and physical function in older adults with subjective cognitive decline: a meta-analysis and systematic review Qing Yi¹, Wei Wang², Yufei Qi³, Chengwei Yang¹, Mengyun Sui⁴, Kun Meng^{5*}, Shanguang Zhao6* ¹ Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur, Malaysia ² Center for Health Policy Research and Evaluation, School of Public Administration and Policy, Renmin University of China, Beijing, China ³ Department of Physical Education and Research, Central South University, Changsha, Hunan China ⁴ Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China Department ⁵ School of Physical Education, Hunan First Normal University, Changsha 410205, China; ⁶ Department of Physical Education, Shanghai Maritime University, Shanghai 201304, China Corresponding Author: Kun Meng¹ Shanguang Zhao² ¹1015 Fenglin Third Road, Changsha, Hunan, 410205, China ²1550 Haigang Avenue, Shanghai, 201306, China Email address: Kun Meng, mengkun1108@163.com; Shanguang Zhao, sgzhao@shmtu.edu.cn

The impact of multidomain interventions on cognitive

36 37 38 39 **Abstract** 40 **Background.** This study aimed to examine the efficacy of multidomain interventions 41 compared to control and nutritional interventions in older adults with subjective cognitive 42 decline (SCD). Four databases were searched for relevant literature. 43 Methodology. PubMed, Embase, Cochrane Library, and Web of Science databases were 44 searched for relevant studies. Randomized controlled trials that examined the effects of 45 multidomain interventions on cognitive and physical function in older adults with SCD were 46 included. **Results.** This study included six eligible studies with 1,767 participants. The results 47 indicated that multidomain interventions significantly improved executive function and 48 49 memory but did not significantly impact global cognition and physical performance 50 compared to the control group. In addition, significant enhancements were observed in 51 executive function and memory when compared to single nutritional interventions. 52 **Conclusions**. The findings revealed that multidomain interventions could effectively improve executive function and memory in older adults with SCD. Further studies with 53 54 robust designs, particularly those comparing single-domain interventions, are needed to 55 investigate the effects and underlying mechanisms. 56 57 **Keywords:** Multicomponent intervention, nonpharmacological intervention, cognitive 58 performance, cognitive decline, healthy aging 59 60 61 62 63 Introduction 64 With the global population aging, age-related cognitive decline has become a major public 65 health concern. It is predicted that 152.8 million individuals will experience dementia by 2050 (Nichols et al., 2022), leading to a considerable impact on the socio-economic system 66 (Better, 2023). SCD is defined as self-reported cognitive complaints in the absence of 67

meta-analysis of 28 cohort studies found that individuals with SCD had a relative risk of 2.07

objectively measurable cognitive deficits on neuropsychological assessments (Jessen et al., 2014). SCD is commonly regarded as the earliest precursor stage of Alzheimer's disease, and

as an intermediate stage between normal aging and mild cognitive impairment (MCI). A

68

69 70

(95% CI = 1.77-2.44) for dementia conversion compared to those with healthy cognitive aging. The annual conversion rates were 2.33% for SCD and 6.67% for MCI (Mitchell et al., 2014). Those findings highlight the importance of early interventions, with SCD offering a promising window to delay further cognitive decline.

72

73

74

75 76

77

78

80 81

82

83

84

85

87

88

89

90 91

93

94 95

96

97

98

99

100

101

102

103

104

105

106

107

108

Currently, the efficacy of pharmacological interventions for cognitive decline remains unproven, and they commonly have side effects (Livingston et al., 2020). In contrast, nonpharmacological interventions have demonstrated promising effects without adverse effects 79 for older adults with SCD (Smart et al., 2017). Among these, nutritional, exercise, and multidomain interventions are three effective non-pharmacological approaches to improve cognitive function. Nutrition is a key modifiable factor in preserving brain health during aging (Flanagan et al., 2020; Melzer et al., 2021; Morris, 2012). The cognitive benefits of nutritional interventions have been examined through various nutrients and dietary patterns, including folic acid (Gil Martínez et al., 2022), vitamin D (Jiang et al., 2023), and omega-3-polyunsaturated fatty acid (Cherbuin et al., 2017), the Mediterranean diet (Valls-Pedret et al., 2015), the Dietary Approaches to Stop Hypertension diet (DASH) (Smith et al., 86 2010), and ketogenic diet (Krikorian et al., 2012). Nutritional interventions improve cognitive function primarily through the supplementation of specific nutrients. Diets rich in antioxidants, healthy fats, and anti-inflammatory compounds—including the Mediterranean and DASH diets—have been shown to reduce oxidative stress and inflammation, improve vascular health, and protect against age-related neurodegeneration (Morris et al., 2015; 92 Scarmeas et al., 2007).

Physical exercise is another well-established modifiable factor in preserving cognitive health. Aerobic (Kamijo et al., 2009; Young et al., 2015), resistance (Coelho-Junior et al., 2022; Liu-Ambrose et al., 2010), multicomponent exercises (Li et al., 2021), and mind-body exercises (Wu et al., 2019; Xia et al., 2019) are common strategies in preserving cognitive function and preventing cognitive decline in older adults. Physical activity may indirectly influence cognitive function by improving overall health and enhancing neuroplasticity (Bherer, 2015; Bruderer-Hofstetter et al., 2018). Similarly, cognitive interventions, based on the theories of neuroplasticity, have proven to be effective strategies for mitigating cognitive decline (Liu et al., 2021; Marlats et al., 2020). Some systematic reviews have demonstrated the positive effects of multidomain interventions in enhancing cognitive outcomes (Gavelin et al., 2020; Sood et al., 2019). Cognitive interventions provide a targeted approach to improve brain function by directly stimulating and challenging cognitive processes. Cognitive interventions may directly impact cognitive function by enhancing cognitive plasticity, cognitive reserve, and neural connectivity (Cheng, 2016; Li et al., 2017; van Balkom et al., 2020).

Multimodal intervention strategies have gained increasing attention for their potential synergistic effects. Multidomain interventions are defined as interventions that incorporate

Comentado [MOU1]: I recommend not to include the specific confidence interval. Maybe "individuals with SCD had a two-fold relative risk for dementia conversion..." could be a more suitable option for the introduction section.

Comentado [MOU2]: Please, include the conclusions of the umbrella review performed by Ciria et al. 2023 (Nature Human Behaviour). This is the same study as the one I mistakenly referenced the authors for inclusion in the previous stage of the review process (I wrote 2021 instead of 2023).

109 at least two different domains, such as nutritional, exercise, cognitive, or psychosocial 110 interventions (Bevilacqua et al., 2022). Currently, the more effective multidomain intervention patterns are those that include nutritional, exercise, and cognitive interventions 111 (Castro et al., 2023), as demonstrated by large-scale trials such as the Finnish Geriatric 112 Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) (Ngandu et al., 113 2015) and Multidomain Alzheimer Preventive Trial (Andrieu et al., 2017). The Japan-114 115 Multimodal Intervention Trial for Prevention of Dementia (J-MINT) is also a part of the global 116 FINGERS network. The study found that, after 18 months, the intervention group showed a 117 significant improvement in cognitive composite scores (Oki et al., 2024). In addition, MIND-AD 118 trials targeting the early stages of Alzheimer's patients demonstrated that interventions 119 combining lifestyle modification and drug supplementation reduced the rate of cognitive decline 120 after six months (Thunborg et al., 2024). Furthermore, a meta-analysis suggested that 121 multidomain interventions combined with physical exercise might benefit overall cognitive 122 function in older adults (Reparaz-Escudero et al., 2024). Conversely, the AgeWell.de trial 123 adjusted the FINGER intervention model to test a multimodal intervention (including 124 optimized nutrition, medication, and physical, social, and cognitive activity), but no effect on global cognitive performance was detected (Zülke et al., 2024). Similarly, another study found 125 126 no evidence supporting the effectiveness of multidomain interventions for preventing dementia 127 (Hafdi et al., 2021). Overall, the effects of multidomain interventions on cognitive function in 128 older adults remain controversial (Hafdi et al., 2021; Oki et al., 2024; Thunborg et al., 2024; 129 Zülke et al., 2024), and comparisons with single-domain interventions are still limited (Dedeyne 130 et al., 2017; Fessel et al., 2017).

Although some meta-analyses and reviews have reported positive effects of multidomain interventions on cognitive and physical functions (Ahn et al., 2022; García-Llorente et al., 2024; Liao et al., 2023; Mohanty & Kumar, 2022), the varied components of these included interventions may introduce significant heterogeneity. In addition, these studies included designs other than randomized controlled trials (RCTs) (Fessel et al., 2017; Mohanty & Kumar, 2022) and lacked rigorous inclusion criteria for study populations (Liu et al., 2020; Noach et al., 2023). To our knowledge, only one review has examined the effects of multidomain interventions on individuals with SCD, targeting those over 45 years old and including RCTs, cohort studies, and reviews (Mohanty & Kumar, 2022). However, no meta-analysis with robust included criteria exists for older adults with SCD. Therefore, this study defines multidomain interventions as a combination of nutrition, physical exercise, and/or cognitive training, and includes only RCTs to examine their effects on cognitive and physical function in older adults with SCD.

131

132133

134

135

136

137138

139

140

141

142

143

Comentado [MOU3]: "Non-pharmacological or lifestyle..."

Comentado [MOU4]: "The most..."

Comentado [MOU5]: Another important conclusion based on their results is the presence of an effect of multidomain interventions on global cognitive function, please include it briefly.

Comentado [MOU6]: I suggest that the order of appearance of systematic reviews and particular trials should be differentiated (i.e. from wide reviews to specific trials, not intercalated) as this may increase clarity.

This is the first meta-analysis with a robust design to examine the effectiveness of the multidomain interventions on cognitive and physical functions among older adults with SCD. This study aimed to evaluate the effects of multidomain interventions compared to the control and nutritional interventions.

Comentado [MOU7]: This sounds redundant and could be rephrased to be more concise and less repetitive.

Materials & Methods

This meta-analysis complied with the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines (Liberati et al., 2009) and PRISMA extension for metaanalysis (Hutton et al., 2015). The present study has been registered on the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY, registration number: INPLASY202460020).

154 155 156

157 158

159

160

161

162

163

164

165

166

167 168

169

170

144

145

146

147

148

149 150

151

152

153

Search and selection strategies

Relevant studies were identified through searches in PubMed, Embase, Cochrane Library, and Web of Science databases on March 6, 2024. To ensure the inclusion of the most recent research, we conducted an updated search on December 31, 2024. There were no restrictions on publication language, date, or type. To enhance the comprehensiveness of the search terms, we referred to prior studies (Liu et al., 2022; Roberts et al., 2022). The final search strategies employed Boolean operators "OR" and "AND" in conjunction with terms such as "multidomain interventions", "nutritional intervention", "exercise intervention", "SCD", and "aging". Detailed search strategies are provided in the Supplemental Material S1. Additionally, we manually reviewed the references of included publications to ensure a comprehensive search.

EndNote 20 was used to manage, categorize, and deduplicate the records. Initially, two researchers (Q.Y. and Y.Q.) independently screened the titles and abstracts of the documents. Subsequently, the full texts of the selected papers were carefully reviewed for eligibility. Discrepancies were reviewed by a third researcher (C.Y.) until a consensus was reached.

171 172 173

174

Selection criteria

Types of studies

- Published, peer-reviewed documents of RCTs and cluster-RCTs that examined the effects of 175 176 multidomain interventions on cognitive and physical functions in older adults with SCD were included. Excluded studies encompassed unpublished articles, reviews, study protocols,
- 177
- 178 case reports, case studies, theses, dissertations, and book chapters.

179 Types of participants

180	Eligible studies focus on older adults with SCD aged over 55. The participants should have
181	self-reported cognitive decline but perform normally on standardized cognitive tests and do
182	not meet diagnostic criteria for MCI or dementia.
183	Types of interventions
184	Intervention protocols should include exercise and nutritional interventions with or without
185	multidomain interventions. Given the wide variety of multidomain interventions, including
186	various components would increase the heterogeneity of the pooled results, making it
187	challenging to examine the effects of a specific type of multidomain intervention. Therefore,
188	this study focused on a more effective multidomain intervention pattern, incorporating
189	exercise, nutrition, and multidomain interventions (Castro et al., 2023). Notably, due to the
190	limited number of studies including all three intervention components, the intervention
191	programs in this study included exercise and nutrition, with or without cognitive
192	interventions.
193	Types of comparisons
194	The comparisons should meet one of the following criteria: (1) a control group (e.g., placebo,
195	maintain usual life habits or health education); (2) a single domain intervention (either
196	nutritional interventions, exercise intervention, or multidomain interventions).
197	Types of outcomes
198	Studies had to include at least one cognitive or physical outcome. Primary outcomes are
199	cognitive function, such as global cognition or specific cognitive domains (e.g., executive
200	function, memory). Secondary outcomes are physical function, such as strength, endurance,
201	and mobility. Furthermore, the outcomes should assess changes from baseline to post-
202	intervention.
203	
204	Data extraction
205	Data was independently extracted by the two researchers using a self-developed standardized
206	form. Any disagreements were resolved by the third researcher. Information such as the
207	author's name, publication year, country, sample size, age, types of intervention, length,
208	frequency, duration of intervention, types of control, and outcomes was collected from the
209	included studies.
210	
211	Quality assessment

Comentado [MOU8]: Please, maintain the past tense.

Quality assessment was independently conducted by the two researchers using Review

Manager 5.4. Any disputes were confirmed by the third researcher. The qualitative assessment focused on seven aspects of the RCTs: random sequence generation (selection

bias), blinding of participants and personnel (performance bias), blinding of outcome

212

213

assessment (detection bias), allocation concealment (selection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other biases. Each index was rated as "high risk," "low risk," or "unclear risk."

Statistical analysis

216

217

218

219 220

234

235 236

237

245 246

247 248

221 Data analysis was conducted using Review Manager 5.4 and Stata 18. The analysis included 222 calculating the combined effect size, assessing heterogeneity, and generating forest plots. 223 Cognitive function and physical function were treated as continuous variables. The pooled 224 effects of continuous variables were assessed using either Mean Difference (MD) or 225 Standardized Mean Difference (SMD) with 95% confidence intervals (95% CI). MD was used 226 for variables measured by the same method, and SMD for those measured by different 227 methods. According to Cohen's guidelines for effect sizes, 0.20, 0.50, and 0.80 represent the 228 thresholds for small, medium, and large effect sizes, respectively (Cohen, 2013). Due to the 229 inherent heterogeneity stemming from the subjectivity of SCD and the variability across 230 intervention methods, a random-effects model was employed for all analyses (Borenstein et 231 al., 2021). Heterogeneity was assessed using the I² statistic, with levels rated as low (25%), 232 moderate (50%), and high (75%). Sensitivity analysis was performed when I² >50% (Coryn, 233 2011). Additionally, this study used Stata to perform the Begg test to identify publication bias

Comentado [MOU9]: What sensitivity analysis was performed? "Sensitivity analysis using a commoneffects model..." please, specify.

Results

Study selection

(Cohen, 2016).

As shown in Figure 1, the initial search identified 5,402 records. After removing 1,080 duplicates, the two researchers screened the remaining 4,322 documents by reading the titles and abstracts. A total of 133 articles were then selected for full-text review, resulting in the exclusion of 128 articles that did not meet the inclusion criteria. The specific reasons for exclusion are provided in Figure 1. Ultimately, five studies met the inclusion criteria. In addition, one eligible article was identified by searching the references of the included studies. Thus, a total of six articles were included in the study.

Figure 1 PRISMA flow diagram.

Study characteristics

249 Table 1. presents six eligible studies involving 1,767 participants with a higher proportion of 250 female participants than male participants. Regarding the Nutritional interventions, one study 251 (Andrieu et al., 2017) requested participants to take daily omega-3 supplements, with 800 mg of docosahexaenoic acid (DHA) and up to 225 mg of eicosapentaenoic acid (EPA) per day with 252 dietary guidance. One study (Macpherson et al., 2022) administered the intervention through a 253 254 daily drink supplement (5 g of omega-3 powder, 1000 IU vitamin D3, and 25 g whey protein concentrate (WPC) 80%). Additionally, one study (Chatterjee et al., 2022) utilized the 255 256 Mediterranean diet, and another study (Blumenthal et al., 2020) employed the DASH diet. 257 Moreover, two studies (Barreto et al., 2021; Liu et al., 2023) offered nutritional counseling to 258 assist participants in maintaining healthy dietary habits. 259 For the exercise intervention, the interventions took place one to five times per week, with 260 session lengths ranging from 30 to 60 minutes, and the durations varied from 24 weeks to three 261 years. Specifically, two studies (Barreto et al., 2021; Liu et al., 2023) involved aerobic, 262 resistance, and balance exercise, whereas another two studies (Chatterjee et al., 2022; 263 Macpherson et al., 2022) incorporated both aerobic and resistance exercises. Regarding cognitive interventions, two studies (Barreto et al., 2021; Chatterjee et al., 2022) employed computerized 264 265 cognitive training, focusing mainly on memory, executive functions, and reasoning. In addition, 266 two studies (Blumenthal et al., 2020; Macpherson et al., 2022) did not include cognitive 267 interventions. 268 Regarding the comparisons, three studies (Andrieu et al., 2017; Barreto et al., 2021; 269 Macpherson et al., 2022) used a placebo control group, while two studies (Andrieu et al., 2017; Blumenthal et al., 2020) included a nutrition group. Two studies (Blumenthal et al., 2020; Liu et 270 271 al., 2023) included a control group that maintained daily living habits, and one study 272 (Blumenthal et al., 2020) included an exercise intervention group. In terms of outcomes, four 273 (Andrieu et al., 2017; Barreto et al., 2021) studies included both cognitive and physical function 274 outcomes, while the remaining two studies (Blumenthal et al., 2020; Chatterjee et al., 2022; Liu 275 et al., 2023; Macpherson et al., 2022) focused only on cognitive function outcomes. 276 277 Table 1 Basic information of eligible literature. 278 Note: MI: multidomain interventions; NI: Nutritional interventions; EI: exercise intervention; CG: control

group; CF: cognitive function; PF: physical function; AE: aerobic exercise; RE; resistance exercise; BE:

balance exercise; NC; not clear; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; PUFA:
polyunsaturated fatty acid; WPC: whey protein concentrate; FINGER: Finnish Geriatric Intervention
Study to Prevent Cognitive Impairment and Disability; CBCT: computer-based cognitive therapy.
Risk of bias of included studies
As depicted in Figure 2, the bias assessment follows the guidelines outlined by the Cochrane
Collaboration (Higgins & Green, 2008). The graph utilizes green, yellow, and red colors to
represent low risk, unclear risk, and high risk, respectively. Among the six included studies, five
studies (Andrieu et al., 2017; Barreto et al., 2021; Chatterjee et al., 2022; Liu et al., 2023;
Macpherson et al., 2022) reported detailed methods for generating random sequences, and three
(Andrieu et al., 2017; Barreto et al., 2021; Chatterjee et al., 2022) provided the methods for
allocation concealment. The blinding of participants and personnel in the four studies was
identified as low risk (Andrieu et al., 2017; Barreto et al., 2021; Chatterjee et al., 2022;
Macpherson et al., 2022). Five studies (Andrieu et al., 2017; Barreto et al., 2021; Blumenthal et
al., 2020; Liu et al., 2023; Macpherson et al., 2022) described the use of blinding of outcome
assessment. Notably, three studies (Barreto et al., 2021; Liu et al., 2023; Macpherson et al.,
2022) were at high risk of selective reporting. Lastly, all six studies (Andrieu et al., 2017;
Barreto et al., 2021; Blumenthal et al., 2020; Chatterjee et al., 2022; Liu et al., 2023; Macpherson
et al., 2022) reported no risk of incomplete outcome data and other bias.
Figure 2 Risk of bias evaluation.
Effects of multidomain interventions versus the control group
Global cognition
Four studies (Andrieu et al., 2017; Barreto et al., 2021; Liu et al., 2023; Macpherson et al.,
2022) investigated the effects of multidomain interventions on global cognition. Global cognition
was assessed using the Mini-mental State Examination (MMSE) or Montreal Cognitive
Assessment (MoCA). This analysis used the SMD due to the different assessment tools used
across studies. The pooled results indicated that multidomain interventions did not significantly
improve global cognition with a small effect size (SMD = 0.08 , 95% CI [$-0.03-0.20$], $p = 0.15$,
Figure 3).

Figure 3 Forest plot of multidomain interventions versus control group on global cognition.

312	
313	Executive function
314	Three studies (Chatterjee et al., 2022; Liu et al., 2023; Macpherson et al., 2022) evaluated the
315	effectiveness of multidomain interventions versus the control group. As shown in Figure 4,
316	multidomain interventions significantly improved executive function, with a moderate effect size
317	(SMD = -0.24 , 95% CI [$-0.450.03$], $p=0.02$).
318	Figure 4 Forest plot of multidomain interventions versus control group on executive function.
319	
320	Memory
321	Figure 5. demonstrates four studies (Andrieu et al., 2017; Barreto et al., 2021; Chatterjee et al.,
322	2022; Liu et al., 2023) that examined the memory gains of multidomain interventions. The
323	pooled analysis indicated that multidomain interventions greatly enhanced memory with a
324	moderate effect size (SMD= $0.45, 95\%$ CI [$0.03-0.88$], $p=0.04$).
325	Figure 5 Forest plot of multidomain interventions versus control group on memory.
326	
327	Physical function
328	Two studies (Andrieu et al., 2017; Barreto et al., 2021) assessed the efficacy of the multidomain
329	interventions on physical function using the Short Physical Performance Battery. Pooled results
330	were not statistically significant with a small effect size (MD= 0.02 , 95% CI [$-0.25-0.29$],
331	<i>p</i> =0.88, Figure 6).
332	Figure 6 Forest plot of multidomain interventions versus control group on physical function.
333	
334	Effects of multidomain interventions versus Nutritional interventions
335	For comparisons with single domain intervention, due to the limited number of studies, the meta-
336	analysis could not be performed on separate exercise interventions and cognitive interventions.
337	Thus, we only compared the effects of multidomain interventions with those of single Nutritiona
338	interventions.
339	Executive function
340	Two studies (Andrieu et al., 2017; Blumenthal et al., 2020) evaluated the effectiveness of
341	multidomain interventions versus nutritional interventions. As shown in Figure 7, multidomain

342 interventions produced a significantly enhanced executive function, with a moderate effect size (SMD = -0.31, 95% CI [-0.59 - -0.04], p = 0.03).343 344 Figure 7 Forest plot of multidomain interventions versus control group on executive function. 345 346 Memory 347 Figure 8 shows that two studies (Andrieu et al., 2017; Blumenthal et al., 2020) examined the 348 effects of multidomain interventions on memory. The pooled results reported that multidomain 349 interventions significantly improved memory with a moderate effect size (MD = -4.07, 95% CI [-6.71 - -1.31], p = 0.004).350 351 Figure 8 Forest plot of multidomain interventions versus Nutritional interventions on memory. 352 353 Sensitivity analysis and publication bias 354 Since the heterogeneity of multidomain interventions compared to the control group on memory was greater than 50% (I²= 85%), sensitivity analyses were conducted to assess the impact of each 355 356 study on heterogeneity. As shown in Table 2, I² value and p of I² changed significantly when the 357 article of Chatterjee et al. (Chatterjee et al., 2022) was excluded (Supplemental Material S2). 358 Since only two studies compared combined and nutritional interventions on executive function, a 359 sensitivity analysis was unnecessary. Due to most of the indicators included limited studies, this 360 study only conducted publication bias tests on indicators with three or more included articles. 361 Begg's test (global cognition: p=0.089, memory: p=0.296, executive function: p=0.089), all 362 confirmed that there is no statistically significant publication bias (Supplemental Material S 3-363 5). 364 Table 2. Sensitivity analysis of executive function. 365 Note: SMD: Standardized Mean Difference; 95%CI: 95% Confidence Interval; I2 (%): I-squared, a measure of heterogeneity. 366 367 368 **Discussion** 369 To our knowledge, this is the first study to examine the efficacy of multidomain 370 interventions on both the cognitive and physical functions of older adults with SCD. The

Comentado [MOU10]: Why is it moderate? Is there any reference for the reader to check if this amount of change in the specific memory test is "moderate"?

results indicated that multidomain interventions significantly improved executive functions

and memory, but did not impact global cognition and physical performance when compared

371

to the control group. When compared to nutritional interventions, our study demonstrated that multidomain interventions significantly enhanced executive function and memory.

This study demonstrated that multidomain interventions have a moderate impact on executive function and memory compared to the control group, which may hold clinical relevance for older adults with SCD. These findings align with the review by Ahn et al. (2022), which included seventeen RCTs examining the effects of multidomain interventions on executive function and episodic memory in older adults without dementia (Ahn et al., 2022). Notably, executive function and memory have complex subcomponents (Wang & Dong, 2018), and different reviews may use various tools to assess these components, which would increase the heterogeneity of pooled results. Regarding global cognition, our study found that multidomain interventions could not significantly improve global cognition, contrary to previous results (Ahn et al., 2022; Liao et al., 2023). A possible explanation is that the intervention period in this study was relatively short, which may have limited the manifestation of intervention effects. In addition, the limited number of included studies may also influence the pooled results.

In comparison to single-domain interventions, we only compared the effects of multidomain interventions with single nutritional interventions due to limited included studies. Our results indicated that multidomain interventions effectively enhanced executive function and memory with a moderate effect size, suggesting a possible synergistic moderate effect. A review reported that multidomain interventions are more promising than single-domain interventions, which supports our results (Fessel et al., 2017). However, our results should be interpreted with caution, as it is based on only two studies (Andrieu et al., 2017; Blumenthal et al., 2020). Another review also highlighted that the evidence for the beneficial effects of multidomain interventions is limited (Dedeyne et al., 2017). Future, more rigorously designed studies are needed to compare the effects of multidomain interventions with single-domain interventions, particularly emphasizing comparisons between exercise and cognitive interventions.

Mechanisms through which multidomain interventions exert beneficial effects on cognitive function remain unclear. Current research mainly explains the mechanisms through three aspects: (1) increasing cerebral blood flow, (2) modifying neurotransmitter release, and (3) modifying the structure and functional activities of the central nervous system (Gligoroska & Manchevska, 2012; Serra et al., 2020). Specifically, animal model studies have shown that increased physical exercise can promote hippocampal growth (van Praag et al., 2005), grey matter increase (Sumiyoshi et al., 2014), synaptogenesis (Jiang et al., 2024), and angiogenesis (Pereira et al., 2007), as well as induce the release of brain-derived neurotrophic factor (Almeida et al., 2015) and insulin-like growth factor-1(Carro et al., 2000). In human

Comentado [MOU11]: "Intervention periods were short..."?

Comentado [MOU12]: They are..

studies, physical exercise has also been found to influence grey matter volume (Arenaza-Urquijo et al., 2017), cortical volume (Clark et al., 2019), and hippocampal volume (Ten Brinke et al., 2015), while also promoting the release of brain-derived neurotrophic factor (Marston et al., 2017). Nutritional interventions may help delay cognitive decline and the progression of dementia by improving cell membrane fluidity and vascular endothelial function (Howe et al., 2018; Teixeira et al., 2019), reducing inflammation and oxidative stress (Allès et al., 2012; Miquel et al., 2018; Tang et al., 2015), and promoting neurogenesis and neuronal connectivity (Dauncey, 2009; Gomez-Pinilla & Tyagi, 2013). Regarding cognitive interventions, Kempermann et al. (1997) demonstrated in a mouse model that enriched environments protect white matter integrity by enhancing neurogenesis (Kempermann et al., 1997). Another study observed similar brain volume changes in older adults after cognitive training (Tait et al., 2017).

Another question worth investigating is why the cognitive effects of multidomain interventions are superior to those of single-domain interventions. One possible reason is that nutrition, exercise, and cognitive interventions have complementary and interactive effects. For example, regarding increased cerebral blood flow, consuming foods rich in antioxidants can improve endothelial function and reduce arterial stiffness (Howe et al., 2018), while regular participation in aerobic exercise can slow the decline in cerebral hemodynamics, such as cerebral arterial blood flow velocity and mean arterial pressure, associated with aging (Ainslie et al., 2008; Bailey et al., 2013). These two interventions synergistically improve cerebral blood flow, thereby enhancing nutrient delivery and promoting the release of neurotransmitters that aid cognition. Moreover, there are complementary mechanisms between exercise and cognitive interventions. For example, existing studies have shown that exercise supports the proliferation and division of neuronal cells (Hötting & Röder, 2013; Shors et al., 2012), while cognitive interventions help to promote the survival of these newborn cells (Kempermann et al., 1997).

 Concerning physical function, the present study indicated that multidomain interventions could not significantly improve physical performance compared to the control group. This contrasts with findings from two review studies that indicated that multidomain interventions could improve physical performance compared to the control group (Giné-Garriga et al., 2015; Liao et al., 2023). The possible explanations for our study, in which multidomain interventions did not significantly improve physical function, are that the intervention format in one study was 30 minutes of home-based exercise (Andrieu et al., 2017), the intervention frequency in the other study was twice a week (Barreto et al., 2021),

and the intervention was not supervised. Such designs may not fully capture the benefits of exercise intervention. For other physical outcomes, some review studies demonstrated that multidomain interventions could effectively enhance strength, speed, and stability (Dedeyne et al., 2017; García-Llorente et al., 2024). For example, one review suggested that multidomain interventions were effective in improving muscle strength in (pre) frail elderly compared to single domain interventions (Dedeyne et al., 2017). However, another review found no significant difference in those outcomes when compared to exercise or nutritional interventions alone (Pérez-Bilbao et al., 2023). As a result, more research is needed to investigate the effects of multidomain interventions on physical function.

The American College of Sports Medicine (ACSM) and the American Heart Association (AHA) recommend that older adults engage in moderate-intensity aerobic exercise for 30 minutes five times per week or vigorous-intensity aerobic exercise for 20 minutes three times per week. In addition, older adults should perform moderate-intensity resistance training twice weekly. Moreover, ACSM and AHA suggest that incorporating balance and flexibility exercises can provide additional benefits (Nelson et al., 2007). Among the six studies included in this study, four implemented both aerobic and resistance training (Barreto et al., 2018; Chatterjee et al., 2022; Liu et al., 2023; Macpherson et al., 2022), while two focused solely on aerobic exercise (Andrieu et al., 2017; Blumenthal et al., 2020). All included studies met the recommended duration of physical activity, though only one study met the ACSM-recommended frequency of five sessions per week (Andrieu et al., 2017). Given the complexity of multidomain interventions, it is challenging to implement five exercise sessions per week due to the need to include multiple interventions. Notably, the expert consensus guidelines on exercise recommendations for older adults indicate that engaging in physical activity three times a week also shows significant benefits (Izquierdo et al., 2021). Therefore, future multidomain interventions should incorporate exercise sessions at a frequency of three or more times per week.

Strengths and Limitations

This study has three main advantages. First, all studies included in the analysis are high-quality RCTs, ensuring the reliability of the intervention effects. Second, strict population inclusion criteria were applied, focusing exclusively on older adults with SCD. This distinguishes this study from most studies that include elderly individuals with varying cognitive function status, potentially introducing bias into the results. Third, this study assessed both cognitive and physical function indicators, providing a comprehensive evaluation of the effects of multidomain interventions.

This study also has three limitations. First, the included studies exhibit considerable variability in the characteristics of the multidomain interventions, such as different types of

Comentado [MOU13]: One study did present serious risk of bias, please rephrase.

exercise and nutritional interventions, as well as varying lengths, doses, frequencies, and durations. This heterogeneity may have affected the pooled effect and the generalizability of the results. Secondly, this study limited the scope of the multidomain intervention components, aiming to reduce the heterogeneity by focusing on specific combinations. However, this approach inevitably excludes literature that includes other non-pharmacological interventions (such as psychosocial or sleep interventions), which may lead to a 'sliced literature' effect. Lastly, due to the paucity of available data, this study assessed only one physical function and compared the effects of multidomain interventions with single nutritional interventions. The limited number of studies available for this comparison may have compromised the robustness of the findings.

Implications for practice and research

Multidomain interventions are non-invasive, demonstrate good compliance, and can be recommended as a routine measure to enhance and maintain cognitive function in older adults. The moderate effect sizes observed for executive function and memory highlight the potential clinical significance of multidomain interventions. These findings support their integration into public health programs targeting cognitive decline prevention in older adults. Future research with rigorous designs should focus on comparing the effectiveness of multidomain interventions to single nutritional, exercise, and cognitive interventions. In addition, a more comprehensive assessment approach should be adopted to evaluate the effects of multidomain interventions. Moreover, more meta-analyses should include more articles to strengthen the statistical power and generalizability of the results.

Comentado [MOU14]: More, more.. I would suggest to rephrase this sentence.

Conclusions

 The present study, involving six RCTs, investigated the effects of multidomain interventions on cognitive and physical functions. The results demonstrated that multidomain interventions significantly enhanced executive function and memory compared to the control group and Nutritional interventions. This study further validates the effects of multidomain interventions on older adults with SCD and provides valuable insights for both clinical practice and future research. However, the impacts of multidomain interventions on global cognition and physical performance are inconsistent. Future research should focus on more robust multi-armed studies to explore the effects and underlying mechanisms of multidomain interventions.

Comentado [MOU15]: Include the number of participants and a summary of the characteristics of the population of study.

Comentado [MOU16]: Correct the sentence please.

Funding

517	This study did not receive runding from any institution.
518	
519	Author contributions
520	Qing Yi conceived and designed the experiments, performed the experiments, analyzed the
521	data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved
522	the final draft.
523	
524	Kun Meng and Shanguang designed the experiments, authored or reviewed drafts of the
525	article, and approved the final draft.
526	
527	Qing Yi and Yufei Qi conducted literature retrieval, literature selection, data extraction,
528	quality assessment.
529	Qing Yi, Wei Wang and Chengwei Yang analyzed the data, prepared figures and/or tables.
530 531	Qing 11, wer wang and Chengwer rang analyzed the data, prepared rightes and/or tables.
532	Kun Meng, Shanguang Zhao and Mengyun Sui authored or reviewed drafts of the article.
533	Run Weng, manguang Zhao and Wengy un our authored of reviewed draits of the article.
534	Competing interests
535	All authors had no competing interests.
536	
537	Data Availability
538	The following information was supplied regarding data availability:
539	This is a systematic review/meta-analysis
540	Overall and a tell of a most than
541	Supplemental Information
542	Supplemental Material S1. Search Strategy; Supplemental Material S2. Sensitivity analysis:
543 544	Remove each study individually of memory; Supplemental Material S3. Publication bias of global cognition; Supplemental Material S4. Publication bias of Memory; Supplemental
545	Material S5. Publication bias of executive function; Supplemental Material S6. Raw data;
546	Supplemental Material S7. PRISMA_2020_checklist; Supplemental Material S8. The rationale
547	for conducting the meta-analysis.
548	
549	
550	
551	Deferences

- Ahn, S., Chung, J. W., Crane, M. K., Bassett Jr, D. R., & Anderson, J. G. (2022). The effects of
 multi-domain interventions on cognition: A systematic review. Western Journal of
 Nursing Research, 44(12), 1134-1154.
- Ainslie, P. N., Cotter, J. D., George, K. P., Lucas, S., Murrell, C., Shave, R., Thomas, K. N.,
 Williams, M. J., & Atkinson, G. (2008). Elevation in cerebral blood flow velocity with
 aerobic fitness throughout healthy human ageing. *The Journal of Physiology*, 586(16),
 4005-4010.
- Allès, B., Samieri, C., Feart, C., Jutand, M.-A., Laurin, D., & Barberger-Gateau, P. (2012).
 Dietary patterns: a novel approach to examine the link between nutrition and cognitive function in older individuals. *Nutrition research reviews*, 25(2), 207-222.
 https://doi.org/https://doi.org/10.1017/S0954422412000133
- Almeida, C., DeMaman, A., Kusuda, R., Cadetti, F., Ravanelli, M. I., Queiroz, A. L., Sousa, T.
 A., Zanon, S., Silveira, L. R., & Lucas, G. (2015). Exercise therapy normalizes BDNF
 upregulation and glial hyperactivity in a mouse model of neuropathic pain. *Pain*, 156(3),
 504-513. https://doi.org/10.1097/01.j.pain.0000460339.23976.12
- Andrieu, S., Guyonnet, S., Coley, N., Cantet, C., Bonnefoy, M., Bordes, S., Bories, L., Cufi, M. N., Dantoine, T., & Dartigues, J.-F. (2017). Effect of long-term omega 3 polyunsaturated
 fatty acid supplementation with or without multidomain intervention on cognitive
 function in elderly adults with memory complaints (MAPT): a randomised, placebo controlled trial. *The Lancet Neurology*, 16(5), 377-389.
- Arenaza-Urquijo, E. M., de Flores, R., Gonneaud, J., Wirth, M., Ourry, V., Callewaert, W.,
 Landeau, B., Egret, S., Mézenge, F., & Desgranges, B. (2017). Distinct effects of late
 adulthood cognitive and physical activities on gray matter volume. *Brain Imaging and Behavior*, 11(2), 346-356. https://doi.org/10.1007/s11682-016-9617-3
- Bailey, D. M., Marley, C. J., Brugniaux, J. V., Hodson, D., New, K. J., Ogoh, S., & Ainslie, P.
 N. (2013). Elevated aerobic fitness sustained throughout the adult lifespan is associated
 with improved cerebral hemodynamics. *Stroke*, 44(11), 3235-3238.
- Barreto, P., Pothier, K., Soriano, G., Lussier, M., Bherer, L., Guyonnet, S., Piau, A., Ousset, P. J., & Vellas, B. (2021). A web-based multidomain lifestyle intervention for older adults:
 The eMIND randomized controlled trial. *The journal of prevention of Alzheimer's* disease, 8, 142-150. https://doi.org/http://dx.doi.org/10.14283/jpad.2020.70
- Barreto, P. d. S., Rolland, Y., Cesari, M., Dupuy, C., Andrieu, S., Vellas, B., & Group, M. S.
 (2018). Effects of multidomain lifestyle intervention, omega-3 supplementation or their
 combination on physical activity levels in older adults: secondary analysis of the
 Multidomain Alzheimer Preventive Trial (MAPT) randomised controlled trial. *Age and Ageing*, 47(2), 281-288. https://doi.org/https://doi.org/10.1093/ageing/afx164
- 588 Better, M. A. (2023). Alzheimer's disease facts and figures. *Alzheimers Dement*, 19(4), 1598-589 1695.
- Bevilacqua, R., Soraci, L., Stara, V., Riccardi, G. R., Corsonello, A., Pelliccioni, G., Lattanzio,
 F., Casaccia, S., Möller, J., & Wieching, R. (2022). A systematic review of multidomain

- and lifestyle interventions to support the intrinsic capacity of the older population.
 Frontiers in medicine, 9, 929261.
 https://doi.org/https://doi.org/10.3389/fmed.2022.929261
- 595 Bherer, L. (2015). Cognitive plasticity in older adults: effects of cognitive training and physical 596 exercise. *Annals of the New York Academy of Sciences*, 1337(1), 1-6.
- Blumenthal, J. A., Smith, P. J., Mabe, S., Hinderliter, A., Welsh-Bohmer, K., Browndyke, J. N.,
 Doraiswamy, P. M., Lin, P. H., Kraus, W. E., & Burke, J. R. (2020). Longer term effects
 of diet and exercise on neurocognition: 1-year follow-up of the ENLIGHTEN trial.
 Journal of the American Geriatrics Society, 68(3), 559-568.
 https://doi.org/https://doi.org/10.1111/jgs.16252
- Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). *Introduction to meta-* analysis. John Wiley & Sons. https://doi.org/10.1007/978-3-319-14908-0

605

606

607

- Bruderer-Hofstetter, M., Rausch-Osthoff, A.-K., Meichtry, A., Münzer, T., & Niedermann, K. (2018). Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition—A systematic review and network meta-analysis. *Ageing research reviews*, 45, 1-14.
- Carro, E., Nunez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth
 factor I mediates effects of exercise on the brain. *Journal of neuroscience*, 20(8), 2926 2933. https://doi.org/10.1523/JNEUROSCI.20-08-02926.2000
- Castro, C. B., Costa, L., Dias, C. B., Chen, J., Hillebrandt, H., Gardener, S. L., Brown, B. M.,
 Loo, R., Garg, M., & Rainey-Smith, S. R. (2023). Multi-domain interventions for
 dementia prevention–a systematic review. *The Journal of nutrition, health and aging*,
 27(12), 1271-1280.
- Chatterjee, P., Kumar, D. A., Naqushbandi, S., Chaudhary, P., Khenduja, P., Madan, S., Fatma,
 S., Khan, M. A., & Singh, V. (2022). Effect of Multimodal Intervention (computer based cognitive training, diet and exercise) in comparison to health awareness among older adults with Subjective Cognitive Impairment (MISCI-Trial)—A Pilot Randomized Control Trial. *PLoS ONE*, 17(11), e0276986.
 https://doi.org/https://doi.org/10.1371/journal.pone.0276986
- Cheng, S.-T. (2016). Cognitive reserve and the prevention of dementia: the role of physical and
 cognitive activities. *Current Psychiatry Reports*, 18, 1-12.
- Cherbuin, N., Anstey, K., & Baune, B. (2017). Oxidative stress, inflammation and mild cognitive
 impairment. *European psychiatry*, 41(S1), S742-S742.
 https://doi.org/https://doi.org/10.1016/j.eurpsy.2017.01.1370
- Clark, C. M., Guadagni, V., Mazerolle, E. L., Hill, M., Hogan, D. B., Pike, G. B., & Poulin, M. J.
 (2019). Effect of aerobic exercise on white matter microstructure in the aging brain.
 Behavioural Brain Research, 373, 112042. https://doi.org/10.1016/j.bbr.2019.112042
- Coelho-Junior, H., Marzetti, E., Calvani, R., Picca, A., Arai, H., & Uchida, M. (2022).
 Resistance training improves cognitive function in older adults with different cognitive

- status: a systematic review and meta-analysis. *Aging & Mental Health*, 26(2), 213-224.
 https://doi.org/10.1080/13607863.2020.1857691
- 634 Cohen, J. (2013). Statistical power analysis for the behavioral sciences. routledge.
- 635 Cohen, J. (2016). A power primer.

644

648 649

650

651

659

660

661

662

663

664

665

666

- Coryn, C. L. S. (2011). Introduction to Meta-Analysis [Book Review]. *Evaluation and Program Planning*, 34(2), 160-161. https://doi.org/10.1016/j.evalprogplan.2010.09.004
- Dauncey, M. (2009). New insights into nutrition and cognitive neuroscience: symposium on
 'Early nutrition and later disease: current concepts, research and implications'.
 Proceedings of the Nutrition Society, 68(4), 408-415.
- https://doi.org/https://doi.org/10.1017/S0029665109990188 [Opens in a new window]
 Dedeyne, L., Deschodt, M., Verschueren, S., Tournoy, J., & Gielen, E. (2017). Effects of multiple of the control of the
 - Dedeyne, L., Deschodt, M., Verschueren, S., Tournoy, J., & Gielen, E. (2017). Effects of multi-domain interventions in (pre) frail elderly on frailty, functional, and cognitive status: a systematic review. *Clinical interventions in aging*, 873-896.
- Fessel, M. M., Mann, M., Miyawaki, C. E., & Rosenberg, D. E. (2017). Multi-component
 interventions and cognitive health: A scoping review. *Journal of gerontological nursing*,
 43(5), 39-48.
 - Flanagan, E., Lamport, D., Brennan, L., Burnet, P., Calabrese, V., Cunnane, S. C., De Wilde, M. C., Dye, L., Farrimond, J. A., & Lombardo, N. E. (2020). Nutrition and the ageing brain: Moving towards clinical applications. *Ageing research reviews*, 62, 101079. https://doi.org/10.1016/j.arr.2020.101079
- García-Llorente, A., Casimiro-Andújar, A., Linhares, D., De Souza Vale, R., & Marcos-Pardo, P.
 (2024). Multidomain interventions for sarcopenia and cognitive flexibility in older adults
 for promoting healthy aging: a systematic review and meta-analysis of randomized
 controlled trials. Aging Clinical and Experimental Research, 36(1), 47.
- Gavelin, H. M., Lampit, A., Hallock, H., Sabatés, J., & Bahar-Fuchs, A. (2020). Cognition oriented treatments for older adults: a systematic overview of systematic reviews.
 Neuropsychology Review, 30(2), 167-193. https://doi.org/10.1007/s11065-020-09434-8
 - Gil Martínez, V., Avedillo Salas, A., & Santander Ballestín, S. (2022). Vitamin supplementation and dementia: a systematic review. *Nutrients*, *14*(5), 1033. https://doi.org/https://doi.org/10.3390/nu14051033
 - Giné-Garriga, M., Vidal-Garcia, E., Gómara-Toldrà, N., Roman-Viñas, B., & Roqué-Fíguls, M. (2015). Combined effects of diet and exercise or diet alone to improve physical function in community-dwelling older adults: A systematic review of the literature. *Current Nutrition Reports*, 4, 164-175. https://doi.org/DOI 10.1007/s13668-015-0119-5
 - Gligoroska, J. P., & Manchevska, S. (2012). The effect of physical activity on cognition—physiological mechanisms. *Materia socio-medica*, 24(3), 198.
- Gomez-Pinilla, F., & Tyagi, E. (2013). Diet and cognition: interplay between cell metabolism
 and neuronal plasticity. *Current Opinion in Clinical Nutrition & Metabolic Care*, 16(6),
 726-733. https://doi.org/10.1097/MCO.0b013e328365aae3

- Hafdi, M., Hoevenaar-Blom, M. P., & Richard, E. (2021). Multi-domain interventions for the
 prevention of dementia and cognitive decline. *Cochrane Database of Systematic Reviews*(11). https://doi.org/10.1002/14651858.CD013572.pub2
- Higgins, J. P., & Green, S. (2008). Cochrane handbook for systematic reviews of interventions.
 https://doi.org/10.1002/9780470712184
- Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and
 cognition. *Neuroscience & Biobehavioral Reviews*, 37(9), 2243-2257.
 https://doi.org/10.1016/j.neubiorev.2013.04.005
- Howe, P. R., Evans, H. M., Kuszewski, J. C., & Wong, R. H. (2018). Effects of long chain
 omega-3 polyunsaturated fatty acids on brain function in mildly hypertensive older
 adults. *Nutrients*, 10(10), 1413.
- Hutton, B., Salanti, G., Caldwell, D. M., Chaimani, A., Schmid, C. H., Cameron, C., Ioannidis, J.
 P., Straus, S., Thorlund, K., & Jansen, J. P. (2015). The PRISMA extension statement for
 reporting of systematic reviews incorporating network meta-analyses of health care
 interventions: checklist and explanations. *Annals of internal medicine*, 162(11), 777-784.
 https://doi.org/10.7326/M14-2385

688

689

690

691 692

693

694

700 701

702

703

- Izquierdo, M., Merchant, R., Morley, J., Anker, S., Aprahamian, I., Arai, H., Aubertin-Leheudre, M., Bernabei, R., Cadore, E., & Cesari, M. (2021). International exercise recommendations in older adults (ICFSR): expert consensus guidelines. *The Journal of Nutrition, Health & Aging*, 25(7), 824-853. https://doi.org/10.1007/s12603-021-1665-8
- Jessen, F., Amariglio, R. E., van Boxtel, M., Breteler, M., Ceccaldi, M., Chételat, G., Dubois, B., Dufouil, C., Ellis, K., & van der Flier, W. (2014). Subjective cognitive decline initiative (SCD-I) working group. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. *Alzheimers Dement*, 10(6), 844-852.
- Jiang, H., Kimura, Y., Inoue, S., Li, C., Hatakeyama, J., Wakayama, M., Takamura, D., &
 Moriyama, H. (2024). Effects of different exercise modes and intensities on cognitive
 performance, adult hippocampal neurogenesis, and synaptic plasticity in mice.
 Experimental brain research, 242(7), 1709-1719. https://doi.org/10.1007/s00221-024-06854-3
 - Jiang, X., Guo, Y., Cui, L., Huang, L., Guo, Q., & Huang, G. (2023). Study of diet habits and cognitive function in the Chinese middle-aged and elderly population: the association between folic acid, B vitamins, vitamin D, coenzyme Q10 supplementation and cognitive ability. *Nutrients*, 15(5), 1243. https://doi.org/https://doi.org/10.3390/nu15051243
- Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects
 of aerobic exercise on cognitive function in older adults. *Journals of Gerontology: Series* B, 64(3), 356-363.
- Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice
 living in an enriched environment. *Nature*, 386(6624), 493-495.
 https://doi.org/10.1038/386493a0

- 711 Krikorian, R., Shidler, M. D., Dangelo, K., Couch, S. C., Benoit, S. C., & Clegg, D. J. (2012).
- 712 Dietary ketosis enhances memory in mild cognitive impairment. *Neurobiology of aging*, 713 33(2), 425. e419-425. e427.
- 714 https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2010.10.006
- Li, B.-Y., Wang, Y., Tang, H.-d., & Chen, S.-D. (2017). The role of cognitive activity in cognition protection: from Bedside to Bench. *Translational Neurodegeneration*, *6*, 1-17.
- Li, L., Liu, M., Zeng, H., & Pan, L. (2021). Multi-component exercise training improves the
 physical and cognitive function of the elderly with mild cognitive impairment: a six month randomized controlled trial. *Annals of palliative medicine*, 10(8), 8919-8929.
- Liao, X., Shen, J., & Li, M. (2023). Effects of multi-domain intervention on intrinsic capacity in
 older adults: A systematic review of randomized controlled trials (RCTs). Experimental
 gerontology, 174, 112112.
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M.,
 Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting
 systematic reviews and meta-analyses of studies that evaluate health care interventions:
 explanation and elaboration. *Journal of clinical epidemiology*, 62(10), e1-e34.
- Liu-Ambrose, T., Nagamatsu, L. S., Graf, P., Beattie, B. L., Ashe, M. C., & Handy, T. C. (2010).
 Resistance training and executive functions: a 12-month randomized controlled trial.
 Archives of internal medicine, 170(2), 170-178.
- Liu, C. S., Herrmann, N., Song, B. X., Ba, J., Gallagher, D., Oh, P. I., Marzolini, S., Rajji, T. K.,
 Charles, J., & Papneja, P. (2021). Exercise priming with transcranial direct current
 stimulation: a study protocol for a randomized, parallel-design, sham-controlled trial in
 mild cognitive impairment and Alzheimer's disease. *BMC geriatrics*, 21(1), 1-12.
- Liu, T., Li, N., Hou, Z., Liu, L., Gao, L., Wang, L., & Tan, J. (2020). Nutrition and exercise
 interventions could ameliorate age-related cognitive decline: a meta-analysis of
 randomized controlled trials. *Aging Clinical and Experimental Research*, 33, 1799-1809.
 https://doi.org/https://doi.org/10.1007/s40520-020-01730-w
- Liu, T., Li, N., Hou, Z., Liu, L., Gao, L., Wang, L., & Tan, J. (2022). Nutrition and exercise interventions could ameliorate age-related cognitive decline: a meta-analysis of randomized controlled trials. *Aging Clinical and Experimental Research*, 33, 1799-1809. https://doi.org/https://doi.org/10.1007/s40520-020-01730-w
- Liu, X., Ma, Z., Zhu, X., Zheng, Z., Li, J., Fu, J., Shao, Q., Han, X., Wang, X., & Wang, Z.
 (2023). Cognitive benefit of a multidomain intervention for older adults at risk of
 cognitive decline: a cluster-randomized controlled trial. *The american journal of geriatric* psychiatry, 31(3), 197-209. https://doi.org/https://doi.org/10.1016/j.jagp.2022.10.006
- Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C.,
 Burns, A., Cohen-Mansfield, J., & Cooper, C. (2020). Dementia prevention, intervention,
 and care: 2020 report of the Lancet Commission. *The Lancet*, 396(10248), 413-446.
- 749 https://doi.org/10.1016/S0140-6736(20)30367-6

- Macpherson, H., Brownell, S., Harris, E., Duckham, R. L., O'Connell, S., Meyer, B. J., Mirzaee,
 S., & Daly, R. M. (2022). Effects of a 6-Month Multifaceted Diet and Exercise
 Intervention on Cognition in Older Adults at Risk of Cognitive Decline: The PONDER
 Double-Blind, Placebo-Controlled Randomized Trial. *Journal of Alzheimer's Disease*,
- Marlats, F., Bao, G., Chevallier, S., Boubaya, M., Djabelkhir-Jemmi, L., Wu, Y.-H., Lenoir, H.,
 Rigaud, A.-S., & Azabou, E. (2020). SMR/theta neurofeedback training improves
 cognitive performance and EEG activity in elderly with mild cognitive impairment: a
 pilot study. Frontiers in Aging Neuroscience, 12, 147.

89(1), 247-263. https://doi.org/10.3233/JAD-220234

754

766

767

768

- Marston, K. J., Newton, M. J., Brown, B. M., Rainey-Smith, S. R., Bird, S., Martins, R. N., &
 Peiffer, J. J. (2017). Intense resistance exercise increases peripheral brain-derived
 neurotrophic factor. *Journal of Science and Medicine in Sport*, 20(10), 899-903.
 https://doi.org/10.1016/j.jsams.2017.03.015
- Melzer, T. M., Manosso, L. M., Yau, S.-y., Gil-Mohapel, J., & Brocardo, P. S. (2021). In pursuit
 of healthy aging: effects of nutrition on brain function. *International Journal of Molecular Sciences*, 22(9), 5026. https://doi.org/10.3390/ijms22095026
 - Miquel, S., Champ, C., Day, J., Aarts, E., Bahr, B. A., Bakker, M., Bánáti, D., Calabrese, V., Cederholm, T., & Cryan, J. (2018). Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. *Ageing research reviews*, 42, 40-55. https://doi.org/10.1016/j.arr.2017.12.004
- Mitchell, A. J., Beaumont, H., Ferguson, D., Yadegarfar, M., & Stubbs, B. (2014). Risk of
 dementia and mild cognitive impairment in older people with subjective memory
 complaints: meta-analysis. *Acta Psychiatrica Scandinavica*, 130(6), 439-451.
 https://doi.org/https://doi.org/10.1111/acps.12336
- 774 Mohanty, M., & Kumar, P. (2022). Multi-component interventions in older adults having 775 subjective cognitive decline (SCD)—a review article. *Geriatrics*, 8(1), 4.
- Morris, M. C. (2012). Nutritional determinants of cognitive aging and dementia. *Proceedings of the Nutrition Society*, 71(1), 1-13.
 https://doi.org/https://doi.org/10.1017/S0029665111003296
- Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Bennett, D. A., & Aggarwal, N. T.
 (2015). MIND diet associated with reduced incidence of Alzheimer's disease. *Alzheimer's & dementia*, 11(9), 1007-1014.
- Nelson, M. E., Rejeski, W. J., Blair, S. N., Duncan, P. W., Judge, J. O., King, A. C., Macera, C.
 A., & Castaneda-Sceppa, C. (2007). Physical activity and public health in older adults:
 recommendation from the American College of Sports Medicine and the American Heart
 Association. *Circulation*, 116(9), 1094. https://doi.org/
 10.1161/CIRCULATIONAHA.107.185650
- Ngandu, T., Lehtisalo, J., Solomon, A., Levälahti, E., Ahtiluoto, S., Antikainen, R., Bäckman, L.,
 Hänninen, T., Jula, A., & Laatikainen, T. (2015). A 2 year multidomain intervention of
 diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent

- 790 cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. *The Lancet*, *385*(9984), 2255-2263.
- Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A.,
 Abualhasan, A., Abu-Gharbieh, E., & Akram, T. T. (2022). Estimation of the global
 prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the
 Global Burden of Disease Study 2019. The Lancet public health, 7(2), e105-e125.
- Noach, S., Witteman, B., Boss, H. M., & Janse, A. (2023). Effects of multidomain lifestyle
 interventions on cognitive decline and Alzheimer's disease prevention: A literature
 review and future recommendations. *Cerebral Circulation-Cognition and Behavior*, 4,
 100166.
- Oki, Y., Osaki, T., Kumagai, R., Murata, S., Encho, H., Ono, R., Yasuda, H., & Kowa, H.
 (2024). An 18-month multimodal intervention trial for preventing dementia: J-MINT
 PRIME Tamba. Alzheimer's & dementia, 20(10), 6972-6983.
 https://doi.org/10.1002/alz.14170

805

806

- Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R., & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. *Proceedings of the National Academy of Sciences*, 104(13), 5638-5643. https://doi.org/10.1073/pnas.0611721104
- Pérez-Bilbao, T., Alonso-Dueñas, M., Peinado, A. B., & San Juan, A. F. (2023). Effects of
 combined interventions of exercise and diet or exercise and supplementation on breast
 cancer patients: A systematic review. *Nutrients*, *15*(4), 1013.
 https://doi.org/https://doi.org/10.3390/nu15041013
- Reparaz-Escudero, I., Izquierdo, M., Bischoff-Ferrari, H. A., Martínez-Lage, P., & de Asteasu,
 M. L. S. (2024). Effect of long-term physical exercise and multidomain interventions on
 cognitive function and the risk of mild cognitive impairment and dementia in older
 adults: A systematic review with meta-analysis. *Ageing research reviews*, 102463.
 https://doi.org/10.1016/j.arr.2024.102463
- Roberts, M., Tolar-Peterson, T., Reynolds, A., Wall, C., Reeder, N., & Rico Mendez, G. (2022).
 The effects of nutritional interventions on the cognitive development of preschool-age children: A systematic review. *Nutrients*, 14(3), 532.
- Scarmeas, N., Luchsinger, J. A., Mayeux, R., & Stern, Y. (2007). Mediterranean diet and
 Alzheimer disease mortality. *Neurology*, 69(11), 1084-1093.
- Serra, M. C., Dondero, K. R., Larkins, D., Burns, A., & Addison, O. (2020). Healthy lifestyle
 and cognition: Interaction between diet and physical activity. *Current Nutrition Reports*,
 9, 64-74.
- Shors, T. J., Anderson, M. L., Curlik Ii, D., & Nokia, M. (2012). Use it or lose it: how
 neurogenesis keeps the brain fit for learning. *Behavioural Brain Research*, 227(2), 450-458. https://doi.org/10.1016/j.bbr.2011.04.023
- Smart, C. M., Karr, J. E., Areshenkoff, C. N., Rabin, L. A., Hudon, C., Gates, N., Ali, J. I.,
 Arenaza-Urquijo, E. M., Buckley, R. F., & Chetelat, G. (2017). Non-pharmacologic

- interventions for older adults with subjective cognitive decline: systematic review, metaanalysis, and preliminary recommendations. *Neuropsychology Review*, 27, 245-257. https://doi.org/10.1007/s11065-017-9342-8
- 833 Smith, P. J., Blumenthal, J. A., Babyak, M. A., Craighead, L., Welsh-Bohmer, K. A.,
 834 Browndyke, J. N., Strauman, T. A., & Sherwood, A. (2010). Effects of the dietary
 835 approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition
 836 in overweight adults with high blood pressure. *Hypertension*, 55(6), 1331-1338.
 837 https://doi.org/http://doi.org/10.1161/hypertensionaha.109.146795
- Sood, P., Kletzel, S. L., Krishnan, S., Devos, H., Negm, A., Hoffecker, L., Machtinger, J., Hu,
 X., & Heyn, P. C. (2019). Nonimmersive brain gaming for older adults with cognitive impairment: A scoping review. *The Gerontologist*, *59*(6), e764-e781.
- Sumiyoshi, A., Taki, Y., Nonaka, H., Takeuchi, H., & Kawashima, R. (2014). Regional gray
 matter volume increases following 7 days of voluntary wheel running exercise: a
 longitudinal VBM study in rats. *NeuroImage*, *98*, 82-90.
 https://doi.org/10.1016/j.neuroimage.2014.04.075
- Tait, J. L., Duckham, R. L., Milte, C. M., Main, L. C., & Daly, R. M. (2017). Influence of
 sequential vs. simultaneous dual-task exercise training on cognitive function in older
 adults. Frontiers in Aging Neuroscience, 9, 368.
 https://doi.org/10.3389/fnagi.2017.00368
- Tang, E. Y. H., Harrison, S. L., Albanese, E., Gorman, T. J., Rutjes, A. W., Siervo, M., &
 Stephan, B. (2015). Dietary interventions for prevention of dementia in people with mild
 cognitive impairment. COCHRANE LIBRARY, 2015(10), 1-22.
- Teixeira, J. P., de Castro, A. A., Soares, F. V., da Cunha, E. F., & Ramalho, T. C. (2019). Future
 therapeutic perspectives into the Alzheimer's disease targeting the oxidative stress
 hypothesis. *Molecules*, 24(23), 4410.

856

857

858

859 860

861

862

- Ten Brinke, L. F., Bolandzadeh, N., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., Miran-Khan, K., & Liu-Ambrose, T. (2015). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. British journal of sports medicine, 49(4), 248-254. https://doi.org/10.1136/bjsports-2013-093184
- Thunborg, C., Wang, R., Rosenberg, A., Sindi, S., Andersen, P., Andrieu, S., Broersen, L. M., Coley, N., Couderc, C., & Duval, C. Z. (2024). Integrating a multimodal lifestyle intervention with medical food in prodromal Alzheimer's disease: the MIND-ADmini randomized controlled trial. *Alzheimer's research & therapy*, 16(1), 118.
- Valls-Pedret, C., Sala-Vila, A., Serra-Mir, M., Corella, D., De la Torre, R., Martínez-González,
 M. Á., Martínez-Lapiscina, E. H., Fitó, M., Pérez-Heras, A., & Salas-Salvadó, J. (2015).
 Mediterranean diet and age-related cognitive decline: a randomized clinical trial. *JAMA Internal Medicine*, 175(7), 1094-1103. https://doi.org/10.1001/jamainternmed.2015.1668
- van Balkom, T. D., van den Heuvel, O. A., Berendse, H. W., van der Werf, Y. D., & Vriend, C. (2020). The effects of cognitive training on brain network activity and connectivity in

- 870 aging and neurodegenerative diseases: a systematic review. Neuropsychology Review, 871 30(2), 267-286.
- 872 van Praag, H., Shubert, T., Zhao, C. M., & Gage, F. H. (2005). Exercise enhances learning and 873 hippocampal neurogenesis in aged mice [Article]. Journal of neuroscience, 25(38), 8680-874 8685. https://doi.org/10.1523/jneurosci.1731-05.2005
- 875 Wang, Z., & Dong, B. (2018). Screening for cognitive impairment in geriatrics. Clinics in 876 Geriatric Medicine, 34(4), 515-536. 877 https://doi.org/https://doi.org/10.1016/j.cger.2018.06.004

885

886

887

888

889

890

891

- 878 Wu, C., Yi, Q., Zheng, X., Cui, S., Chen, B., Lu, L., & Tang, C. (2019). Effects of mind-body 879 exercises on cognitive function in older adults: A meta-analysis. Journal of the American Geriatrics Society, 67(4), 749-758. https://doi.org/10.1111/jgs.15714
- 881 Xia, R., Qiu, P., Lin, H., Ye, B., Wan, M., Li, M., Tao, J., Chen, L., & Zheng, G. (2019). The 882 effect of traditional Chinese mind-body exercise (Baduanjin) and brisk walking on the dorsal attention network in older adults with mild cognitive impairment. Frontiers in 883 Psychology, 10, 2075. https://doi.org/10.3389/fpsyg.2019.02075 884
 - Young, J., Angevaren, M., Rusted, J., & Tabet, N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews(4). https://doi.org/10.1002/14651858.CD005381.pub4
 - Zülke, A. E., Pabst, A., Luppa, M., Roehr, S., Seidling, H., Oey, A., Cardona, M. I., Blotenberg, I., Bauer, A., & Weise, S. (2024). A multidomain intervention against cognitive decline in an at-risk-population in Germany: Results from the cluster-randomized AgeWell. de trial. Alzheimer's & dementia, 20(1), 615-628. https://doi.org/10.1002/alz.13486