopollexians among them.

For estimating hip height (h), Thulborn (1990) suggests that for large ornithopods (track
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1039 length >25 cm) h=5.9 x foot length, and for small ornithopods (track length <25 cm) h=4.8 x
1040 foot length. The velocity of the trackmakers are estimated by the formula of Alexander (1976),
1041 and the relative speed (gait) are represented by stride length (SL)/h. For the large Longxiang
1042 ornithopods, the relative speed range from 0.67 to 1.48, suggesting a walking gait, and the speed
1043 of the trackmakers is estimated to be between 2.12 and 6.73 km/h. For the smaller trackmakers,
1044 the relative speed range from 0.6 to 2.17, suggesting a walking to slow-running gait, and the
1045 speed of the trackmakers is estimated to be between 1.26-10.44 km/h. The evidence suggests that
1046 smaller ornithopods display a greater degree of bipedalism in their locomotory behaviour, which
1047 1is relatively independent of factors such as body weight and limb proportions. This allows them
1048 to achieve higher speeds, as evidenced by the skeletal records (Maidment et al., 2014; Barrett
1049 and Maidment, 2017).

1050 Furthermore, among the Longxiang large Caririchnium trackways, three of them indicate a
1051 relatively greater speed of slightly over 2 (2.06-2.17), including LXIU-O9, LXIN-O6 and LXIN-
1052 022 (Supplementary Information 2). These constitute 7% of the total 45 large ornithopod

1053 trackways. This particular slow-running gait is uncommon among Caririchnium and other large
1054 ornithopod ichnogenera. On the contrary, two other tracksites that also preserve a substantial
1055 number of Caririchnium tracks in China, including the Lower Cretaceous Zhaojue site (Xing et
1056 al., 2014a) and the Mid-Cretaceous Lotus site from Sichuan (Xing et al., 2015). In these cases,
1057 the related trackways all exhibit a walking gait.

1058 With regard to the track layer of the LXIU site, it can be posited that the relative speed of the
1059 trackways with clearly quartered tracks would have been slightly higher than that of the other
1060 poorly preserved trackways. This may indicate that substrate condition (e.g. water content)

1061 affected the speed of the trackmakers, as previously mentioned. However, on the track layer of
1062 the LXIU site, the majority of tracks are poorly preserved, and the trackmakers can still reach
1063 slow-running gait, thereby indicating that there is no prominent positive correlation between the
1064 speed of the trackmakers and the moderately featured or hardened substrate.

1065

1066 Dinosaur tracks indet.

1067 The LXII site contains three isolated tracks with fairly limited preservation (Fig. 7), with a

1068 preservation status of level 0 on the Belvedere and Farlow (2016) scale. Of the three isolated
1069 tracks, LXII-TI1 is 21.6 cm long with an L/W ratio of 1.4, while the other two tracks are 28.8
1070 and 26.1 cm long with fairly high L/W ratios of 2.0 and 2.3. LXII-TI1 is the first track found in
1071 the Longxiang area, and the edge of the track has a distinctive displacement rim. It is

1072 morphologically a possible tridactyl track, although only one lateral and one median digit have
1073 been preserved. Because of the relatively high L/W ratio, these tracks may have a stronger

1074  affinity to theropod tracks.

1075

1076 Discussion

1077 The comparison of mid-Cretaceous dinosaur fauna in Fujian

1078 In southeastern China, northern Guangdong and southern Jiangxi, which experienced a near-
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simultaneous cooling event with the Fujian region, also developed late Lower to Upper
Cretaceous deposits. However, only Fujian and Jiangxi have dinosaur records in the 'Mid-'
Cretaceous period, specifically in the Shanghang and Ganzhou basins, respectively (Xing et al.,
2019, 2024c; Niu and Xing, 2023). The Guangdong region initially developed its stratigraphy
from the Cenomanian in the Nanxiong basin (Xi et al., 2019), yet it was not until the
Maastrichtian that skeletal, track and abundant egg fossil records appeared in the Nanxiong,
Sanshui, and Heyuan basins, which repersents oviraptorosaurian-dominated fauna including
titanosauriformes, tyrannosaurids, therizinosaurian, hadrosaurids, ankylosaurian and possible
deinonychosaurian .etc, and records of non-dinosaurian pterosaurs and crocodylomorphs (Dong,
1979; Xing et al., 2017, 2023a, 2024c), and the tracksite there in is dominated by ornithopods
(Xing et al., 2017). For the Ganzhou basin and the surrounding area, however, the mid-
Cretaceous record is also limited to one possible medium-sized tyrannosaurid track (~7.5 m for
the trackmaker; Xing et al., 2019), and some small-sized tridactyl theropod (oviraptorosaur?)
tracks (unpublished data, LX personal observation). The fossil record of Jiangxi is largely
comparable to that of the aformentioned Nanxiong basin in terms of age and member included
(Xing et al., 2020, 2023b; Zhu et al., 2024). Thus, the Longxiang tracksite in Fujian is an
important mid-Cretaceous fossil locality in southeastern China.

Among the aforementioned morphotypes, small (<40 cm) Brontopodus—like tracks from
sauropods; Grallator from small tridactyle theropods, Tridentigerpes from medium- to large-
sized tridactyle theropods?, and cf.. Dromaeosauripus and Velociraptorichnus from large/small
deinonychosaurian; two types of Caririchnium isp. from the medium- to large-sized/small-sized
(“Ornithopodichnus”-like) ornithopods respectively the has been reported by Niu and Xing
(2023), while medial- to large sized Eubrontes tracks from LXIN, large (>60 cm)
Brontopodus—like trackway from LXIN, and a possible large didactyl trackway from LXID has
been newly distinguished in this paper. Furthermore, additional specimens belong to
Tridentigerpes type A from LXIN, Caririchnium isp. from LXID and LXIN has been discovered
on the basis of Niu and Xing (2023) (The distribution of size and morphotype see Supplementary
Information 3).

Among these tracksites, ornithopod, sauropod and theropod tracks can be identified in LXIII
sites, but only LXI sites have recognisable trackways. The tracks of all major dinosaur clades
have been found in LXI and LXIII sites, except for the sauropod tracks in LXID. Certain
ornithopod tracks classified in Caririchnium are the most prevalent in all LXI sites, representing
84% of all trackways and 89%, 57% and 76% of the tracks from LXIN, LXID and LXIU,
respectively. Large trackways (=25 cm) account for 19%, 25% and 62% of the trackways from
the above three sites within Caririchnium morphotype respectively, and very large ones reaching
~40 cm occurs in LXIN (5) and LXIU (3) (Table 1). The largest ornithopod trackway in LXIU is
even comparable in size to the sauropod trackway in terms of pes length. This suggests that
contemporaneous large consumers in the region were probably concentrated in ornithopods, i.e.,
that the hot, at least seasonally dry, coastal plateau with mountain ranges acting as barriers
during the mid-Cretaceous period in southeast China was suitable for these ankylopollexian
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survival (Chen, 2000; Li et al., 2009; Lii et al., 2019; Zhang et al., 2021). Besides, It should be
noted that for the three tracksites in LXI, particularly LXIN and LXIU, there is a difference in
the size at which the mutation occurs in the ornithopod trackmaker. For the LXIN site, there is a
clear gap between 32 and 41 cm, whereas for the LXIU site, this gap occurs between 19 and 26
cm. for the LXIN site, there is a clear gap between 32 and 41 cm, whereas for the LXIU site, this
gap occurs between 19 and 26 cm. Given that juveniles of large animals can occupy the niche of
smaller ones (Lockley and Xing, 2021; Schroeder et al., 2021; Wyenberg-Henzler et al., 2022), it
can be posited that the discrepancy of the two track layers may be due to differences in the
ontogenetic stage, rather than the variation in clade.

Apart from differences in palaeolatitude and the presence of a coastal location, the
environmental characteristics of southeastern China bear resemblance to those of
contemporaneous or earlier (late Early Cretaceous) regions in northwestern China, particularly
Gansu, Shaanxi, and western Inner Mongolia (Li et al., 2013; Cao et al., 2013; Zhang et al.,
2021). The latter also contains faunas rich in ankylopollexian and large phytophagous theropods,
such as Mazongshan dinosaur fauna from western Gansu (You et al., 2018), Yanguoxia
tracksites in Hekou Group from eastern Gansu (Xing et al., 2021f). However, northwestern
China continues to be characterised by the presence of a large number of saurischian, especially
large sauropods, and an abundance of small theropods, both in the sense of skeletal and track
record (Wang et al., 2015; You et al., 2018; Xing et al., 2018, 2021f); whereas the Shaxian
Formation in Fujian is characterised by greater ornithopods, as well as large deinonychosaurian
record.

During the same period in which these dinosaur faunal remains were discovered, i.e., around
the 'Mid-' Cretaceous, cooling and humidifying episodes occurred across an expanse extending
from southeastern China to northwestern China; however, the intervals between these episodes
spanned a range of timescales. The phytosporic and isotopic evidence indicates that the Zhejiang
region (middle SE) and the western Gansu region (western NW) were the first to experience the
event from the early Aptian onwards. At the Aptian/Albian boundary, the western Gansu and
Ordos Basin (eastern NW) and the Hubei and Jiangsu regions (northern SE) initially experienced
the event, when the impacts in western Gansu began to subside. In the middle to late Albian, the
Guangdong, Jiangxi and Fujian region (southern SE) experienced a cooling trend until the early
Late Cretaceous (Li et al., 2013; Wang et al., 2022); during the same period, the most significant
phase of the event has been largely removed in the region of NW China and Jiangsu (Li et al.,
2013; Wang et al., 2022), and NW China no longer develops significant terrestrial deposits (Cao,
2018). Concurrently, the short-term maximum impacts of cooling events in the Guangdong and
Fujian regions are considerably less significant than those observed in Jiangsu and NW China (Li
et al., 2013; Wang et al., 2022).

The richest dinosaur fauna record during the 'Mid-’ Cretaceous in China is found in Zhejiang,
which essentially represents the fauna of the ysmion at the end of the period affected by the
cooling-humidifying event (late Albian-earlisaoniacian) (Xietal., 2019; Xing et al., 2021). The
fossil record of sauropods and small theropods (and potentially ankylosaurians) persists
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throughout this stage (Yu, 2013; Wu et al., 2018)., with large theropods as therizinosaurian
appearing at least in the early part of the period. In contrast, in the more definitive
contemporaneous records of ornithopods from Zhejiang, their body sizes remain in the small- to
medium-sized range (Zhang et al., 2012; Yu, 2013; Du et al., 2015; Wu et al., 2018), with only
two suspected large ornithopod trackways (~40 cm; see Wu et al., 2018) occur in the Jinhua
Formation. These features, particularly the significance of the ornithopod trackmaker in the
fauna, are distinct from those observed in the contemporaneous Fujian.

In comparison to other dinosaurs, including other ornithischians, ornithopods demonstrate a
more pronounced and efficient high-fibre herbivory (Button et al., 2023). Additionally, the dental
texture of this clade has been found to be significantly rougher in the Late Cretaceous period
(Kubo et al., 2023). In the case of hadrosaurids, representatives of the ankylopollexia clade,
which underwent distinct gigantism, the auxiliary abrasive capacity of their teeth has been
further enhanced (Kubo et al., 2023). Concurrently, a comparable herbivorous homogenisation is
observed in the latest Cretaceous global cooling process. During this process, hadrosaurids with
more advantageous border herbivorous diets and larger feeding ranges occupied at least the
ecological space of ankylosaurs and ceratopsians (Condamine et al., 2021). These may be
contributing factors to the distinctive domination of large-sized ornithopod tracks at Longxiang
sites in the Fujian region relative to NW China, during mid-Cretaceous cooling in NW-SE China.

Another noteworthy feature of the Longxiang tracksite in southeastern China is its distinctive
large didactyl track, which includes the Fujianipus. For the large deinonychosaurians record to
date, with the exception of Utahraptor from the Hell Creek Formation (Pearson et al., 2002;
DePalma et al., 2005), the remaining fauna lacks large tyrannosaurid or abelisaurid predators,
which large deinonychosaurian all occur as currently discovered apex predators of contemporary
terrestrial fauna (Novas et al., 2009; Tsuihiji et al., 2012; Kirkland et al., 2016; Rolando et al.,
2021; Paul, 2024). Concurrently, the associated fauna also exhibits a paucity of large
marginocephalians and giant (>15 m) macronarians (Paul, 2024).

In terms of chronology and palaeogeography, the ichnofauna from Fujian is more closely
related to the contemporaneous Bayan Shireh skeletal fauna from Mongolia. However, it does
not contain definitive theropod tracks as large as the tridactyl tracks from the earlier Yanguoxia
tracksite, which lies between the two aforementioned sites (>40 cm; Xing et al., 2018b,
unpublished manuscript). This may indicate that large deinonychosaurians dispersed in East Asia
during the latest Early Cretaceous period, or that there was convergence in response to similar
environments, including natural conditions and the lack of pre-existing large tyrannosaurids
(Brusatte et al., 2010; Xing et al., 2024c). The paucity of large tyrannosaurids in the current
record from the 'Mid-' Cretaceous of Fujian, and the replacement of large deinonychosaurians,
may be attributed to similar factors to those which led to the domination of ornithopods. Such
factors include differences in the tolerance of the two types of predator to cooling processes
(Condamine et al., 2021).

Given that the degree of floristic change in the Fujian region is not as pronounced as in
neighbouring regions (Wang et al., 2022), the earlier dominance of ornithopods and the
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distinctive enlargement of deinonychosaurians observed in the current dinosaur ichnofauna may
also be attributed to biases in preservation, or differences between the specific environment
within the mountainous region in SE China proximate to the track layer (Shu et al., 2009), which
creates significant faunal variation over a limited geographic range (Antonelli et al., 2018).

Conclusions
New material of dinosaur tracks and trackways form Longxing (LX) tracksites in mid-
Cretaceous of Shanghang Basin, Fujian, China are reported in this paper on the basis of Niu and
Xing (202 d Xing et al. (2024 ew ichnospecies Tridentigerpes longyanensis, new

Hf medial- to large-sized Eubrontes from LXIN site, large (>60 cm)
Brontopodus—like trackway from LXIN site, and a possible large didactyl trackway from LXID
site has been newly distinguished, additional specimens belong to Tridentigerpes type A from
LXIN, and Caririchnium isp. from LXID, LXIN and LXIE has been newly discovered.

The Longxing tracksite is now confirmed to be dominated by ankylopollexian ornithopod
trackways (> 84%), with a proportion of large members within ornithopod (>25 cm, > 27%) ,
and indicates the flourishing of large ornithopods and the relative homogeneity of herbivores
occurring within this period. The Longxiang sites also demonstrate the presence of concurrent,
distinct, large didactyl tracks, which diverge from the composition of the apex predators in the
representative Late Cretaceous fauna, whereby tyrannosaurids and abelisaurids are dominant.

The Longxiang tracksite represents the sole extensive mid-Cretaceous dinosaur tracksite in
the SE China, which can be compare to the dinosaur records in contemporaneous Zhejiang in SE
China and Mongolia, and also similar to earlier Gansu, Shaanxi and Inner Mongolia in NW
China. However, with the exception of Fujian, none of the above records in SE China show
significant large ornithopods in the earliest Late Cretaceous deposits and earlier, whereas
ornithopod records in NW China and Mongolia were widespread during the Lower to Upper
Cretaceous. The discrepancies observed in faunal distributions, particularly within the SE China,
may be attributed to a combination of factors, including the timing and relatively small
magnitude of the short-term cooling- humidifying events that occurred in the Fujian region
during the Late Early Cretaceous; the Longxiang site as a manifestation of the southward
migration of faunas from contemporaneous North China or North Asia; the geographical
isolation of the mountainous region resulting in significant differences in the faunas of the
different regions in between, influenced by migrating taxa.
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Supplementary Information

Supplementary information 1. The measurements (in cm and degrees) of all the newly
discovered or re-described trackways and the relatively well-preserved isolated tracks from LXIs
and LXIII tracksites.

Supplementary information 2. The photographs and interpretive line drawings of the
ornithopod trackways from LXIN without detailed descriptions.

Supplementary information 3. The complete version of ichnofauna composition and their size
distribution of the LXI tracksites. Both track length and width values in this table represent the
mean value of the trackway or the sole isolated track from a certain type, which could could
better represent the size of a single trackmaker.

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)



PeerJ

Figure 1

Manuscript to be reviewed

Location of the Longxiang sites and the distribution of Longxiang tracksites (modified

after from Niu and Xing, 2023).

The photograph of Longxiang tracksites distribution is modified basing on Google Earth

satellite image (Nov 11, 2020) in Fujian Province, southwestern China.
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Figure 2

Stratigraphic section of the Cretaceous Shaxian Formation from Renhuai Basin with the
position of the Longxiang tracklayers.
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Figure 3

Interpretive line drawing and trackway orientation rose diagrams of the Longxiang 1U
(LXIU) site.
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Figure 4

Interpretive line drawing and trackway orientation rose diagrams of the Longxiang ID
(LXID) site.

Theropods Ornithopods

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)



PeerJ Manuscript to be reviewed

Figure 5

Interpretive line drawing and trackway orientation rose diagrams of the Longxiang IN
(LXIN) site.
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Figure 6

Photograph and interpretive line drawing of the slab (YLSNHM07318) from Longxiang IE
(LXIE) site.
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Figure 7

Photograph and interpretive line drawing of the dinosaur tracks from Longxiang Il (LXII)
Site.
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Figure 8

Interpretive line drawing of the Longxiang Il (LXIII) site.
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Figure 9

Photograph and interpretive line drawing of tracks from sauropod trackway LXIU-S1.
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Figure 10

Photograph and interpretive line drawing of the isolated dinosaur tracks from LXIU site.

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)



PeerJ Manuscript to be reviewed

o ® & OY

LXIU-TIO TI1 TI5 L TI9 TI10

10 cm

TI8

III

SI1

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)



PeerJ Manuscript to be reviewed

Figure 11

Photograph and interpretive line drawing of sauropod trackway LXIN-S1.
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Figure 12

Close-in photographs and interpretive line drawings of sauropod tracks LXIN-S1-2.
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Figure 13

Photograph and interpretive line drawing of the isolated dinosaur tracks from LXIII.
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Figure 14

Photograph and interpretive line drawing of tridactyl theropod trackway LXIN-T1.
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Figure 15

Photograph and interpretive line drawing of tridactyl theropod trackway LXIN-T3.
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Figure 16

Photograph and interpretive line drawing of tridactyl theropod trackway LXIN-T5.
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Figure 17

Close-in photographs and interpretive line drawings of tridactyl theropod tracks from
LXIN site.
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Figure 18
Photograph and interpretive line drawing of tridactyl theropod trackway LXIN-T2.
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Figure 19
Photograph and interpretive line drawing of tridactyl theropod trackway LXIN-T4.

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)


Ismar Carvalho
Realce

Ismar Carvalho
Nota
Inform that this is an morphotype of the Holotype


Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)

Manuscript to be reviewed

L2

R2

i

N7

LXIN-T4-R1



PeerJ Manuscript to be reviewed

Figure 20

Close-in photographs and interpretive line drawings of tridactyl theropod tracks from
LXID site.
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Figure 21

Close-in photographs and interpretive line drawings of tridactyl theropod tracks from
trackway LXIU-T2.
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Figure 22

Close-in photographs and interpretive line drawings of tridactyl theropod tracks from
trackway LXID-T1.
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Figure 23

Close-in photographs, 3D models, 3D depth maps and interpretive line drawings of
theropod and ornithopod tracks in trackways from LXIU site.
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Figure 24

Close-in photographs and interpretive line drawings of Velociraptorichnus from trackway
LXIU-T1.

10 cm

LXIU-T1-L1 R1 L3 R4 L6

Peer] reviewing PDF | (2024:11:109629:0:2:NEW 28 Nov 2024)



PeerJ Manuscript to be reviewed

Figure 25

Close-in photographs and interpretive line drawings of Fujianipus from trackway LXIU-

T3.
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Figure 26

Close-in photographs and interpretive line drawings of possible didactyl theropod tracks

from trackway LXID-T2.
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Figure 27

Box plot of ornithopod tracks size distribution from all the LXI tracksites.

The ornithopod track size is represented by the track length (in cm), for no anomalous

length/width ratios are observed.
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Figure 28

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXID-O1.
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Figure 29

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXID-02.
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Figure 30

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXID-O3.
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Figure 31

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXID-0O4.
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Figure 32

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-O3.
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Figure 33

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-O6.
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Figure 34

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-09.
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Figure 35

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-013.
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Figure 36

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-O1.
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Figure 37

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-O4.
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Figure 38

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-05.
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Figure 39

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-O7.
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Figure 40

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-02.
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Figure 41

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-O8.
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Figure 42

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-010.
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Figure 43

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-O11.
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Figure 44

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
LXIU-012.
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Figure 45

Photograph and interpretive line drawing of ornithopod trackway LXIN-O1.
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Figure 46

Photograph and interpretive line drawing of ornithopod trackway LXIN-O1.
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Figure 47

Photograph and interpretive line drawing of ornithopod trackway LXIN-O11 and O48.
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Figure 48

Photograph and interpretive line drawing of ornithopod trackway LXIN-O12.
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Figure 49

Photograph and interpretive line drawing of ornithopod trackway LXIN-O28.
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Figure 50

Photograph and interpretive line drawing of ornithopod trackway LXIN-O41.
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Figure 51

Close-in photographs and interpretive line drawings of ornithopod tracks from trackway
in LXIN site.
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Table 1l(on next page)

The ichnofanua composition of the Longxiang | (LXI) tracksites.

The frequency of each trackmaker type is represented by the number of trackways, and it
should be noted that the sole isolated track from the Grallator morphotype is the only
trackway counted as such due to its uniqueness. The interval of large ornithopod includes all

the trackways with a mean track length of =25 cm.
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Table 1. The ichnofanua composition of the LXI tracksites. The frequency of each trackmaker
type is represented by the number of trackways, and it should be noted that the sole isolated track
from the Grallator morphotype is the only trackway counted as such due to its uniqueness. The
interval of large ornithopod includes all the trackways with a mean track length of >25 cm.

. large/total,
Frequency Probability G
Total (LXIs included)
Total 79
Ornithopods 66 0.84 0.27
Sauropods 2 0.03
Theropods 11 0.14
LXIN
Total 54
Ornithopods 48 0.89 0.19
Sauropods 1 0.02
Theropods 5 0.09
LXID
Total 7
Ornithopods 4 0.57 0.25
Sauropods 0 0
Theropods 3 0.43
LXIU
Total 17
Ornithopods 13 0.76 0.62
Sauropods 1 0.06
Theropods 3 0.18
LXIE
Total 1
Ornithopods 1 1 0
Sauropods 0 0
Theropods 0 0
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