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ABSTRACT
Background. Located around the Caeté River estuary, the municipality of Bragança is
one of the primary fishing hubs in the region. Several high-value crustacean species are
intensively harvested in this area and are commonly sold at open-air markets. However,
fishery products are often labeled with generic trade names, which hinders accurate
species identification and conceals the true diversity of the exploited species.
Methods. Therefore, we conducted the molecular identification of crustacean species
sold in Bragança. Samples were collected during two periods: from February to August
2017, and from September 2021 to May 2022. A total of 137 samples were analyzed,
including 120 obtained from markets and 17 collected from the wild. Specimens were
first identified morphologically, and two regions of the cytochrome c oxidase subunit
I (COI) gene were amplified for molecular identification. Genetic analyses included
haplotype determination, Basic Local Alignment Search Tool (BLAST) comparisons,
phylogenetic tree construction, and species delimitation approaches.
Results. We obtained a dataset comprising 16 commercial names and 151 DNA
sequences, including 38 sequences from region I (the barcode region) and 113 sequences
from region II of the COI gene. A total of 15 crustacean species, belonging to seven
genera and five families, were identified. Six of these species were classified as exotic, and
three were recently described in the scientific literature. Additionally, we documented
the occurrence of two distinct lineages of Penaeus monodon along the Brazilian coast.
Molecular species delimitation tools effectively identified all sampled taxa and revealed
underestimated levels of biodiversity due to the use of generic commercial names. This
issue poses a potential threat to the long-term sustainability of fishery resources and
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commercial fishing in northern Brazil, as it leads to biased qualitative and quantitative
assessments of fishery products.

Subjects Biodiversity, Conservation Biology, Genetics
Keywords Commercial name, DNA barcode, Exotic species, Shrimp

INTRODUCTION
The northern coast of Brazil extends for over 2,500 km along the states of Amapá,
Pará, and Maranhão (Ekau & Knoppers, 1999). The fauna of this region is highly diverse,
encompassing both marine and estuarine species, including several taxa of significant
socioeconomic and ecological importance (Camargo & Isaac, 2001; Rosa Filho et al., 2018).
This remarkable biodiversity is strongly influenced by the outflow of the Amazon River, in
combination with favorable environmental conditions (Barthem & Fabré, 2004; Ferreira et
al., 2019).

Accordingly, the municipality of Bragança, in the state of Pará, is one of the major fish
landing sites in northern Brazil, both in terms of harvested stock volume, such as crabs,
and the richness of high-value species like lobsters (Furtado Júnior, Tavares & Brito, 2006).
The abundance of fishery resources in this region is partly attributed to Bragança’s location
within the Caeté River estuary, a river–marine system that floods surrounding mangrove
areas daily, creating a nutrient-rich environment exploited by numerous aquatic species
(Wolff, Koch & Isacc, 2000; Braga, Santo & Giarrizzo, 2006).

Fisheries represent amajor economic activity in Bragança and surrounding communities,
characterized by the exploitation of various crustacean species, including shrimp (Penaeus
schmitti), swimming crabs (Callinectes spp.), and mangrove crabs (Ucides cordatus) (Vieira
et al., 2014). Both artisanal (small-scale) and industrial (large-scale) fishing operations are
carried out in this region, yielding significant quantities of fishery products to meet both
regional and international demand (Braga, Santo & Giarrizzo, 2006).

Several crustacean species have been commonly reported in local commerce (Freire, Silva
& Souza, 2011; Santana et al., 2020), with commercial practices largely based on the use of
trade names (popular nomenclature) and sales categories (Santana et al., 2020). As a result,
distinct species are often sold under the same common name, while a single species may be
marketed under multiple names (Santana et al., 2020; Santana et al., 2023), complicating
the proper management of fishery stocks. In a survey of species sold at the ‘‘feira livre’’
(street market) in Bragança. Freire, Silva & Souza (2011) identified eight crustacean species
being marketed under three generic categories: ‘‘camarão’’ (shrimp) (n= 5), ‘‘siris’’ (crabs)
(n= 2), and ‘‘caranguejo’’ (mangrove crab) (n= 1). More recently, Santana et al. (2020)
recorded 14 trade names corresponding to only seven crustacean species sold at the same
location.

Popular nomenclature is an unreliable parameter for assessing regional biodiversity, as
most common names typically refer to a group of species (Santana et al., 2020). This leads
to biased estimates of fishery stocks and species richness, as previously demonstrated for

Sousa et al. (2025), PeerJ, DOI 10.7717/peerj.19586 2/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.19586


bony fishes and elasmobranchs (Martins et al., 2021; Santana et al., 2023). Furthermore, the
studies by Freire, Silva & Souza (2011) and Santana et al. (2020) relied on morphological
species identification, a limited approach primarily due to the morphological similarities
between taxa and the lack of comprehensive literature covering all developmental
stages. Consequently, more accurate techniques are necessary to properly assess the
true species diversity exploited in fisheries, such as species-specific DNA sequences from
the mitochondrial genome.

Among the mitochondrial DNA (mtDNA) markers available, partial sequences of the
cytochrome c oxidase subunit I (COI) gene have been widely used for species identification
across various animal groups, including crustaceans (Silva-Oliveira et al., 2011). The initial
COI region (∼650 base pairs or bp) has been officially designated as a global standard
for animal identification, known as DNA barcoding (Hebert et al., 2003), and has been
successfully applied in fisheries authentication (Pejovic et al., 2016; Bezeng & Bank, 2019;
Santana et al., 2023). Furthermore, both the first and second regions of the COI gene have
proven effective in distinguishing crustacean species (Silva-Oliveira et al., 2011; Ferreira et
al., 2023). For example, several studies based on sequencing the second COI region have
yielded reliable and unequivocal results (Silva-Oliveira et al., 2011; Udayasuriyan et al.,
2015; Harris, Rosado & Xavier, 2016), particularly considering that available COI datasets
for crustaceans remain limited to a few taxa. However, in certain cases, the exclusive use
of mtDNA can present constraints and limitations, such as maternal inheritance and a
predisposition to introgression, which may lead to biased conclusions (Mutanen et al.,
2016; Kochanova, 2024).

Given the importance of fishing resources and the limited knowledge regarding the
true diversity of commercial species in the Bragança region, Amazon coast, we utilized the
COI gene to identify crustacean species sold under different commercial names, including
samples obtained by Santana et al. (2020) and those from natural environment locations.
These data will also contribute to the creation of a reference library for the carcinofauna
of the Amazon coast, aiming to expand public COI databases, with an emphasis on the
barcode region. In addition to generating technical and scientific knowledge, our goal is to
provide a foundation for the development of public policies that ensure the revenue from
commercial fishing is linked to the sustainability of fishery resources and food security on
the Amazon coast.

MATERIALS AND METHODS
Collection and processing of samples
Crustacean specimens from the Bragança market were obtained during two sampling
periods. The first set of samples was collected between February and August 2017 as part
of a study by Santana et al. (2020). Taxa were identified morphologically using species
identification keys (Melo, 1996; Costa et al., 2003) and subsequently labeled according to
their commercial trade names. The second sampling period extended from September 2021
to May 2022. During both periods, fresh and processed specimens (cooked or salted) were
collected biweekly (every 15 days) and recorded based on their commercial labels or local
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Figure 1 Location of the Bragança Free Fair (‘‘Feira livre’’) in coastal Amazon (red circle). (A) Location
of the open-air market, with the dashed line indicating the area where crustaceans are sold. (B) Common
methods of selling crustaceans observed in the Bragança Free Fair.

Full-size DOI: 10.7717/peerj.19586/fig-1

names provided by traders. Combined, these efforts resulted in 16 months of sampling,
covering the crustaceans marketed in Bragança (1◦03′57′′S, 46◦47′22′′W; Fig. 1) across
more than a full annual cycle.

In contrast, samples from natural environments were collected on the Ajuruteua
Peninsula between November 2021 and June 2022, with biweekly sampling intervals.
Crustaceans in this region were captured by local fishermen using trawl nets (25 mm
mesh size). Specimens were initially documented according to the local names reported
by the fishermen (Fig. 1) and later identified morphologically using the previously cited
taxonomic keys (Melo, 1996; Costa et al., 2003). Overall, crustacean diversity was assessed
using 137 sequenced samples, comprising 120 specimens sourced from the street market
and 17 collected from wild populations (Table S1).

Tissue samples were extracted from each specimen, preserved in 2.0 mL microtubes
containing 90% ethanol, and labeled with unique registration numbers. The samples were
then stored at −20 ◦C for long-term preservation in the Laboratório de Genética Aplicada
(LAGA).

All specimens were morphologically identified using taxonomic keys (Melo, 1996;
Costa et al., 2003) along with their commercial trade names. The specimens were then
photographed following standard scientific protocols, preserved according to the methods
outlined by Martins (1994), and deposited as voucher specimens in the LAGA fisheries
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collection (Instituto de Estudos Costeiros, Universidade Federal do Pará, Brazil). These
contributions enhance the regional catalog of commercial carcinofauna.

Laboratorial procedures
Genomic DNA was extracted from each tissue sample using the Wizard Genomic DNA
Purification Kit (Promega) or the NaCl protocol adapted fromAljanabi & Martinez (1997).
After isolation, the DNA was stained with a solution containing GelRed™ (Biotium) and
blue juice buffer (three µL of solution: three µL of DNA) and subjected to electrophoresis
on a 1% agarose gel at 60 V for 30 min. After this period, the DNA samples were visualized
under UV light to assess the quality of the isolated DNA. Finally, DNA quantification was
performed using a NanoDrop® 2000 spectrophotometer.

The COI sequences were amplified via PCR (polymerase chain reaction) using 2.4 µL
of dNTPs (1.25 mM), 1.5 µL of buffer (10x), 0.6 µL of MgCl2 (50 mM), 0.6 µL of each
primer (50 ng/µL), approximately 100 ng of template DNA, 0.1µL of Taq DNA polymerase
(5 U/µL), and ultrapure water to a final volume of 15 µL.

Themolecular identification of samples provedparticularly challenging due to difficulties
in standardizing the PCR reactions (reaction stoichiometry and cycling conditions) for
the barcode region of many specimens. Additionally, during the development of this
study, only a few public barcode sequences were available for commercial crustaceans.
Therefore, two COI regions were used in this study. The first is the traditional barcode
region, referred to in this study as ‘‘region I’’, amplified using primers LCO1490 and
HCO2198 (Folmer et al., 1994), and the second is the second COI region, referred to as
‘‘region II’’, amplified using primers COIA and COIF (Palumbi & Benzie, 1991). Both COI
regions were amplified under the same conditions, as follows: an initial denaturation step
at 94 ◦C for 4 min, followed by 35 cycles of denaturation at 95 ◦C for 35 s, annealing at
48◦–59 ◦C for 40 s, and extension at 72 ◦C for 45 s, with a final extension step at 72 ◦C for
5 min.

The amplicons were purified using PEG 8000 (polyethylene glycol) according to the
method described by Paithankar & Prasad (1991), and then subjected to the sequencing
reaction using the dideoxy-terminal method (Sanger, Nicklen & Coulson, 1977) with the
Big Dye kit (ABI PrismTM Dye Terminator Cycle Sequencing Reaction; Thermo Fisher
Scientific, Waltham, MA, USA). After precipitation, the products were analyzed on an
automatic sequencer (ABI 3500; Thermo Fisher Scientific).

Sequence datasets and genetic analyses
The DNA sequences were aligned and edited using BioEdit software (Hall, 1999), where
potential errors or uncertain nucleotides were identified and corrected. Subsequently, the
sequences were automatically aligned using the Clustal-W package (Thompson, Higgins
& Gibson, 1994), also integrated within BioEdit (Hall, 1999). A second round of visual
correction was performed on the final alignments, when necessary. Based on this final
dataset, haplotypes were determined using DNAsp software (Librado & Rozas, 2009) to
aid in the identification of the samples. The sequences generated in this study have been
deposited in NCBI. Region I is available under accession numbers PP706442 to PP706467,
while region II is available under accession numbers PP708622 to PP708656.
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To determine the levels of genetic similarity among the samples for species identification,
each haplotype was compared to public sequence datasets available on the GenBank
platform using the Basic Local Alignment Search Tool (BLAST) for nucleotides (Altschul
et al., 1997), as well as on the BOLD (Barcoding of Life Database) system (Ratnasingham
& Hebert, 2007). The published sequences showing the highest similarity to the samples
in this study were included in the sequence datasets used to generate the cladograms.
Additionally, we assessed the number of polymorphic sites, which may indicate species-
specific mutations, and examined the presence of putative stop codons using the tools
available in MEGA 11.0.11 (Tamura, Stecher & Kumar, 2021).

Phylogenetic analyses were performed using two separate datasets, each corresponding
to a distinct region of the COI gene. This approach was selected because the concatenated
dataset did not produce reliable phylogenetic topologies, likely due to the limited number
of sequences and haplotypes in region I, which caused a discrepancy in sequence numbers
between the two regions.

To corroborate the levels of similarity and infer the phylogenetic relationships among
the analyzed samples, phylogenetic trees were constructed using Bayesian inference (BI)
and maximum likelihood (ML) approaches.

The BI analysis was performed using BEAST 1.10.4 software (Drummond et al., 2012).
The parameters for the BI included the use of a strict clock and Yule speciation prior.
Posterior probabilities were estimated assuming 20 million generations with a 10%
burn-in. The analytical parameters were inspected in Tracer 1.5 (Rambaut & Drummond,
2009) to evaluate the convergence of chains, with Effective Sampling Size (ESS) values
above 200 considered adequate. The trees generated in BEAST were summarized using
TreeAnnotator 1.10.4 software (Suchard et al., 2018) to obtain a consensus tree. The ML
analysis was conducted using IQ-TREE 2.1.3 software (Nguyen et al., 2015) and was based
on 1,000 pseudoreplicates to ensure statistical reliability (Felsenstein, 1985). In both analyses
(BI and ML), the evolutionary model GTR+I was used, as determined by JModelTest 2
(Darriba et al., 2012).

In MEGA 11.0.11 (Tamura, Stecher & Kumar, 2021), we generated pairwise genetic
distance matrices for both intra and interspecific comparisons based on the K2P model
(Kimura, 1980), which is the standard molecular evolution model commonly used in DNA
barcoding studies (Hebert et al., 2003)

Finally, the software FigTree 1.4.4 was used to visualize the final trees (Rambaut, 2014),
followed by editing in InkScape 0.92.4 (https://www.inkscape.org). The diagram illustrating
the relationships between common trade names and the identified species was created
using RAWGraphs (https://rawgraphs.io).

Species delimitation
Species delimitation tests were conducted separately for each genetic region (I and II)
using three complementary methods: the Generalized Mixed Yule Coalescent (GMYC;
Pons et al., 2006), the Bayesian Poisson Tree Process (bPTP; Zhang et al., 2013), and
Assemble Species by Automatic Partitioning (ASAP; Puillandre, Brouillet & Achaz, 2021).
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These analyses aimed to define molecular operational taxonomic units (MOTUs), which
represent potential species-level entities (Floyd et al., 2002).

The GMYC analysis was conducted using the Splits package (Ezard, Fujisawa &
Barraclough, 2009) within the R 4.4.2 environment (R Core Team, 2024). An ultrametric
tree, generated in BEAST 1.10.4 (Drummond et al., 2012), was used for this analysis.

The bPTPmethodwas performed using aML tree as the input file, generated in IQ-TREE
2.1.3 software (Nguyen et al., 2015). The bPTP analysis was executed on the online PTP
platform (https://species.h-its.org/ptp/) using the platform’s default parameters.

The ASAP analysis was conducted using the online ASAP platform (https://bioinfo.
mnhn.fr/abi/public/asap/asapweb.html), based on aK2P distancematrix generated inMEGA
11.0.11 (Tamura, Stecher & Kumar, 2021), using the Kimura (K80) TS/TV evolutionary
model.

RESULTS
Characterization of datasets and trade names
The sampling efforts yielded a total of 250 specimens, representing the primary categories
of crustaceans: ‘‘camarão’’ (shrimp), ‘‘lagosta’’ (lobster), ‘‘siri’’ (crabs), and ‘‘caranguejo’’
(mangrove crab). A total of 16 trade names were recorded, with the majority corresponding
to shrimp, represented by 12 popular trade names, including: ‘‘camarão branco’’, ‘‘camarão
cascudo’’, ‘‘camarão piré’’, ‘‘camarão vananeio’’, ‘‘camarão grazado’’, ‘‘camarão piticaia’’,
‘‘camarão vermelho’’, ‘‘camarão bate pé’’, ‘‘camarão tigre’’, ‘‘camarão arco-íris’’, ‘‘camarão
da Amazônia’’ and ‘‘camarão pitu’’. In the case of crabs, no subdivisions within the general
categories ‘‘caranguejo’’ and ‘‘siri’’ were recorded. As for lobsters, two distinct trade names
were reported: ‘‘lagosta vermelha’’ and ‘‘lagosta sapata’’.

Molecular identification based on genetic similarity levels
The final dataset for region I (barcode region) included 38 sequences of 560
bp, corresponding to 26 haplotypes (Table 1), representing the following species:
P. schmitti, Penaeus vannamei, Penaeus isabelae, Penaeus monodon lineage 1 (clade
A), Penaeus monodon lineage 2 (clade B), Xiphopenaeus dincao, Xiphopenaeus kroyeri,
Mierspenaeopsis sculptilis, Macrobrachium equidens, U. cordatus, Callinectes bocourti,
Panulirus meripurpuratus, and Panulirus laevicauda. On the other hand, the dataset for
region II consisted of 113 sequences of 425 bp, representing 35 haplotypes. These haplotypes
corresponded to the following species: P. schmitti, P. vannamei, P. isabelae, P. monodon L1,
P. monodon L2, X. dincao, X. kroyeri,Macrobrachium rosenbergii,M. sculptilis,M. equidens,
U. cordatus, C. bocourti, and Callinectes danae.

Most species were represented in both COI datasets, with the exception of the lobsters
from the genus Panulirus (found only in region I) and the crab C. danae (found only in
region II). All crustacean taxa were successfully discriminated, resulting in a total of 15
species from seven genera and five families, including a possible new species of Penaeus
monodon. The haplotype similarity levels from both datasets in relation to the public
datasets ranged from 98% to 100% (Table 1). The family Penaeidae contained the highest
number of species (n= 7), followed by Palaemonidae, Portunidae, and Palinuridae, each
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Table 1 The frequency of each haplotype is shown in parentheses. The asterisks refer to the samples with successful sequencing of both COI re-
gions.

Haplotype COI region Reference
sample

Location Commercial
designation

NCBI/BOLD identity and access code NCBI/BOLD
similarity

1 (1) I cbr01 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Penaeus schmittiMT607578/PENAE056 100%/100%

2 (1) I cca14 ‘‘Feira Livre’’ ‘‘Camarão cascudo’’ Penaeus vannameiMW027142/GBMNB54360 100%/100%

3 (1) I cbr55 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Penaeus isabelae MG662009/GBCMD31194 99.82%/99.82%

4 (1) I cca10 ‘‘Feira Livre’’ ‘‘Camarão cascudo’’ Penaeus isabelae MG662009/GBCMD31194 98.93%/98.92%

5 (2) I ct04 ‘‘Ajuruteua ‘‘Camarão tigre’’ Penaeus monodon clade A MT449918/GBMNF10111 100%/100%

6 (1) I ct05* ‘‘Ajuruteua ‘‘Camarão tigre’’ Penaeus monodon clade B MT449922/GBMNC67825 100%/100%

7 (1) I cbr19 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Xiphopenaeus dincao KY449120/GBCMD25426 100%/100%

8 (3) I cpi04 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Xiphopenaeus kroyeri KY449079/GBCMD25385 100%/100%

9 (3) I cpi13 ‘‘Feira Livre’’ ‘‘Camarão piré’’ Xiphopenaeus kroyeri KY449079/GBCMD25385 99.64%/99.64%

10 (2) I carc05* ‘‘Feira Livre’’ ‘‘Camarão arco-íris’’ Mierspenaeopsis sculptilis KP297897/GBMNC67910 100%/100%

11 (3) I cam01* ‘‘Feira Livre’’ ‘‘Camarão da Amazônia’’ Macrobrachium rosenbergii OL824984/ANGEN102 100%/ 100%

12 (2) I cca01* ‘‘Feira Livre’’ ‘‘Camarão cascudo’’ Macrobrachium equidensMW479976/GBMND16080 99.82%/99.82%

13 (3) I car01 ‘‘Feira Livre’’ ‘‘Caranguejo’’ Ucides cordatus KU313508/GBCMD22808 99.82%/100%

14 (2) I car02 ‘‘Feira Livre’’ ‘‘Caranguejo’’ Ucides cordatus KU313508/GBCMD22808 100%/99.82%

15 (1) I car12* ‘‘Feira Livre’’ ‘‘Caranguejo’’ Ucides cordatus KU313508/GBCMD22808 99.29%/99.10%

16 (1) I car15* ‘‘Feira Livre’’ ‘‘Caranguejo’’ Ucides cordatus KU313508/GBCMD22808 99.46%/99.28%

17 (1) I car16* ‘‘Feira Livre’’ ‘‘Caranguejo’’ Ucides cordatus KU313508/GBCMD22808 99.64%/99.46%

18 (1) I sir05 ‘‘Feira Livre’’ ‘‘Siri’’ Callinectes bocourtiMG462542/GBCMD28602 99.11%/99.10%

19 (1) I sir06 ‘‘Feira Livre’’ ‘‘Siri’’ Callinectes bocourtiMG462542/GBCMD28602 99.64%/99.64%

20 (1) I sir08 ‘‘Feira Livre’’ ‘‘Siri’’ Callinectes bocourtiMG462542/GBCMD28602 100%/100%

21 (1) I sir09 ‘‘Feira Livre’’ ‘‘Siri’’ Callinectes bocourtiMG462542/GBCMD28602 99.82%/99.82%

22 (1) I sir01 ‘‘Feira Livre’’ ‘‘Siri’’ Callinectes bocourtiMG462542/GBCMD28602 99.82%/99.82%

23 (1) I sir02* ‘‘Feira Livre’’ ‘‘Siri’’ Callinectes bocourtiMG462542/GBCMD28602 99.82%/99.82%

24 (1) I lag01 ‘‘Feira Livre’’ ‘‘Lagosta vermelha’’ Panulirus meripurpuratusMF490043/GBCMD28243 99.46%/99.46%

25 (1) I lag02 ‘‘Feira Livre’’ ‘‘Lagosta vermelha’’ Panulirus meripurpuratusMF490043/GBCMD28243 99.46%/99.46%

26 (1) I lsa03 ‘‘Feira Livre’’ ‘‘Lagosta sapata’’ Panulirus laevicauda AF339462/Early-Release 98.21%/99.10%

1 (10) II cbr18 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Penaeus schmitti AY135189 100%

2 (2) II cbr17 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Penaeus schmitti AY135189 99.76%

3 (1) II cbr05 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Penaeus schmitti AY135189 99.53%

4 (7) II cgr03 ‘‘Feira Livre’’ ‘‘Camarão grazado’’ Penaeus vannameiMT178583 100%

5 (3) II cve02 ‘‘Feira Livre’’ ‘‘Camarão vermelho’’ Penaeus vannameiMT178583 99.76%

6 (2) II cca23 ‘‘Feira Livre’’ ‘‘Camarão cascudo’’ Penaeus vannameiMT178583 99.53%

7 (11) II cba02 ‘‘Feira Livre’’ ‘‘Camarão bate pé’’ Penaeus isabelae MN240522 100%

8 (19) II cpi10 ‘‘Feira Livre’’ ‘‘Camarão piré’’ Penaeus isabelae MN240522 99.29%

9 (1) II cca33 ‘‘Feira Livre’’ ‘‘Camarão cascudo’’ Penaeus isabelae MN240522 99.76%

10 (1) II cca07 ‘‘Feira Livre’’ ‘‘Camarão cascudo’’ Penaeus isabelae MN240522 99.53%

11 (1) II cbr42 ‘‘Feira Livre’’ ‘‘Camarão branco’’ Penaeus isabelae MN240522 98.82%

12 (1) II cts04 ‘‘Feira Livre’’ ‘‘Camarão tigre’’ Penaeus monodon clade A KX459267 99.76%

13 (1) II ct05 ‘‘Ajuruteua’’ ‘‘Camarão tigre’’ No correspondence No data

14 (7) II cgr02 ‘‘Feira Livre’’ ‘‘Camarão grazado’’ Xiphopenaeus kroyeri DQ084368 100%

(continued on next page)
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Table 1 (continued)

Haplotype COI region Reference
sample

Location Commercial
designation

NCBI/BOLD identity and access code NCBI/BOLD
similarity

15 (7) II cpi44 ‘‘Ajuruteua’’ ‘‘Camarão piré’’ Xiphopenaeus kroyeri DQ084368 99.76%

16 (1) II cpi46 ‘‘Ajuruteua’’ ‘‘Camarão piré’’ Xiphopenaeus kroyeri DQ084368 99.53%

17 (1) II cpi12 ‘‘Feira Livre’’ ‘‘Camarão piré’’ Xiphopenaeus kroyeri DQ084368 99.76%

18 (4) II cpi39 ‘‘Ajuruteua’’ ‘‘Camarão piré’’ Xiphopenaeus dincao DQ084376 100%

19 (2) II cpic01 ‘‘Feira Livre’’ ‘‘Camarão piticaia’’ Xiphopenaeus dincao DQ084376 99.82%

20 (9) II carc01 ‘‘Feira Livre’’ ‘‘Camarão arco-íris’’ Mierspenaeopsis sculptilisMT178686 97.65%

21 (2) II cam02 ‘‘Feira Livre’’ ‘‘Camarão da Amazônia’’ Macrobrachium equidens KM255682 100%

22 (1) II cpi43 ‘‘Feira Livre’’ ‘‘Camarão piré’’ Macrobrachium equidens KM255682 99.53%

23 (1) II cca02 ‘‘Feira Livre’’ ‘‘Camarão cascudo’’ Macrobrachium equidens KM255682 99.53%

24 (3) II cam01 ‘‘Feira Livre’’ ‘‘Camarão da Amazônia’’ Macrobrachium rosenbergiiMK782972 100%

25 (1) II cpit01 ‘‘Feira Livre’’ ‘‘camarão pitu’’ Macrobrachium rosenbergiiMK782972 99.53%

26 (2) II car13 ‘‘Feira Livre’’ ‘‘Caranguejo’’ No correspondence No data

27 (1) II car11 ‘‘Feira Livre’’ ‘‘Caranguejo’’ No correspondence No data

28 (1) II car12 ‘‘Feira Livre’’ ‘‘Caranguejo’’ No correspondence No data

29 (1) II car15 ‘‘Feira Livre’’ ‘‘Caranguejo’’ No correspondence No data

30 (2) II car16 ‘‘Feira Livre’’ ‘‘Caranguejo’’ No correspondence No data

31 (1) II car06 ‘‘Feira Livre’’ ‘‘Caranguejo’’ No correspondence No data

32 (1) II car07 ‘‘Feira Livre’’ ’Caranguejo No correspondence No data

33 (3) II sir11 ‘‘Ajuruteua’’ ‘‘Siri’’ Callinectes danae MH062450 99.29%

34 (1) II sir14 ‘‘Ajuruteua’’ ‘‘Siri’’ Callinectes danae MH062450 98.82%

35 (1) II sir02 ‘‘Feira Livre’’ ‘‘Siri’’ No correspondence No data

Notes.
*Samples with successful sequencing of both COI regions.

with two species. Within Penaeidae, Penaeus was the most diverse genus, represented by
four species, while one or two species were reported for the other genera.

Some taxa were differentiated by region II; however, due to the absence of reference
sequences in NCBI for these taxa, they were identified using region I (the barcode region).
These taxa include U. cordatus, C. bocourti, and lineage 2 of P. monodon. The species
identified from the wild-caught samples included P. schmitti, P. isabelae, P. monodon
clade A, P. monodon clade B, X. kroyeri, X. dincao, and C. danae. Six of the 15 recorded
species were alien species (P. vannamei, P. monodon clade A, P. monodon clade B,
M. sculptilis, M. equidens, and M. rosenbergii), while three represented recently described
taxa (P. isabelae, X. dincao, and P. meripurpuratus).

Identification based on phylogenetic reconstruction
The BI and ML trees yielded similar topologies, both recovering the same reciprocally
monophyletic groups and clustering the haplotypes of each species with high support
values. Therefore, the BI tree was selected to represent the phylogenetic inferences, while
the ML trees are presented in Fig. S1. In the tree corresponding to region II, which included
the 35 haplotypes, all taxa were discriminated. However, only 10 species were identified, as
no public reference sequences were available for some of the samples (Fig. 2).
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Figure 2 Bayesian inference (BI) tree showing the haplotypes of crustaceans based on the second re-
gion (region II) of the Cytochrome COxidase Subunit I (COI) gene, including the reference sequences
from public databases. The statistical support values are shown on internodes.

Full-size DOI: 10.7717/peerj.19586/fig-2

In the tree corresponding to region I, the 26 haplotypes formed 14 clades, each
representing a species, with public reference sequences (Fig. 3). This analysis included
the three taxa that were not previously identified by COI region II, as follows: ‘‘caranguejo’’
(U. cordatus), ‘‘siri’’ (C. bocourti), and one lineage of ‘‘camarão tigre’’ (P. monodon L2).
The two lineages identified as ‘‘camarão tigre’’ (referred to as P. monodon clades A and B)
were differentiated by genetic distance values above 7.23%, thus resulting in a total set of
15 species.

The highest intraspecific distances observed for region I were found in P. isabelae
(1.27%), U. cordatus (1.27%), and C. bocourti (1.27%) (Table S2). For region II, the
highest values were recorded in P. isabelae (1.43%), U. cordatus (1.67%), and X. dincao
(1.19%) (Table S3). Some samples showed significant intraspecific distance when compared
to sequences from the public database, such as the ‘‘lagosta’’ sample (lsa03) diverging by
1.82% from P. laevicauda (AF339462) in region I (Table S2), and the Carc05 sample
showing a 2.40% divergence from the M. sculptilis sequence (MT178686) in region II
(Table S3).
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Figure 3 Bayesian inference (BI) tree showing the haplotypes of crustaceans based on the first region
(barcode region or region I) of the Cytochrome COxidase Subunit I (COI) gene, including the refer-
ence sequences from public databases. The statistical support values are shown on internodes.

Full-size DOI: 10.7717/peerj.19586/fig-3

The interspecific distance values ranged from7.23% to 34.01%,with the smallest distance
observed between P. monodon clades A and B for region I (Table S2). For region II, the
distances ranged from 10.7% to 32.56%, with the smallest value also observed between P.
monodon clades A and B (Table S3).

The delimitation tests for region I identified 14 MOTUs across all three methods (ASAP,
bPTP, and GMYC). For region II, ASAP and GMYC delimited 13 MOTUs, while bPTP
identified 14 MOTUs, including the separation of Carc05 from the M. sculptilis sequence
(MT178686). All tests consistently identified P. monodon (clade A and clade B) as distinct
MOTUs.

Commercial trade names versus species
As mentioned earlier, ‘‘camarão’’ (shrimp) was the commercial category with the highest
number of trade names, encompassing 12 popular designations (Fig. 4). For the wild-
collected crustacean samples, the common names included ‘‘camarão branco,’’ ‘‘camarão
piré,’’ ‘‘camarão tigre,’’ and ‘‘siri’’.
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Figure 4 Alluvial diagram representing the 15 species of crustaceans recorded on the coastal Amazon.
Relationships among popular trade names (left), scientific species names (center), and respective families
(right). Matching colors illustrate connections among common names, species, and families. The thick-
ness of the connecting lines represents the frequency with which each popular name is used.

Full-size DOI: 10.7717/peerj.19586/fig-4

Except for P. schmitti, all other species of Penaeidae and two species of Macrobrachium
were commercialized under different trade names. The species with the most recorded
designations were P. vannamei (‘‘camarão cascudo’’, ‘‘vananeio’’, ‘‘grazado’’, ‘‘piticaia’’,
and ‘‘vermelho’’) and P. isabelae (‘‘camarão branco’’, ‘‘cascudo’’, ‘‘piré’’, and ‘‘bate pé’’)
(Fig. 4). On the other hand, the term ‘‘siri’’ (crabs) and six shrimp trade names were used
to refer to more than one species. For instance, ‘‘camarão branco’’ and ‘‘camarão piré’’
were trade names used to refer to four distinct species each (Fig. 4).

Representative images of the crustacean species (P. schmitti, P. vannamei, P. monodon,
X. kroyeri, M. sculptilis, M. rosenbergii, P. meripurpuratus , C. bocourti, and U. cordatus)
identified within each category of trade names are shown in Fig. 5.

DISCUSSION
Diversity of commercialized crustaceans validated by the COI marker
TheCOImarker proved to be an effective tool in uncovering the diversity of the commercial
carcinofauna, representing the first dataset ofmitochondrial DNA sequences for identifying
commercialized crustaceans in the coastal Amazon. This DNA barcoding approach for
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Figure 5 Representative species from each category of crustaceans identified by morphological traits,
commercial names and DNAmarker (Cytochrome COxidase Subunit I).

Full-size DOI: 10.7717/peerj.19586/fig-5

assessing crustacean diversity has also been applied in various geographic regions, including
the Gulf of Mexico (Varela et al., 2021), Southern Africa (Bezeng & Bank, 2019), the North
Sea (Raupach et al., 2015), Southeast Asia (Hurzaid et al., 2020), Malaysia (Jamaluddin et
al., 2019), and Taiwan (Huang & Shih, 2021). In all these regions, the molecular tool has
proven effective and accurate for species identification. Through comparative analyses
with public databases and phylogenetic tree topologies, we identified a total of 15 species,
including cryptic diversity within P. monodon, which has been previously reported in the
literature (Yudhistira & Arisuryanti, 2019).

The number of crustacean species recorded in the present study exceeds those reported
by other authors in the same region (Freire, Silva & Souza, 2011; Santana et al., 2020).
This discrepancy is likely due to our use of molecular species delimitation tools, whereas
previous studies relied on external morphological traits for species identification. This
result underscores the limitations of morphological characteristics in accurately estimating
species richness. Notably, we analyzed the same samples collected by Santana et al. (2020),
but identified a higher number of valid species, including the potential new species of
the exotic ‘‘camarão tigre.’’ We, therefore, recommend that future studies in integrative
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taxonomy incorporate DNA-based methods to establish a reliable inventory of commercial
species.

It is important to note that the COI region II sequences of certain taxa did not exhibit
species-level similarities when compared to the NCBI public database, as public sequences
for this region are available only for a limited number of crustacean species (Weigand
et al., 2019; Dwiyitno, Hoffman & Parmentier, 2022). Nevertheless, the number of species
identified using region II further supports the potential of the entire COI gene (regions I
and II) as an efficient DNA marker for species delimitation. However, region I remains
the most widely used and accepted fragment for this purpose (Silva-Oliveira et al., 2011;
Veneza et al., 2014; Collin et al., 2020; França et al., 2021).

We observed the presence of 10 shrimp species (families Penaeidae and Palaemonidae),
two species of ‘‘siri’’ crabs (genus Callinectes), two species of lobsters (genus Panulirus),
and one species of mangrove crab (U. cordatus) being sold at the Bragança street market.
In contrast, Santana et al. (2020) recorded five shrimp species, along with a single species
of ‘‘siri’’ crab (C. bocourti) and mangrove crab (U. cordatus). Freire, Silva & Souza (2011)
identified five shrimp species, two ‘‘siri’’ crab taxa (C. danae and C. bocourti), and one
mangrove crab species (U. cordatus). Notably, the shrimp species P. isabelae, P. monodon
(clades A and B), X. dincao, M. sculptilis, and the two lobster species (genus Panulirus)
were not recorded in previous studies. Regarding the species documented at the Bragança
fishing landing by Espírito-Santo & Isaac (2012), the only species absent from their list were
the exotic and newly described ones.

On the other hand, Freire, Silva & Souza (2011) identified native species of freshwater
prawns from the genus Macrobrachium, such as M. surinamicum and M. amazonicum,
being commercialized in Bragança. These species were not recorded in the present study,
although M. amazonicum is considered the most exploited species of native freshwater
prawn in the region (Bentes et al., 2011). It is likely that specimens ofM. amazonicum were
present among the non-sequenced samples, as the trade name ‘‘camarão da Amazônia’’
(Amazon freshwater prawn) was recorded at the collection sites. Instead, allMacrobrachium
sequences obtained from the samples commercialized in Bragança referred to exotic species.

Regarding crabs ‘‘siri’’ (genus Callinectes), two species are found in the Bragança region:
C. danae and C. bocourti (Bentes et al., 2013). Both species were sampled in the present
study, but onlyC. bocourtiwas found in the openmarket. In fact,C. danae was not recorded
by Santana et al. (2020), as local vendors reported a decrease in commercial demand for
this species. The last recorded presence of C. danae in the local market was in the earlier
study by Freire, Silva & Souza (2011).

Genetic distances and delimitation tests
The three species delimitation tests identified two molecular operational taxonomic units
(MOTUs) within P. monodon, which aligns with the high genetic distances observed
in both region I (7.23%) and region II (10.7%). Haplotypes CT4 and CT5 in region I
show 100% similarity with sequences MT449918 (Clade A) and MT449922 (Clade B),
respectively (Table 1 and Fig. 2). This suggests that these haplotypes belong to the same
genetic stock and represent the same cryptic species previously reported by Yudhistira &
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Arisuryanti (2019). Other studies have also highlighted cryptic diversity in P. monodon
(Chan, Muchlisin & Hurzaid, 2021; Ramirez et al., 2021), indicating the possible existence
of up to four new species yet to be described (Hurzaid et al., 2020; Farias et al., 2023).

For M. sculptilis, the species delimitation tests produced varying results depending on
the region analyzed. In region I, the tests were consistent, identifying a single MOTU for
the Carc05 haplotype and the KP297897 sequence, with a genetic distance of 0%. However,
in region II, the GMYC and ASAP methods identified one MOTU, while bPTP identified
two MOTUs, reflecting the intraspecific genetic distance of 2.40% observed between the
Carc05 haplotype and the M. sculptilis sequence (MT178686). This suggests the presence
of distinct lineages, consistent with previous reports of cryptic species within M. sculptilis
(Hurzaid et al., 2020). Notably, the sequences from public databases used in the analyses of
each region originate from different geographic locations, which likely contributed to the
differing outcomes of the tests.

In the literature, P. isabelae is considered a cryptic species, with delimitation tests
revealing the existence of two MOTUs in Brazil (Ramirez et al., 2021; Farias et al., 2023),
with a minimum genetic distance of 1% between them (Ramirez et al., 2021). However, in
our study, individuals of P. isabelae, exhibiting genetic divergence ranging from 1.27% to
1.43% (regions I and II), were recovered as a single MOTU across all delimitation tests.

The speciesU. cordatus exhibited intraspecific genetic distances of 1.27% in region I and
1.67% in region II, and was identified as a single MOTU. The literature has documented
U. cordatus as having high genetic diversity, substantial gene flow, and a single panmictic
population (Buranelli, Felder & Mantelatto, 2019).

Identification and occurrence of new species of crustaceans in the
regional market
Most of the shrimps traded in Bragança consist of previously recorded alien species (Maciel
et al., 2011; Cintra et al., 2015; Ferreira et al., 2023). Among these, the ‘‘camarão arco-íris’’
or rainbow shrimp (M. sculptilis) has been recently reported by Ferreira et al. (2023) based
on DNA barcode identification of eight specimens. This species is native to the Indo-Pacific
region, and the authors hypothesized that its invasion originated from ballast water and
biofouling on large ships (Ferreira et al., 2023).

Another alien species found in the region isP. vannamei, a native shrimp from the Eastern
Pacific that was introduced to Brazil for aquaculture in the 1970s (Loebmann, Mai & Lee,
2010). Although not recorded in ecosystems along the coastal Amazon, escapes of captive
specimens into the wild have been reported in the Parnaíba Delta, northeastern Brazil
(Loebmann, Mai & Lee, 2010). Similarly, M. rosenbergii, originally from southeastern Asia,
was introduced in 1977 to support shrimp farming in Brazil (Cavalcanti, 1998; Oliveira &
Santos, 2021), and is now present in several Brazilian river basins due to accidental escapes
(Iketani et al., 2016; Oliveira & Santos, 2021). Another alien species of Macrobrachium, M.
equidens, native to the Indo-Pacific Ocean, was first recorded along the coastal Amazon by
Maciel et al. (2011), though there is no available information on the timing or method of
its introduction (Gomes et al., 2014).
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Similarly, the tiger prawn P. monodon, an Indo-Pacific species, was introduced to
Brazil in the 1970s for shrimp farming (Leão et al., 2011). However, many specimens
escaped, leading to the establishment of several populations in estuarine and coastal areas
of northern and northeastern Brazil (Coelho, Santos & Ramos-Porto, 2001; Cintra et al.,
2015). In the present study, we identified two genetically divergent lineages of P. monodon
(>7%) co-occurring in sympatry. This represents the first record of such a phenomenon in
the coastal Amazon, complementing earlier findings documented in Indonesia (Yudhistira
& Arisuryanti, 2019).

Furthermore, we recorded three recently described species. These include X. dincao
(Carvalho-Batista et al., 2019), which was previously referred to as Xiphopenaeus spp. II by
Gusmão et al. (2006), and P. isabelae (Tavares & Gusmão, 2016), which was once regarded
as morphotype I of P. subtilis (Gusmão, Lazoski & Solé-Cava, 2000). Since we sampled
several specimens of P. isabelae and none of P. subtilis, we infer that in previous reports
from this region, the identification of P. subtilis based on morphology likely referred to
P. isabelae, as both species exhibit high morphological similarities and low levels of genetic
divergence (França et al., 2021).

The third recently described species was recorded among the lobster samples (‘‘lagosta’’),
identified as P. meripurpuratus (Giraldes & Smyth, 2016). Previously, two lineages of
lobsters, separated by the plume of the Amazon River, were identified by Sarver, Silberman
&Walsh (1998). The lineage distributed south of this barrier and along the Brazilian coast
was later validated as a distinct species, P. meripurpuratus, while the original term Panulirus
argus was retained for the lineage from the Caribbean and North American coasts (Giraldes
& Smyth, 2016). Therefore, all previous reports of P. argus in Brazil should actually refer to
P. meripurpuratus.

Popular and trade names and their relationships with scientific
species identification
The commercialization of shrimp in Bragança was characterized by significant variation in
popular trade names, which lacked scientific-based criteria. As a result, some species were
marketed under different commercial labels, as observed with P. isabelae and P. vannamei
(‘‘camarão cascudo’’ or ‘‘camarão piré’’). This issue leads to imprecise estimates of the
number of species commercialized in the region, as previously noted by other authors
(Espírito-Santo & Isaac, 2012; Santana et al., 2020).

Only the samples of P. schmitti and P. meripurpuratus were identified by their specific
popular names (‘‘camarão branco’’ and ‘‘lagosta vermelha’’, respectively) (Almeida et al.,
2021; Carvalho et al., 2021). Other species were marketed under generic categories, such as
the crabs U. cordatus (‘‘caranguejo’’) and C. bocourti (‘‘siri’’), even though these species are
commonly known as ‘‘caranguejo-uçá’’ (Freitas et al., 2015) and ‘‘siri vermelho’’ (Jomar,
2021), respectively.

In some cases, species sold at the free fair were marketed under multiple denominations,
as observed for P. monodon andM. sculptilis. For P. monodon, the accepted common name
is ‘‘camarão tigre’’ (Benzie et al., 1995), but the term ‘‘camarão cascudo’’ was also used. In
contrast, for M. sculptilis, the primary valid name is ‘‘camarão arco-íris’’ (Alam & Pálsson,
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2021), although it was also recorded as ‘‘camarão tigre’’ in this study. The use of the
name ‘‘camarão tigre’’ by local vendors for M. sculptilis may be attributed to the fact that
it is a recently registered species in the region (Ferreira et al., 2023) and bears a strong
resemblance to P. monodon.

Additionally, several species were not marketed under their primary common names
in Brazil. For instance, P. isabelae was sold as ‘‘camarão rosa’’ (Franca et al., 2020),
P. vannamei as ‘‘camarão cinza’’ (Freitas, Oliveira-Filho & Campagnoli, 2016), X. kroyeri
as ‘‘camarão sete-barbas’’ (Franco & Santos, 2022) M. rosenbergii as ‘‘camarão gigante da
Malásia’’ (Mohamed, Firuza & Subha, 2017), and P. laevicauda as ‘‘lagosta verde’’ (Lima &
Andrade, 2017).

On the other hand, no popular denominations are available in the literature for
M. equidens and the recently described shrimp species X. dincao. However, in Bragança,
representatives of the Macrobrachium genus are commonly referred to as ‘‘camarão
cascudo’’ (Espírito Santo et al., 2005), while species of the genus Xiphopenaeus are known
as ‘‘piré’’ or ‘‘piticaia’’ (Santana et al., 2020), a naming convention also observed in the
present study.

As demonstrated, there is awide range of commercial names and a lack of standardization
in their usage. Therefore, it is essential to establish guidelines to standardize the application
of common names alongside their corresponding scientific names for commercial
crustaceans. Regulating this nomenclature would enhance traceability and fishing statistics
for various species at landing sites and in markets (Cawthorn, Baillie & Mariani, 2018;
Cundy et al., 2023). Additionally, it would support conservation efforts, fair trade, and
safeguard consumer rights by ensuring access to accurate product information (Delpiani
et al., 2020; Pincinato et al., 2022).

Commercial and invasive carcinofauna in coastal Amazon:
implications for fisheries management and conservation
Molecular identification has revealed that the diversity of commercial crustaceans has been
underestimated due to the reliance on popular trade names. As a result, the current data
have uncovered hidden levels of diversity within the regional carcinofauna, which were not
previously documented (Freire, Silva & Souza, 2011; Santana et al., 2020). Had common
names been used as identification markers, the two newly described species, P. isabelae
and X. dincao, would likely have been misidentified as their sister species, P. subtilis and X.
kroyeri, which have historically been reported in the coastal Amazon (Freire, Silva & Souza,
2011; Espírito-Santo & Isaac, 2012).

The reproduction and recruitment of certain commercial crustacean species are
protected by fisheries closed seasons established by national regulations (Brasil. Lei no
11.959, de 29 de junho de, 2009). For lobsters such as P. meripurpuratus (formerly P. argus)
and P. laevicauda, the closed season spans from November 1st to April 30th (regulation
SAP/MAPA n. 221/2021), while the closed season for the crab U. cordatus runs from
January to March (regulation SAP/MAPA No. 325/2020). Additionally, the fishing of
penaeid shrimps (e.g., X. kroyeri and P. schmitti) is prohibited from December to February
(regulation MDIC/MMA No. 15/2018). Despite these regulations, several crustaceans,
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particularly U. cordatus, are sold year-round at the free fair in Bragança, even during the
closed season, reflecting illegal trade practices (Santana et al., 2020). The illicit exploitation
of commercial species during their breeding season threatens the sustainability of fish
stocks (Santana et al., 2020; Lima & Andrade, 2021). A similar situation has been observed
in this region with teleosts and elasmobranchs (Martins et al., 2021; Santana et al., 2023),
underscoring the high vulnerability of coastal Amazon fisheries due to unregulated
overexploitation, which could undermine the long-term sustainability of fishing activities.

Regarding conservation status, none of the species recorded in this study are classified
as threatened by the IUCN or national regulatory agencies (MMA n. 14/2022). Although
there is evidence of population declines forU. cordatus,X. kroyeri, P. schmitti, P. argus (now
validated as P. meripurpuratus), and P. laevicauda, reliable estimates of stock declines for
these species are hindered by the lack of accurate statistical data (Pinheiro & Boos, 2016).
Overexploitation, fishing during breeding seasons, and habitat degradation have been
identified as the primary threats to wild populations of commercially important species,
as well as to the long-term sustainability of fisheries resources (De Mitcheson & Erisman,
2011;Mitcheson et al., 2020).

Another critical issue revealed in this study is the substantial presence of alien species,
which accounted for approximately 40% of the sampled crustaceans. Generally, these
bioinvaders are carnivorous and pose significant threats to native species (Iketani et al.,
2016; Ferreira et al., 2023). Such threats may arise through direct predation, intensified
competition for environmental resources, and the potential transmission of pathogens to
native fauna (Doherty et al., 2016; Svoboda et al., 2017). These direct and indirect pressures
can negatively affect native crustacean stocks, ultimately undermining the sustainability
of local fisheries and hindering conservation initiatives (Government of Brazil, 2000; Fuller
et al., 2014).

Therefore, the negative impacts associated with the presence of alien species along
the coastal Amazon are substantial, resulting in both environmental degradation and
socioeconomic losses. Aquaculture activities and global maritime traffic are likely the
main vectors of bioinvasion, highlighting the urgent need for effective monitoring and
regulatory policies. In particular, measures aimed at controlling species introductions
through ballast water discharge and aquaculture practices should be prioritized to prevent
further dissemination of exotic species in the region (Loebmann, Mai & Lee, 2010).

CONCLUSIONS
In this study, the COI marker proved to be an effective tool for the discrimination and
identification of crustacean species exploited by fisheries in Bragança. The results revealed
a diverse commercial carcinofauna, including newly described taxa, invasive alien species,
and indications of cryptic diversity within P. monodon.

Accordingly, molecular identification revealed previously underestimated levels of
regional diversity among harvested crustaceans, which have traditionally been overlooked
due to the widespread use of generic trade names. This issue is further compounded by
the absence of national regulatory policies establishing standardized common names for
commercially exploited crustacean species.
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Therefore, the present data, together with future molecular inventories, should
contribute to the establishment of a reference library for the carcinofauna of the Coastal
Amazon, supporting the effective management and conservation of exploited species.
Furthermore, the broad dissemination of scientific knowledge is essential to inform and
promote public policies aimed at regulating local fisheries and trade, thereby ensuring
accurate documentation of crustacean diversity and safeguarding regional biodiversity.
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